

MODULE OVERVIEW

Topics to be covered

Introduction to parallel programming

Common difficulties in parallel programming

Introduction to OpenACC

Parallel programming in OpenACC

OpenACC

INTRODUCTION TO PARALLEL
PROGRAMMING

OpenACC

WHAT |S PARALLEL PROGRAMMING?

= “Performance Programming”

o | |A+B+C+D|
= Parallel programming involves exposing an _
algorithm’s ability to execute in parallel Sequential Parallel

= This may involve breaking a large operation
into smaller tasks (task parallelism)

= Or doing the same operation on multiple
data elements (data parallelism)

= Parallel execution enables better st
performance on modern hardware eps

3 Steps
OpenACC

AMDAHL'S LAW

OpenACC

AMDAHL'S LAW

Serialization Limits Performance

= Amdahl’s law is an observation that how much
speed-up you get from parallelizing the code is
limited by the remaining serial part.

= Any remaining serial code will reduce the
possible speed-up

= This is why it's important to focus on
parallelizing the most time consuming parts,
not just the easiest.

OpenACC

Potential Speed-up

o 25%

Amdahl's Law
e 50% e 75% e 90% e 95%

64 512 4096 32768
Number of Processors

0 |(®e «e

APPLYING AMDAHL'S LAW

Estimating Potential Speed-up

= What's the maximum speed-up that can be
obtained by parallelizing 50% of the code?

1/(100% - 50%) =1/ (1.0 - 0.50) = 2.0X

= What's the maximum speed-up that can be
obtained by parallelizing 25% of the code?

1/(100% - 25%)=1/(1.0-0.25) = 1.3X

= What's the maximum speed-up that can be
obtained by parallelizing 90% of the code?

1/(100% - 90%)=1/(1.0-0.90) = 10.0X
OpenACC

Maximum Parallel Speed-up

Total Parallel

Runtime (50%)

Total Parallel
Runtime (25%)

Total Parallel

Runtime (90%)

Total Serial Runtime

INTRODUCTION TO OPENACC

OpenACC

OpenACC is a directives-

based programming approach
to parallel computing

designed for performance

and portability on CPUs
and GPUs for HPC.

Add Simple Compiler Directive

main()
{
<serial code>
#pragma acc kernels

{

<parallel code>

OpenACC

OpenACC

STANDARDS-BASED PARALLELISM

MPI standard OpenMP standard OpenACC standard

hitps://www.mpi-forum.org/docs/ https://www.openacc.org/specification
OpenACC https://www.openmp.org/specifications/

DEVELOPMENT OF OPENMP STANDARD

Number of Pages in OpenMP Standard

800
700

600

500

400

300

200

100 I
s w7 1

Fortran 1.0 Fortran 1.1 C/C++1.0 Fortran2.0 C/C++2.0 3.0(2008) 3.1(2011) 4.0 (2013)+4.0 (2013) + 5.0 (2018) 5.1 (2020) 5.2 (2021)
(1997) (1999) (1998) (2000) (2002) Exam. Exam.
401 402
(2014) (2015)

M Datenreihenl M Examples

OpenACC

COMPLEXITY OF RECENT STANDARDS

Comparison of Number of Pages in Recent

Standards

1200
1000
800
600
400
200

o L

MPI 4.0 (2021) OpenMP 4.0 (2013) + Exam. 4.0.2 OpenMP 5.2 (2021) OpenACC 3.1 (2020)

(2015)

OpenACC

3 WAYS TO ACCELERATE

APPLICATIONS
Applications
. . Compiler Programmin
Libraries Omp J J
Directives Languages
Easy to use Easy to use Most Performance
Most Performance Portable code Most Flexibility

OpenACe __OpenACC)

OPENACC PORTABILITY

Describing a generic parallel machine

OpenACC is designed to be portable to many
existing and future parallel platforms Device

The programmer need not think about specific '
hardware details, but rather express the
parallelism in generic terms

An OpenACC program runs on a host
(typically a CPU) that manages one or more
parallel devices (GPUs, etc.). The host and
device(s) are logically thought of as having
separate memories.

OpenACC

OPENACC

Three major strengths

Incremental Single Source Low Learning Curve

\ J \ J \ J
OpenACC

OPENACC

Incremental

» Maintain existing
sequential code

= Add annotations to
expose parallelism

= After verifying
correctness, annotate
more of the code

\ J
OpenACC

Enhance Sequential Code
#pragma acc parallel Toop
for(i =0; i < N; i++)

{
}

< loop code >

#pragma acc parallel Toop
for(i =0; i < N; d++)

{
¥

< loop code >

Begin with a working
sequential code.

Parallelize it with OpenACC.

Rerun the code to verify
correct behavior,
remove/alter OpenACC
code as needed.

OPENACC

Incremental Single Source Low Learning Curve

» Maintain existing
sequential code

= Add annotations to
expose parallelism

= After verifying
correctness, annotate
more of the code

\ J \ J \ J

OpenACC

OPENACC

. The compiler can ignore your
Single Source OpenACC code additions, so the same

Supported Platforms

code can be used for parallel or
POWER sequential execution.
» Rebuild the same code
Sunway on multiple
%86 CPU architgctures | int main(){
= Compiler determines
x86 Xeon Phi how to parallelize for
the desired machine ’;p"?g’“f’c‘ acc pa"‘?‘lle:‘ 1‘?°p)
or(int 1 = @; 1 < N; 1++
NVIDIA GPU = Sequential code is < loop code >
PEZY-SC maintained
\, J

OpenACC

OPENACC

Incremental Single Source Low Learning Curve

= Rebuild the same code
on multiple
architectures

= Maintain existing
sequential code

= Add annotations to : :
. = Compiler determines
expose parallelism how to parallelize for

= After vterifying " the desired machine
correctness, annotate : .
’ = Sequential code is
more of the code maintained

\ J \ J \ J

OpenACC

OPENACC

|CPU |

ENEENEEENEENEEEN
G
EEENNEEENEENEEEN
EEEEEEEENEEEEEEN
ENENNEEENENEENEN
EEEENEEENEEEEEEN

EEEENEEENENNENEN

EEEEEEEENEEEEEEN
ENEENEEENENEEEEN
EEEEEEEENEEEEEEN
EEEEEEEENEEEEEEN
EEEENEEENEEEEEEN

int main(){

{
}
}

<sequential code>
#pragma acc kernels <—

<parallel code>

OpenACC

~

Parallel Hardware

Compiler

Hint

The programmer will
give hints to the
compiler about which
parts of the code to
parallelize.

The compiler will then

generate parallelism

for the target parallel
hardware.

Low Learning Curve

= OpenACC is meant to
be easy to use, and
easy to learn

» Programmer remains
in familiar C, C++, or
Fortran

= No reason to learn

low-level details of the
hardware.

OPENACC

Incremental Single Source Low Learning Curve

.« Maintai ot = Rebuild the same code = OpenACC is meant to
aintain eIXISoIIng on multiple be easy to use, and

sequentia C_O © architectures easy to learn

" Add annotatlonl_s to = Compiler determines = Programmer remains
expose Par.alle ISm how to parallelize for in familiar C, C++, or

= After verifying the desired machine Fortran
correctness, annotate « Sequential code is = No reason to learn
more of the code maintained low-level details of the

hardware.
_) \L J _)

OpenACC

EXPRESSING PARALLELISM WITH
OPENACC

OpenACC

CODING WITH OPENACC

Array pairing example- serial

void pairing(int *input, int *output, int N){

for(int i = 0; i < N; i++)
output[i] = input[i*2] + input[i*2+1];
}
6 | 3|10 712 |4)| 3] 819 1
Z input

OpenACC

CODING WITH OPENACC

Array pairing example - parallel

void pairing(int *input, int *output, int N){
#pragma acc parallel loop
for(int 1 = 9; 1 < N; i++)
output[i] = input[i*2] + input[i*2+1];

OpenACC

DATA DEPENDENCIES

Not all loops are parallel
void pairing(int *a, int N){

for(int 1 = 1; 1 < N; i++)
a[i] = a[i] + a[i-1];

}

113|688 | W | B|B |28|3|4 |36

i i i i=6 i i=8 i=9

i=1 i=2 i=3 i=4 i=5 i=7

OpenACC

DATA DEPENDENCIES

Not all loops are parallel

void pairing(int *a, int N){

Hpeame—aee—soen e L Lecw
for(int 1 = 1; 1 < N; i++)
a[i] = a[i] + a[i-1];

¥

11316 |10]15]21 |28

v BB bbb bbb

If we attempted to parallelize this
loop we would get wrong answers
due to a forward dependency.

Sequential

112 | 8319 |9 |B|I18

OpenACC

% Parallel

MODULE 1 REVIEW

OpenACC

CLOSING SUMMARY

Module One: Introduction

Parallel programming is a technique of utilizing modern hardware to do lots of work
all at once.

Amdahl’s law is the gravity of parallel programming, break this law at your own peril.

Not all loops are parallel, but often can be rewritten to be parallelizable

OpenACC is a high level model for generating parallel code from serial loops

OpenACC

Guides e Talks e Tutorials e Videos ® Books e Spec e Code Samples e Teaching Materials e Events e Success Stories e Courses e Slack e Stack Overflow

OPENACC RESOURCES

FREE
Compilers

PGl

Communi;y‘
EDITION

¥ slack

https://www.openacc.org/community#slack

OpenACC

e, Less Programming

Resources
https://www.openacc.org/resources

Oponice

Resources

B Guides & Books

Introduction to OpenACC Quick Guides Q Paraliel Programming with OpenACC
+ CoendCC Programming and Best Praclces Guide
 OpORACC 25 4P Roteronco Carg

B Tutorials
a ragramming Massivety Paraliel Processors, Third

Progs
Edition: A Hands-on Approach

Compilers and Tools
https://www.openacc.org/tools

Downloads & Tools

Openacc compilers,

Commercial Compilers Open Source Compilers

y Gon
{.:I] EREETETEOu C‘%

Compilers witl
OpenACC Directives « penACC

=RaNy PG'

Success Stories
https://www.openacc.org/success-stories
OpenACC

Success Stories

are sharing their results and experiences.

>Watch more OpenACC Vides

Events
https://www.openacc.org/events

Events

The OpenACC C g throughout the year. talks =

around the world to

User Group.

Hackathons

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.pgroup.com/products/community.htm
https://www.openacc.org/community#slack

	MODULE ONE:�INTRODUCTION
	Module OVERVIEW
	Introduction to parallel programming
	What is parallel programming?
	Amdahl’s Law
	Amdahl’s Law
	Applying Amdahl’s Law
	Introduction to Openacc
	Foliennummer 22
	Standards-based parallelism
	Development of OpenMP STandard
	Complexity of Recent Standards
	3 Ways to Accelerate Applications
	Openacc portability
	openacc
	openacc
	openacc
	openacc
	openacc
	openacc
	openacc
	Expressing parallelism with openacc
	Coding with openacc
	Coding with openacc
	Data Dependencies
	Data Dependencies
	Module 1 Review
	Closing Summary
	OPENACC Resources
	THANK YOU�

