Generative Al Powered by Intel

Akash Dhamasia, Al Software Solutions Engineer March 07, 2024

- Generative Al Introduction
- Intel SW for Generative AI
 - Al frameworks (PyTorch, TensorFlow)
 - Recipe for Intel[®] Optimizations with IPEX
 - Profiling techniques
 - Distributed Training
 - Intel Extension for Transformers and DeepSpeed
- Demo
- Conclusion

Let's play a little game: which image is real?

ALL images fully generated by Stable Diffusion SDXL

AI has made incredible progress in the last years

Typical Domains of AI (for the last 10 years)

COMPUTER VISION

Ability to understand the visual world

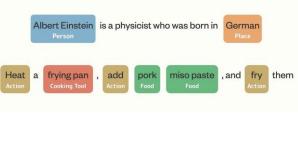
Classification

Object Detection

Instance or Semantic segmentation

NATURAL LANGUAGE PROCESSING (NLP)

 Ability to understand the written world



Translation

Entity Name Recognition

Generative AI

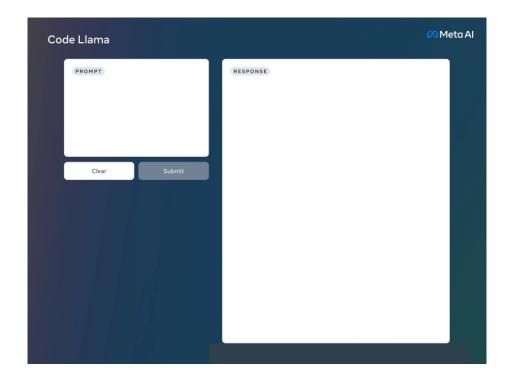
- End of 2022, ChatGPT was released, and the generative AI (genAI) craze started!
- Generative AI is the ability for the AI model to create contents (text, image, music, code ...)

Image fully generated by Stable Diffusion SDXL, a textto-image AI

The new trend – generative Al

Art generation

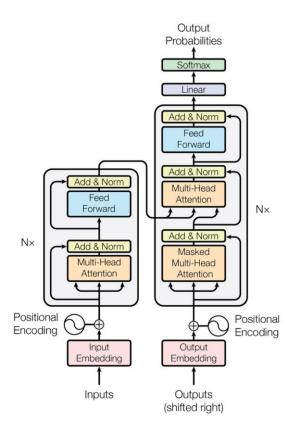
Code generation



intel.⁷

Transformers

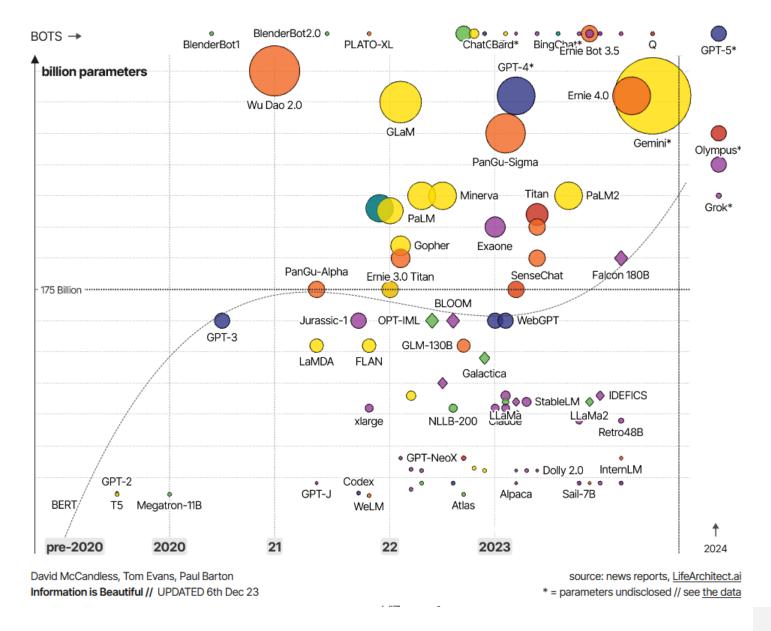
- Transformer architecture is the base for NLP and genAl (e.g., BERT, LLM, ...)
 - Composed of 2 building blocks: encoder and decoder



Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. *Advances in neural information processing systems*, 30.

Model Size, way up

- Model keep growing in size
- Trained in self-supervised manner on web-scale quantities of unlabeled data
- Starting with Bert was 0.3B in 2018
- This is logarithmic scale!



9

Foundational Model

- From the first iterations of Large Language Model such as GPT, model started to be large enough to abstract concepts and language
- They are coined as Foundational Models
- This ONE model can then be adapted to a wide range of downstream tasks

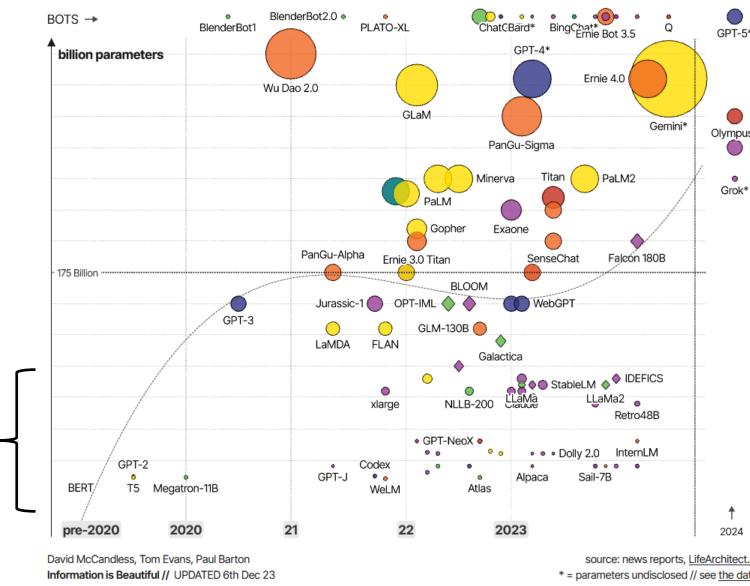
Tasks Question Answering Data Sentiment Analysis Text Information Images Extraction Adaptation Speech My Foundation Training Image Captioning Model Structured Data Object Recognition 3D Signals 🛖 Instruction Following

Bommasani, Rishi, et al. "On the opportunities and risks of foundation models." *arXiv preprint arXiv:2108.07258* (2021).

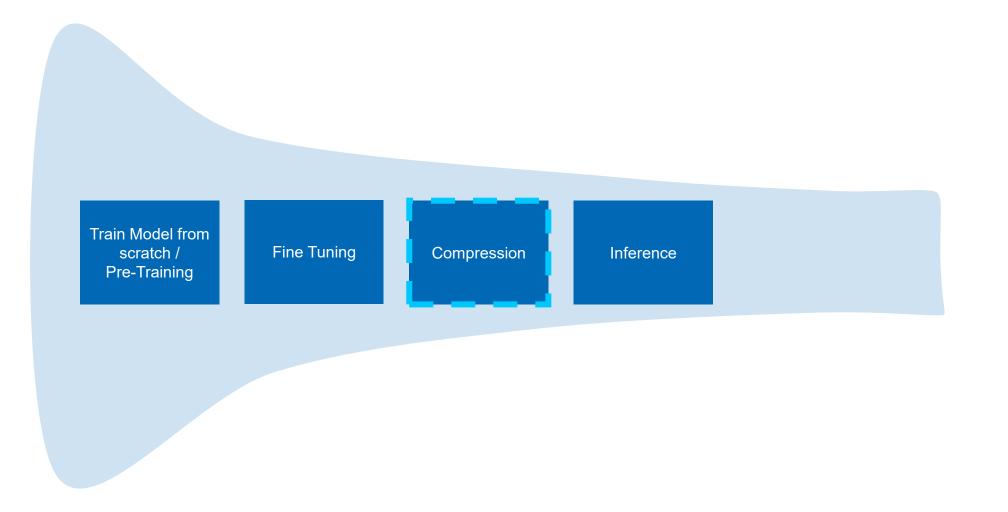
Amazon-owned Ochinese Ocogle Meta / Facebook Microsoft OpenAl Ocher

Recent trend is to scale down

- Push from the open-source community
- Models are trained on better quality (and smaller) dataset
- Trained on "smaller" infrastructures
- Mixture of Experts are also the trend

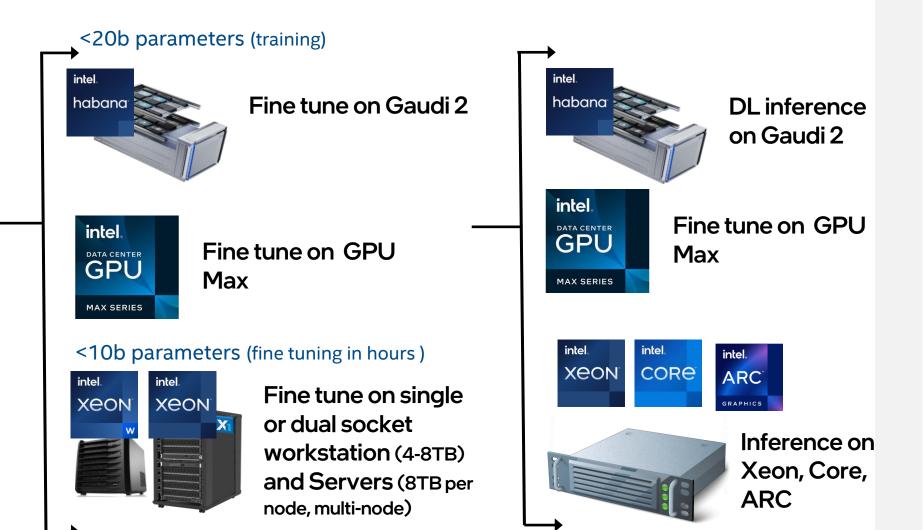


Deep Learning Funnel Pipeline

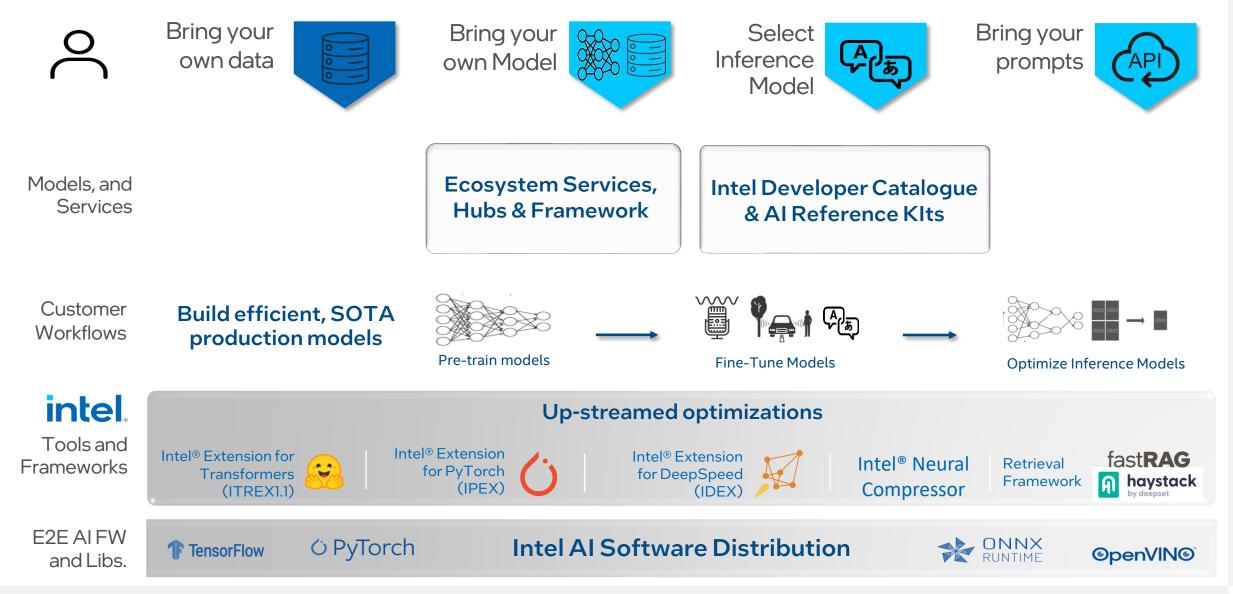


Intel Generative AI Products

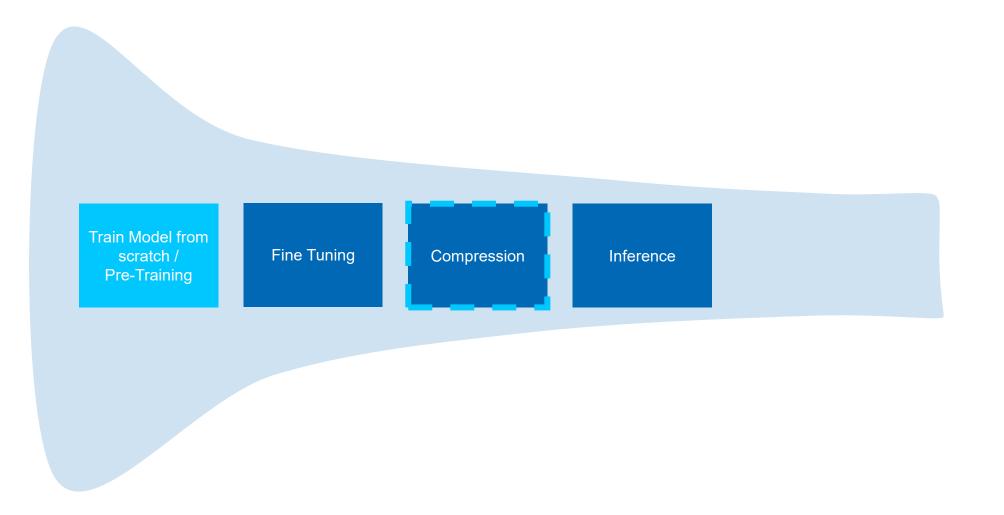
LFM pretraining and batch inferencing



Entry Points to the Intel AI Platform



Deep Learning Funnel Pipeline



Pre-training

- Training in self-supervised manner on web-scale quantities of unlabeled data
- Common foundational models are trained on web-scale corpus of text extracted from the Internet

Infrastructure to Train those Foundational Models

Only possible through supercomputers

European example:

- BLOOM (176B) was trained on Jean-Zay supercomputer (CNRS, France)
 - 384 80GB A100 GPUs for 3.5 months
 - On 366B tokens (1.6TB of pre-processed text)

Pretraining for domain adaptation

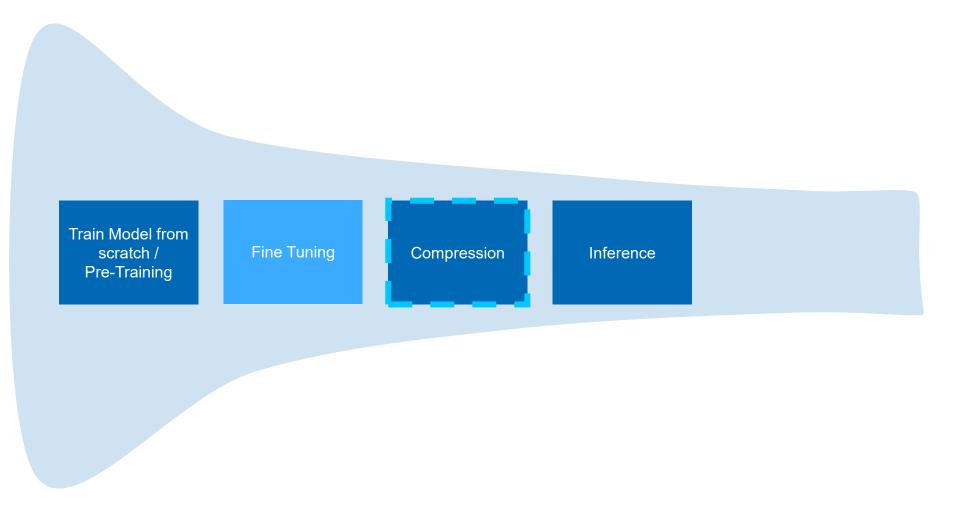
- Specialized vocabulary:
 - Domain with specialized vocabulary: medical, legal, finance
 - E.g. BloombergGPT: trained for financial data. (51% financial data / 49% general data)
- Applied on non-text data unstructured sequential data
 - Genomics
 - Protein generation
 - Generative chemistry
- Where few or no foundational model can be found for those applications yet

Intel tools necessary for it

Intel ExtensionIntel Extensionfor PyTorchfor Deepspeed

intel. ¹⁹

Deep Learning Funnel Pipeline

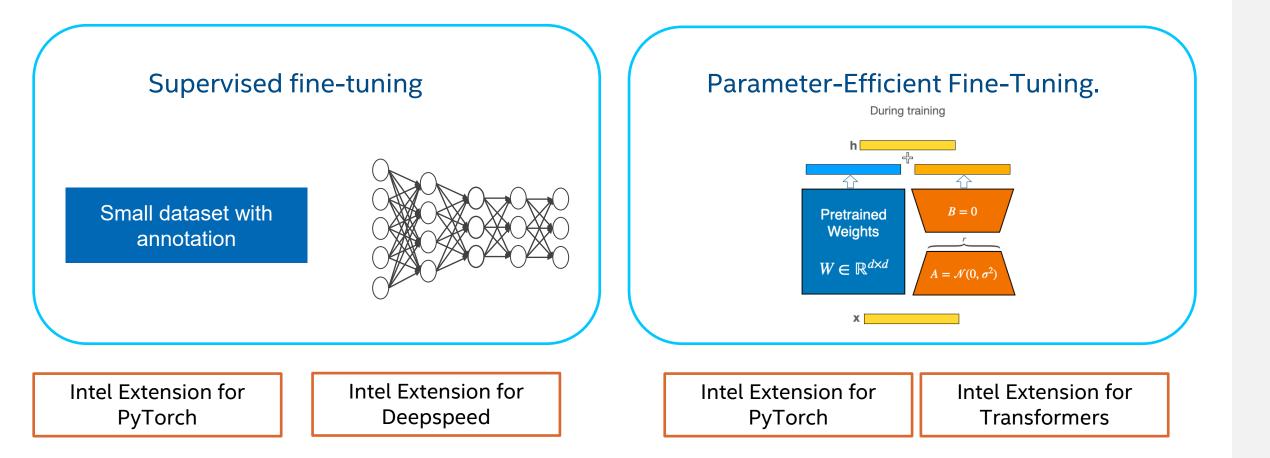


"Fine tuning is the new training "

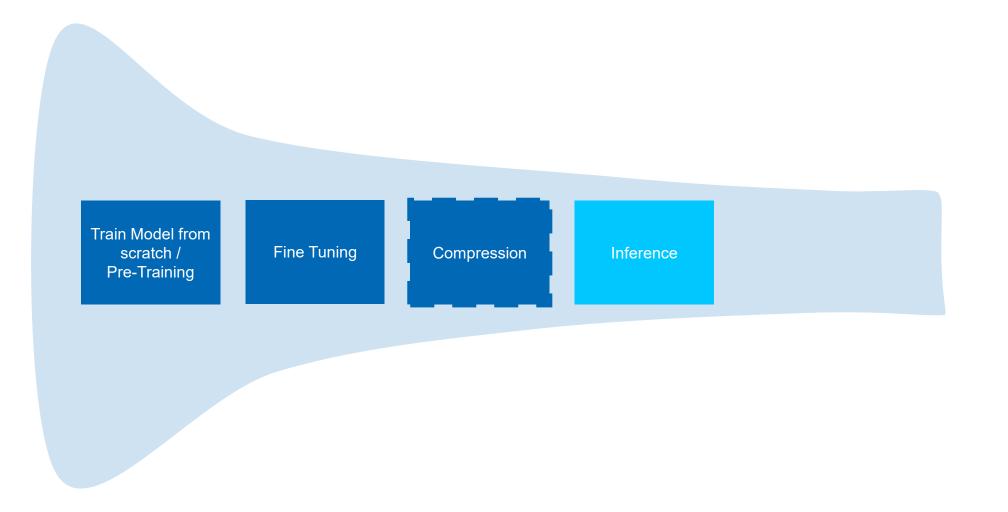
Fine-tuning

- Adapt the pre-trained model to a specific task or domain using a smaller, task-specific dataset.
- Makes the model more specialized and improves its performance on that particular task.

Fine-tuning techniques



Deep Learning Funnel Pipeline



Intel tools necessary for it

for PyTorch

Intel Extension Intel Extension for Deepspeed for Tensorflow

Intel Extension

Essential building blocks – Al frameworks

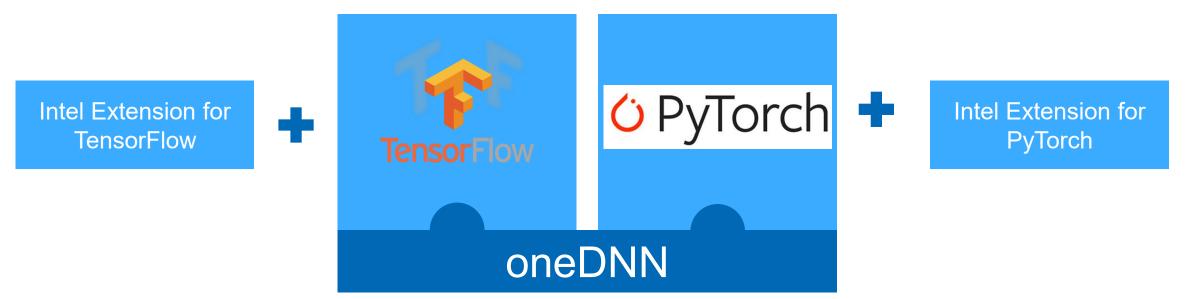
Intel®-Optimized Deep Learning Frameworks – Introduction

Intel®-Optimized Deep Learning Frameworks

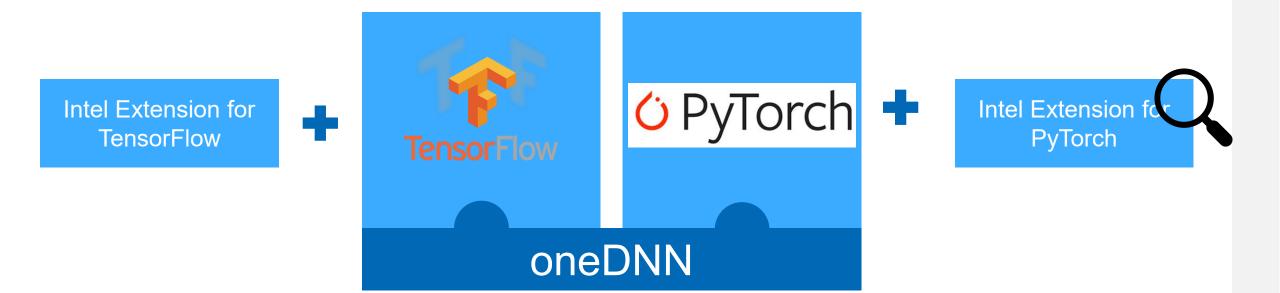
- Intel®-optimized DL frameworks are drop-in replacement,
 - No front code change for the user
- Optimizations are up-streamed automatically (TF) or on a regular basis (PyTorch) to stock frameworks

Intel®-Optimized Deep Learning Frameworks

- Intel[®] Extension for PyTorch and TensorFlow are additional modules for functions not supported in standard frameworks (such as mixed precision and dGPU support).
- As they offer more aggressive optimizations, they offer bigger speed-ups for training and inference.



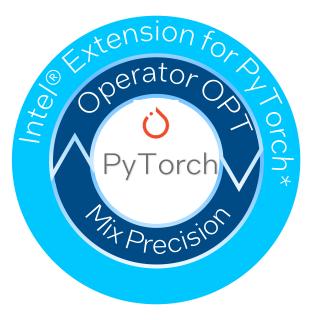
Intel®-Optimized Deep Learning Frameworks



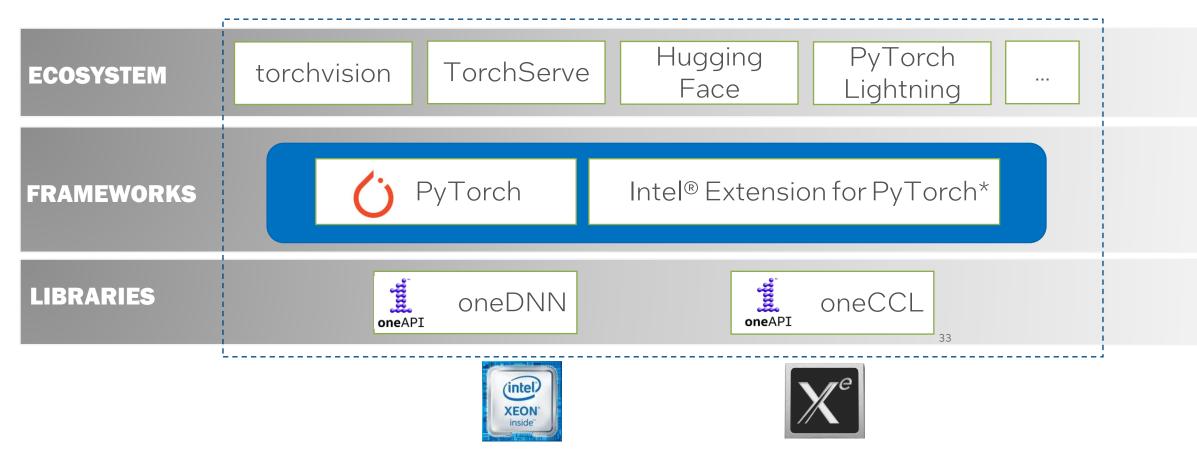
Intel[®] Extension for PyTorch

Intel[®] Extension for PyTorch* (IPEX)

- Buffer the PRs for stock PyTorch
- Provide users with the up-to-date Intel software/hardware features
- Streamline the work to integrate oneDNN
- Unify user experiences on Intel CPU and GPU



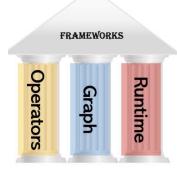
Intel® Optimization for PyTorch



Other names and brands may be claimed as the property of others

Major Optimization Methodologies

3-Pillar Framework Optimization Techniques

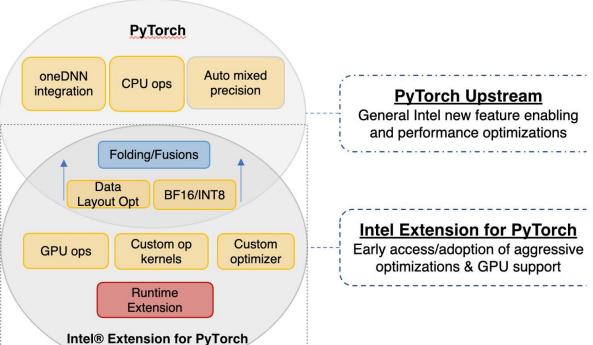


Ор

- Vectorization and Multi-threading
- Low-precision BF16/INT8 compute
- Ease-of-use BF16 compute with Auto-
 - Mixed-Precision (AMP)
- Data layout optimization for better cache locality

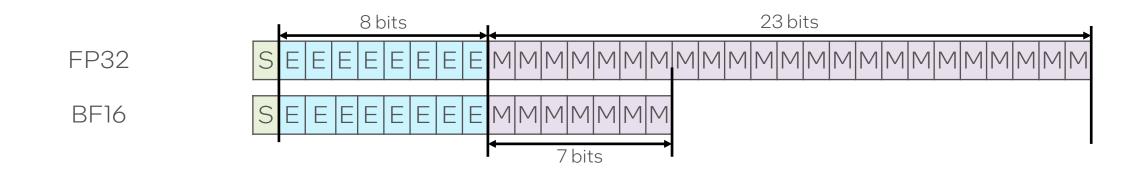
Graph

- Constant folding to reduce compute
- Op fusion for better cache locality
 Runtime
- Thread affinitization and multi-streams
- Memory buffer pooling
- GPU runtime
- Launcher



Building and Deploying with BF16

Low-precision Optimization – BF16



BF16 has the <u>same range</u> as FP32 but <u>less precision</u> due to 16 less mantissa bits. Running with 16 bits can give significant performance speedup.

LRZ Beginner Workshope.com/content/dam/develop/external/us/en/documents/bfl6-hardware-numerics-definition-white-paper.pdf

Inference with Intel® Extension for PyTorch Usage Example

Resnet50

import torch

model = models.resnet50(pretrained=True)
model.eval()
data = torch.rand(1, 3, 224, 224)

BERT

model = BertModel.from_pretrained(args.model_name)
model.eval()

vocab_size = model.config.vocab_size batch_size = 1 seq_length = 512 data = torch.randint(vocab_size, size=[batch_size, seq_length])


```
with torch.no_grad():
```

```
model(data)
```

LRZ Beginner Workshop

*The .to("xpu") is needed for GPU only **Use torch.cpu.amp.autocast() for CPU ***Channels last format is automatic

Training with Intel Extension for PyTorch Usage Example

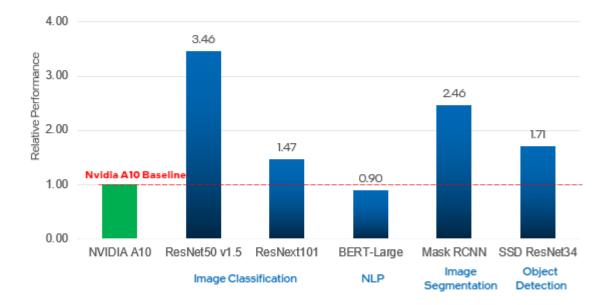
```
import torch
import torchvision
import intel_extension_for_pytorch as ipex
LR = 0.001
DOWNLOAD = True
DATA = 'datasets/cifar10/'
transform = torchvision.transforms.Compose([
  torchvision.transforms.Resize((224, 224)),
 torchvision.transforms.ToTensor(),
 torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
1)
train_dataset = torchvision.datasets.CIFAR10(
  root=DATA,
  train=True,
  transform=transform,
  download=DOWNLOAD,
train_loader = torch.utils.data.DataLoader(
 dataset=train_dataset,
  batch_size=128
```

```
model = torchvision.models.resnet50()
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = LR, momentum=0.9)
model.train()
model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.bfloat16)
```

```
for batch_idx, (data, target) in enumerate(train_loader):
    optimizer.zero grad()
with torch.cpu.amp.autocast():
    output = model(data)
    loss = criterion(output, target)
    loss.backward()
    optimizer.step()
    print(batch_idx)
torch.save({
    'model_state_dict': model.state_dict(),
    'optimizer_state_dict': optimizer.state_dict(),
    }, 'checkpoint.pth')
```

Intel Extension for PyTorch Performance

Real-Time (BS=1+) Inference Performance 2S Intel® Xeon® Platinum 8480+ processor [IPEX with BF16/FP16] vs. NVIDIA A10 GPU [TensorRT] Higher is better



1.8x higher average* BF16/FP16 inference performance vs Nvidia A10 GPU³

Benchmark data for the Intel[®] 4th Gen Xeon Scalable Processors can be found <u>here</u>.

intel

Deploying with INT8

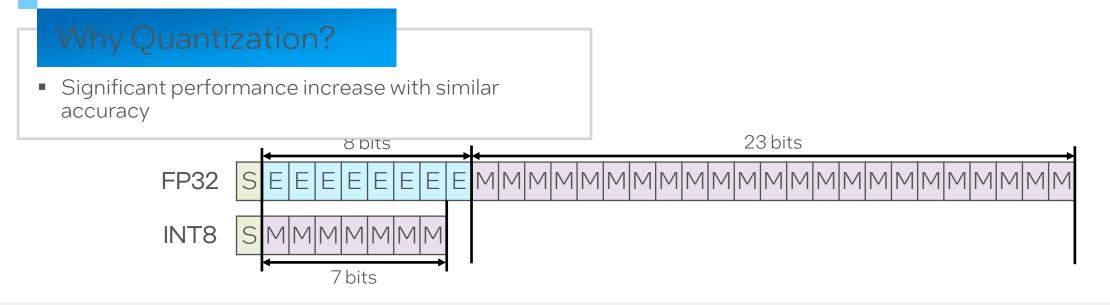
Low-precision Optimization – INT8

What is Quantization?

- An approximation method
- The process of mapping values from a large set (e.g., continuous, FP64/FP32) to those with smaller set (e.g., countable, BF16, INT8)

How to Quantize?

- PyTorch quantization
- IPEX quantization (with or w/o INC integration)
- Inter Neural Compressor (INC)



Quantization Workflow and API

Static Quantization

Import intel_extension_for_pytorch as ipex.

- 2. Import prepare and convert from intel_extension_for_pytorch.quantization .
- 3. Instantiate a config object from torch.ao.quantization.Qconfig to save configuration data during calibration.
- 4. Prepare model for calibration.
- 5. Perform calibration against dataset.
- 6. Invoke ipex.quantization.convert function to apply the calibration configure object to the fp32 model object to get an INT8 model.
 7. Save the INT8 model into a pt file.

import os

model = Model()
model.eval()
data = torch.rand(<shape>)

for d in calibration_data_loader():
 prepared_model(d)

converted_model = convert(prepared_model)
with torch.no_grad():
 traced_model = torch.jit.trace(converted_model, data)
 traced_model = torch.jit.freeze(traced_model)

traced_model.save("quantized_model.pt")

Dynamic Quantization

1. Import intel_extension_for_pytorch as ipex .

- 2. Import prepare and convert from intel_extension_for_pytorch.quantization .
- 3. Instantiate a config object from torch.ao.quantization.Qconfig to save configuration data during calibration.
- 4. Prepare model for quantization.
- 5. Convert the model.
- 6. Run inference to perform dynamic quantization.
- 7. Save the INT8 model into a pt file.

import os

model = Model()
model.eval()
data = torch.rand(<shape>)

dynamic_qconfig = ipex.quantization.default_dynamic_qconfig # Alternatively, define your own qconfig: #from torch.ao.quantization import MinMaxObserver, PlaceholderObserver, QConfig #qconfig = QConfig(# activation = PlaceholderObserver.with_args(dtype=torch.float, compute_dtype=torch.quint8), # weight = PerChannelMinMaxObserver.with_args(dtype=torch.quint8, qscheme=torch.per_channel_symmetric)) prepared_model = prepare(model, qconfig, example_inputs=data)

converted_model = convert(prepared_model)

with torch.no_grad():
 traced_model = torch.jit.trace(converted_model, data)
 traced_model = torch.jit.freeze(traced_model)

traced_model.save("quantized_model.pt")

TorchScript and torch.compile()

Resnet50

TorchScript

- Converts PyTorch <u>model</u> into a graph for faster execution
- torch.jit.trace() traces and records all operations in the computational graph; <u>requires a sample</u> <u>input</u>
- torch.jit.script() parses the Python source code of the model and compiles the code into a graph; sample input not required

import torch import torchvision.models as models

```
model = models.resnet50(weights='ResNet50_Weights.DEFAULT')
model.eval()
data = torch.rand(1, 3, 224, 224)
```

```
with torch.no grad(), torch.cpu.amp.autocast():
    model = torch.jit.trace(model, torch.rand(1, 3, 224, 224))
    model = torch.jit.freeze(model)
```

model(data)

torch.compile() - in BETA

 Makes PyTorch <u>code</u> run faster by just-in-time (JIT)-compiling PyTorch code into optimized kernels

Verifying That AMX Is Used

How to Check If AMX Is Enabled

• On bash terminal, enter the following command:

- cat/proc/cpuinfo
- Check the "flags" section for amx_bfl6, amx_int8
- Alternatively, you can use:
 - Iscpu | grep amx

If you do not see them, upgrade to Linux kernel 5.17 and above

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse s se2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpu id aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 s se4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_ l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflus hopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_ mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req hfi avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vp2intersect md_clear serialize tsxldtrk pconfig arch_ lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities

How to Check AMX Is Actually Used

- Generate oneDNN Verbose logs using <u>guide</u> and <u>parser</u>
- To enable verbosity, set environment variables:
 - export DNNL_VERBOSE=1
 - export DNNL_VERBOSE_TIMESTAMP=1
- Set a Python breakpoint RIGHT AFTER one iteration of training/inference

oneDNN Verbose Sample Output

Sample oneDNN Verbose Output

onednn_verbose, info, oneDNN v2.6.0 (commit 52b5f107dd9cf10910aaa19cb47f3abf9b349815)

onednn_verbose, info, cpu, runtime: OpenMP, nthr: 32

onednn_verbose(info,cpu,isa:Intel AVX-512 with Intel DL Boost

onednn_verbose, info, gpu, runtime: none

onednn_verbose,info,prim_template:timestamp,operation,engine,primitive,implementation,prop_kind,memory_descriptors,attributes,auxiliary,problem_desc,exec_time onednn_verbose,1678917979730.501953,exec,cpu,reorder,jit:uni,undef,src_f32::blocked:abcd:f0 dst_f32:p:blocked:Acdb16a:f0,attr-scratchpad:user ,,1x1x1x37,0.00292969 onednn_verbose,1678917979730.888916,exec,cpu,convolution,jit:avx512_core_forward_training,src_f32::blocked:abcd:f0 wei_f32:p:blocked:Acdb16a:f0 bia_undef::undef::f0 dst_f5 onednn_verbose,1678917979732.105957,exec,cpu,reorder,jit:uni,undef,src_f32:p:blocked:abcd16b:f0 dst_f32::blocked:abcd:f0,attr-scratchpad:user ,,1x1x1x48000,0.0649414 onednn_verbose,167891798009.694092,exec,cpu,reorder,jit:uni,undef,src_f32::blocked:abc:f0 dst_f32::blocked:acb:f0,attr-scratchpad:user ,,1x60x305,0.00878906 onednn_verbose,1678917980011.387939,exec,cpu,convolution,brgconv:avx512_core,forward_training,src_f32::blocked:acb:f0 wei_f32::blocked:Acb32a:f0 bia_f32::blocked:a:f0 dst_ onednn_verbose,1678917980012.134033,exec,cpu,reorder,jit:uni,undef,src_f32::blocked:abc:f0 dst_f32::blocked:acb:f0,attr-scratchpad:user ,,1x1024x301,0.278076 onednn_verbose,1678917980012.912109,exec,cpu,reorder,simple:any,undef,src_f32::blocked:Acb48a:f0 dst_f32::blocked:Acb64a:f0,attr-scratchpad:user ,,1024x1024x1,3.31201

- Note the ISA. For AMX, you should see the following:
 - Intel AMX with bfloat16 and 8-bit integer support
- Check for AMX in the primitive implementation:

onednn_verbose,1673049613345.454102,exec,cpu,convolution,brgconv:avx512_core_amx_bfl6,forward_training,src_bfl6::blocked:acdb:f0 wei_ onednn_verbose,1673049613348.691895,exec,cpu,convolution,brgconv_lx1:avx512_core_amx_bfl6,forward_training,src_bfl6::blocked:acdb:f0 onednn_verbose,1673049613353.259033,exec,cpu,convolution,brgconv_lx1:avx512_core_amx_bfl6,forward_training,src_bfl6::blocked:acdb:f0 onednn_verbose,1673049613353.259033,exec,cpu,convolution,brgconv_lx1:avx512_core_amx_bfl6,forward_training,src_bfl6::blocked:acdb:f0 onednn_verbose,1673049613364.104980,exec,cpu,convolution,brgconv_lx1:avx512_core_amx_bfl6,forward_training,src_bfl6::blocked:acdb:f0

How to get the Intel Extension for PyTorch

Note: Intel[®] Extension for PyTorch* has PyTorch version requirement. Check the mapping table here.

pip wheel - CPU:

python -m pip install intel_extension_for_pytorch

• pip wheel – GPU:

General Python*

python -m pip install torch==1.13.0a0 torchvision==0.14.1a0 intel_extension_for_pytorch==1.13.10+xpu -f https://developer.intel.com/ipex-whl-stable-xpu

Intel® Distribution for Python*

python -m pip install torch==1.13.0a0 torchvision==0.14.1a0 intel_extension_for_pytorch==1.13.10+xpu -f https://developer.intel.com/ipex-whl-stable-xpu-idp

More info: https://intel.github.io/intel-extension-for-pytorch/xpu/latest/

PyTorch AMX Training/Inference Code Samples

Training

GitHub: <u>https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-</u> <u>Analytics/Features-and-Functionality/IntelPyTorch_TrainingOptimizations_AMX_BF16</u>

Trains a ResNet50 model with Intel Extension for PyTorch and shows performance speedup with AMX BF16

Inference

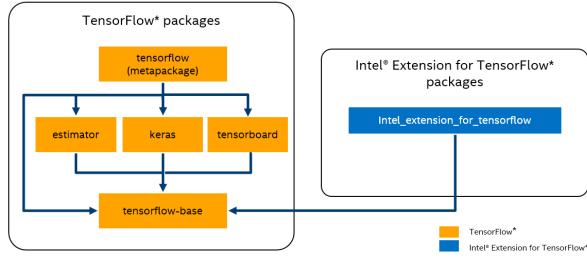
GitHub: <u>https://github.com/oneapi-src/oneAPI-samples/tree/master/AI-and-Analytics/Features-and-</u> <u>Functionality/IntelPyTorch_InferenceOptimizations_AMX_BF16_INT8</u>

Performs inference on ResNet50 and BERT with Intel Extension for PyTorch and shows performance speedup with AMX BF16 and INT8 over VNNI INT8

Intel[®] Extension for TensorFlow

Intel[®] Extension for TensorFlow* (ITEX)

- Provide users with the up-to-date Intel software/hardware features
- Streamline the work to integrate oneDNN
- Unify user experiences on Intel CPU and GPU



Intel® Extension for TensorFlow* PyPI packages and dependencies

How to get the Intel[®] Extension for TensorFlow*

pip wheel - GPU:

pip install --upgrade intel-extension-for-tensorflow[gpu]

pip wheel - CPU (experimental) pip install --upgrade intel-extension-for-tensorflow[cpu]

How to use Intel[®] Extension for TensorFlow* - FP32

No code changes, the default backend will be Intel GPU after installing intelextension-for-tensorflow[gpu]

OR

import intel_extension_for_tensorflow as itex

#CPU, GPU or AUTO
backend = "GPU"
itex.set_backend(backend)

Mixed precision (FP16 and BF16) • 2 choices:

- Use Keras mixed precision API in Stock TensorFlow
 - ITEX is compatible

mixed_precision.set_global_policy('mixed_float16')
OR

mixed_precision.set_global_policy('mixed_bfloat16')

- Use Advanced Auto Mixed Precision provided by ITEX for better performance
 - 2 modes of activation
 - Can be run from frozen graph

	FP16	BF16
Intel CPU	No	Yes
Intel GPU	Yes	Yes

Advanced Auto Mixed Precision - Python API

import intel_extension_for_tensorflow as itex

- auto_mixed_precision_options = itex.AutoMixedPrecisionOptions()
- auto_mixed_precision_options.data_type = itex.BFLOAT16 (or itex.FLOAT16)
- graph_options = itex.GraphOptions()
- graph_options.auto_mixed_precision_options=auto_mixed_precision_options
- graph_options.auto_mixed_precision = itex.ON
- config = itex.ConfigProto(graph_options=graph_options)
- itex.set_backend("gpu", config) [in ITEX v1.0.0 and ITEX v1.1.0]
 - --> itex.set_config(config) [latest master branch]

Advanced Auto Mixed Precision - Environment Variable

export ITEX_AUTO_MIXED_PRECISION=1

export ITEX_AUTO_MIXED_PRECISION_DATA_TYPE="BFLOAT16" (or "FLOAT16")

Optimizations under one DNN, IPEX & ITEX

Operator Optimizations

- Replace default kernels by highly-optimized kernels (using Intel[®] oneDNN)
- Adapt to available instruction sets (AMX, AVX-512, AVX2, VNNI)
- Adapt to required precision:
 - Training: FP32, BF16
- Inference: FP32, BF16, FP16, and INT8

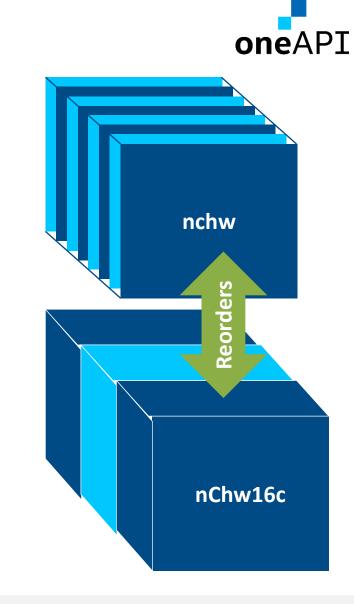
	Intel® oneDNN
Convolution	2D/3D Direct Convolution/Deconvolution, Depthwise separable convolution 2D Winograd convolution
Inner Product	2D/3D Inner Production
Pooling	2D/3D Maximum 2D/3D Average (include/exclude padding)
Normalization	2D/3D LRN across/within channel, 2D/3D Batch normalization
Eltwise (Loss/activation)	ReLU(bounded/soft), ELU, Tanh; Softmax, Logistic, linear; square, sqrt, abs, exp, gelu, swish
Data manipulation	Reorder, sum, concat, View
RNN cell	RNN cell, LSTM cell, GRU cell
Fused primitive	Conv+ReLU+sum, BatchNorm+ReLU
Datatype	f32, bfloat16, s8, u8



Memory Layouts Optimization

- Most popular memory layouts for image recognition are NHWC and NCHW
 - Challenging for Intel processors both for vectorization or for memory accesses
- Intel oneDNN convolutions use blocked layouts
 - Most popular oneDNN data format is nChw16c on AVX512+ systems and nChw8c on SSE4.1+ systems

More details: https://oneapi-src.github.io/oneDNN/dev_guide_understanding_memory_formats.html



Data Layouts in PyTorch

- Used in Vision workloads
- NCHW
 - Default format
 - torch.contiguous_format
- NHWC
 - torch.channels_last
 - NHWC format yields higher performance with IPEX

Channels last conversion is now applied **automatically** with IPEX Users do not have to explicitly convert input and weight for CV models.

NHWC

[0]

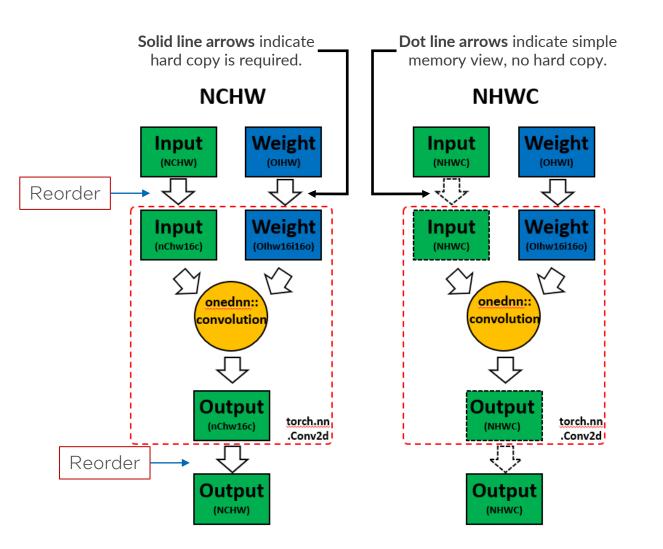
[0]

[0]

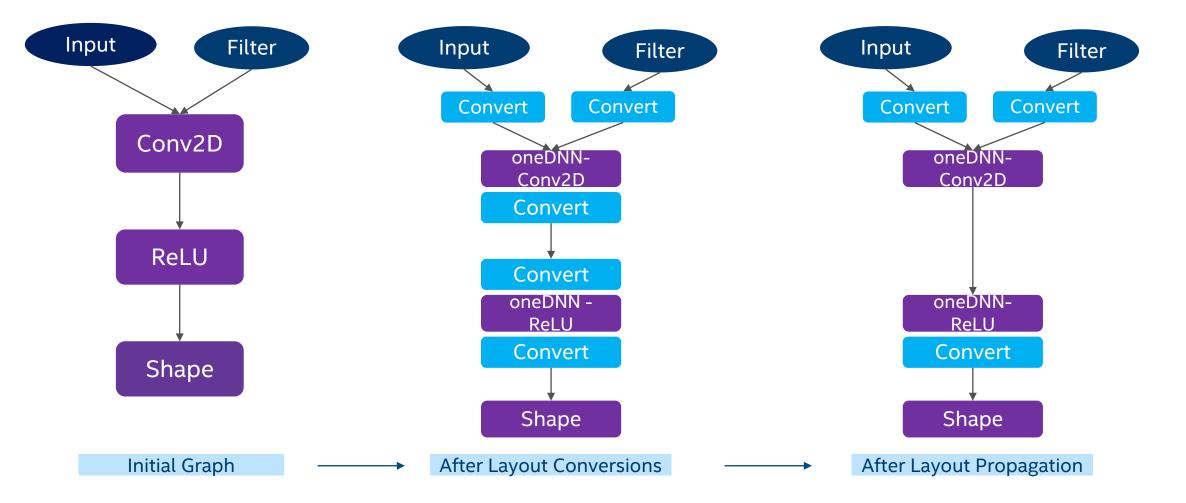
[2]

Benefit of NHWC in IPEX

O PyTorch



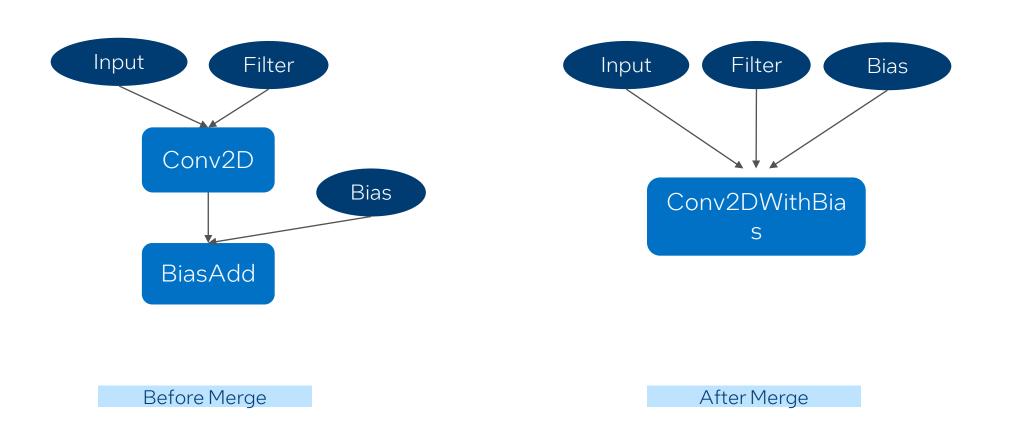
Graph Optimizations: Layout Propagation



Fusing Computations

- On Intel processors a high percentage of time is typically spent in bandwidth-limited ops such activation functions
 - ~40% of ResNet-50, even higher for inference
- The solution is to fuse BW-limited ops with convolutions or one with another to reduce the number of memory accesses
 - We fuse patterns: Conv+ReLU+Sum, BatchNorm+ReLU, etc...

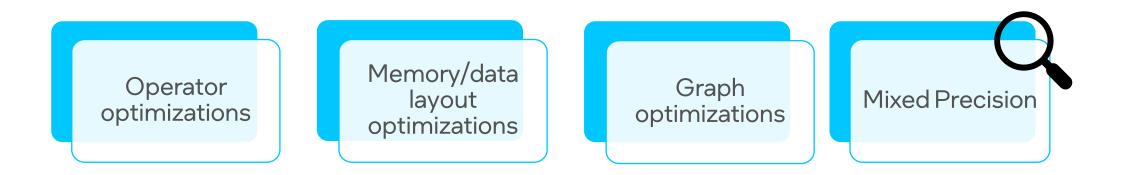
Graph Optimizations: Fusion



Fusing Computations in IPEX

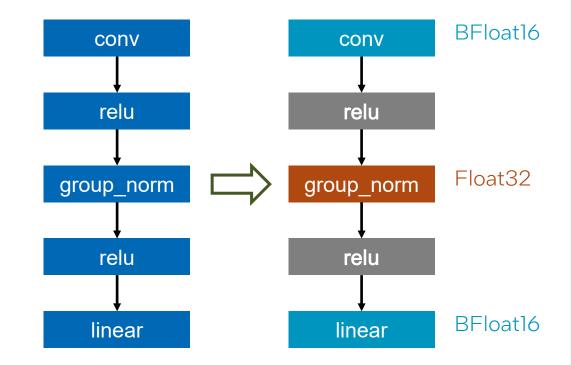
- Intel[®] Extension for PyTorch in JIT/Torchscript mode can fuse:
 - Multi-head-attention fusion, Concat Linear, Linear+Add, Linear+Gelu, Add+LayerNorm fusion and etc.
- Hugging Face reports that ~70% of most popular NLP tasks in questionanswering, text-classification, and token-classification can get performance benefits with such fusion patterns [1]
 - for both Float32 precision and BFloat16 Mixed precision

[1] https://huggingface.co/docs/transformers/perf_infer_cpu



Auto Mixed Precision (AMP)

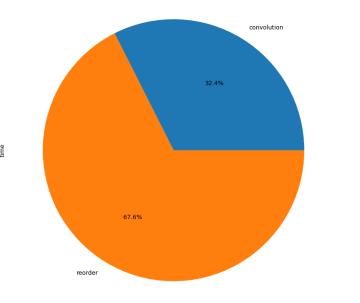
- 3 Categories of operators
 - Iower_precision_fp
 - Computation bound operators that could get performance boost with BFloat16.
 - E.g.: conv, linear
 - Fallthrough
 - Operators that runs with both Float32 and BFloat16 but might not get performance boost with BFloat16.
 - E.g.: relu, max_pool2d
 - FP32
 - Operators that are not enabled with BFloat16 support yet. Inputs of them are casted into float32 before execution.
 - E.g.: max_pool3d, group_norm

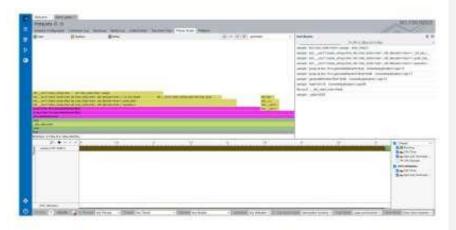


Profiling tools

Intel Profilers

- You can profile your application via oneDNN verbose logs.
 - DNN_VERBOSE=1 python application.py
 - You can also use profile_utils.py script to parse oneDNN verbose logs.
 - Code sample on one DNN profiling can be found here: <u>https://github.com/oneapi-src/oneAPI-samples/tree/master/Libraries/oneDNN/tutorials/p</u> rofiling
- Another famous profiling tool is <u>VTune</u> from Intel which provides very deep hardware information and show them in easier way on how to **optimize the performance**. You can easily **find the hotspots** using VTune. (most costly functions)



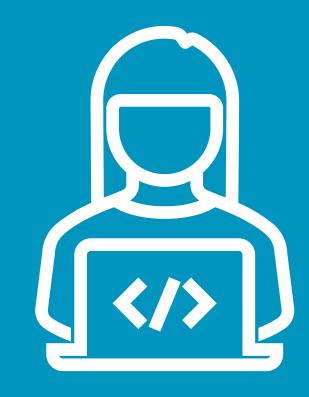


Recipe for Intel[®] Optimizations with IPEX

Easy Recipe for faster Intel® Optimizations with IPEX

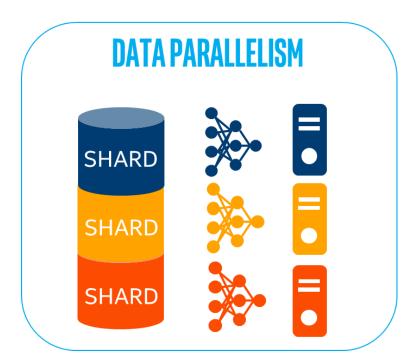
- Add IPEX
- Add some Warmup steps for oneDNN initialization
- Utilize AMX or XMX instruction sets with efficient bfloat16 data type
- Utilize graph mode with TorchScript
- Quantize model to INT8
- Runtime optimizations using ipexrun
- Distributed training with oneCCL/DDP/Horovod
- Profile with oneDNN verbose / Pytorch Profiler / VTune for further analysis.

Demo: Trajectory Prediction of Vehicles



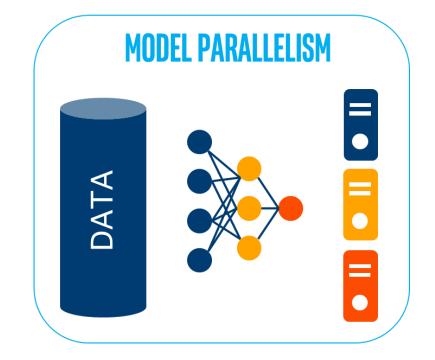
Distributed Training with Intel® oneCCL

Neural Network Parallelism



Data is processed in increments of N. Work on minibatch samples and distributed among the available resources.

source: https://arxiv.org/pdf/1802.09941.pdf



The work is divided according to a split of the model. The sample minibatch is copied to all processors which compute part of the DNN.

Intel[®] oneAPI Collective Communications Library (oneCCL)

- enables developers and researchers to quickly train DL models
- optimizes communication patterns to distribute model training across multiple nodes
- designed for easy integration into deep learning frameworks, whether they are implemented them from scratch or customizing existing ones
- <u>DistributedDataParallel (DDP) with Intel® oneCCL</u>
 - E.g mpirun -n 2 -l python Example_DDP.py
- Horovod with Intel[®] oneCCL & PyTorch
 - E.g horovodrun -np 2 python Example_horovod.py
 - Or e.g mpirun -np 2 python Example_horovod.py
- DeepSpeed (<u>https://github.com/intel/intel-extension-for-deepspeed</u>)
 - Deep learning optimization software suite that enables scale and speed for Deep Learning Training and inference of models with billions or trillions of parameters

Usage for Distributed Training with DDP

- 4 root devices, 4 GPUs
- 8 ranks and two ranks per GPU
- E.g mpirun -n 8 -l python Example_DDP.py

(base) ac.louie.tsai@florentia05:~> sycl-ls larning: SYCL DEVICE FILTER environment variable is set to level zero. To see the correct device id, please unset SYCL_DEVICE_FILTER.

[ext oneapi level zero:gpu:0] Intel(R) Level-Zero, Intel(R) Graphics [0x0bd5] 1.3 [1.3.23937 [ext oneapi level zero:gpu:1] Intel(R) Level-Zero, Intel(R) Graphics [0x0bd5] 1.3 [1.3.23937 [ext oneapi level zero:gpu:2] Intel(R) Level-Zero, Intel(R) Graphics [0x0bd5] 1.3 [1.3.23937 [ext_oneapi_level_zero:gpu:3] Intel(R) Level-Zero, Intel(R) Graphics [0x0bd5] 1.3 [1.3.23937

- Monitor XPU usage using Intel[®] XPU manager
 - https://www.intel.com/content/www/us/en/software
- xpumcli dump d 0 m 0,1,2,3,4,5

Timestamp, DeviceId, GPU Utilization (%), GPU Power (W), GPU Frequency (MHz), GPU Core Temperature (Celsius Degree), GPU Memory Temperature (Celsius Degree), GPU Energy Consumed (J)

08:04:16.000, 0, 53.35, 234.08, 0.00, , , 2018647.97 08:04:17.000, 0,65.83,341.15,1600.00, . . 2018956.02 08:04:18.000, 0,92.52,375.21,900.00, , , 2019332.25 08:04:19.000, 0, 92.54, 384.55, 1500.00, , , 2019715.47 08:04:20.000, 0,94.21,387.95,975.00, ,2020105.06 08:04:21.000, 0,93.25,386.10,1600.00, , ,2020491.66 08:04:22.000, 0,94.21,391.84,800.00, .2020881.66

LRZ Beginner Workshop

		ZE_AFFINITY_MASK=0,1,2,3
		Iterations: 5. Warmup runs: 2
		Running on device: IntelGPU6
		Running on torch: 1.10.0a0+g1t90332b4
		ModelType: resnet50, Kernels: DPCPP Input shape: 16x3x224x224
	[6]	Converting model to DDP & syncing
		Starting warmup runs
		Starting benchmark runs
	[6]	total: 459.63ms (458.7-460.4) +-1.15, 34.81 (imgs/s)
		csv,resnet50,16,0,34.81,1.10.0a0+git90332b4,IntelGPU6,2,5
	[0]	ZE_AFFINITY_MASK=0,1,2,3
	[0]	Iterations: 5. Wa <mark>rmup runs: 2</mark>
	[0]	Running on device: IntelGFUO
	[0]	Running on torch: 1.10.0a0+git90332b4
		ModelType: resnet50, Kernels: DPCPP Input shape: 16x3x224x224
		Converting model to DDP & syncing
		Starting warmup runs
	[0]	Starting benchmark runs
	[0]	
		csv,resnet50,16,0,34.84,1.10.0a0+git90332b4,IntelGPU0,2,5
	[0]	Total img/sec on 8 IntelGPU(s): 278.72133230304513
		ZE_AFFINITY_MASK=0,1,2,3
		Iterations: 5. Warmup runs: 2
		Running on device: IntelGPU3
		Running on torch: 1.10.0a0+git90332b4
		ModelType: resnet50, Kernels: DPCPP Input shape: 16x3x224x224
		Converting model to DDP & syncing
		Starting warmup runs
		Starting benchmark runs
		total: 458.77ms (457.9-459.7) +-1.42, 34.88 (imgs/s)
		csv,resnet50,16,0,34.88,1.10.0a0+git90332b4,IntelGPU3,2,5
		ZE_AFFINITY_MASK=0,1,2,3
		Iterations: 5. Warmup runs: 2
		Running on device: IntelGPU4
1		Running on torch: 1,10.0a0+git90332b4
		ModelType: resnet50, Kernels: DPCPP Input shape: 16x3x224x224
		Converting model to DDP & syncing
		Starting warmup runs
		Starting benchmark runs
1		total: 459.09ms (458.4-460.0) +-1.22, 34.85 (imgs/s)
		csv, resnet50, 16, 0, 34.85, 1.10.0a0+git90332b4, IntelGPU4, 2, 5
		ZE_AFFINITY_MASK=0,1,2,3
		Iterations: 5. Warmup runs: 2 Running on device: IntelGPU2
		Running on torch: 1.10.0a0+git90332b4
		ModelType: resnet50, Kernels: DPCPP Input shape: 16x3x224x224
1		Converting model to DDP 4 syncing
e/xpu		Starting warmup runs
/		Starting benchmark runs
		total: 459.20ms (458.7-460.1) +-1.00, 34.84 (imgs/s)
		csv, resnet50, 16, 0, 34.84, 1.10.0a0+git90332b4, IntelGPU2, 2, 5
		ZE_AFFINITY_MASK=0,1,2,3
		Iterations: 5. Warmup runs: 2
		Running on device: IntelGPU1
		Running on torch: 1.10.0a0+git90332b4
		ModelType: resnet50, Kernels: DPCPP Input shape: 16x3x224x224
		Converting model to DDP & syncing
		Starting warmup runs
	[1]	Starting benchmark runs
	[1]	total: 459.00ms (458.1-460.4) +-1.91, 34.86 (imgs/s)
		csv,resnet50,16,0,34.86,1.10.0a0+git90332b4,IntelGPU1,2,5
	[5]	ZE_AFFINITY_MASK=0,1,2,3
		Iterations: 5. Warmup runs: 2
		Running on device: IntelGPU5
		Running on torch: 1.10.0a0+git90332b4
		ModelType: resnet50, Kernels: DPCPP Input shape: 16x3x224x224
		Converting model to DDP & syncing
	151	Starting warmup runs
	[5]	Starting benchmark runs
	[5] [5]	total: 458.69ms (457.9-460.5) +-1.88, 34.88 (imgs/s)
	[5] [5] [5]	total: 458.69ms (457.9-460.5) +-1.88, 34.88 (imgs/s) csv,resnet50,16,0,34.88,1.10.0a0+git90332b4,IntelGPU5,2,5
	[5] [5] [5] [7]	total: 458.69ms (457.9-460.5) +-1.88, 34.88 (imgs/s)

- [7] Running on device: IntelGPU7
- [7] Running on torch: 1.10.0a0+git90332b4

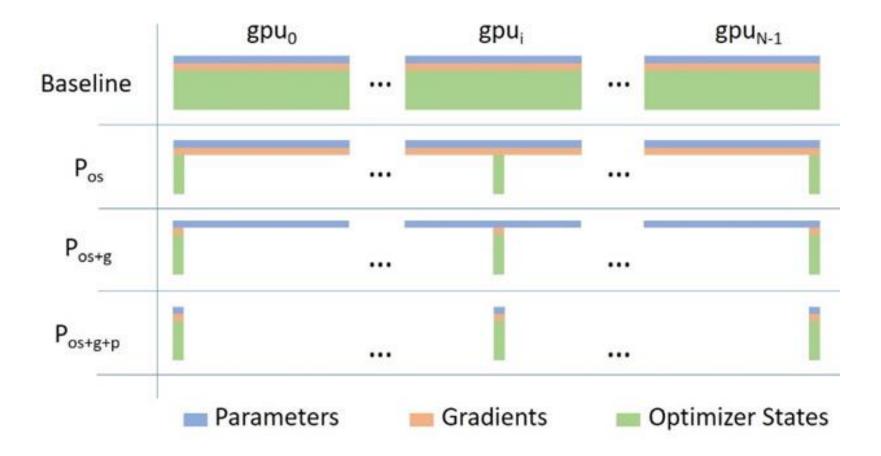
intel 79

DeepSpeed – Introduction

 Deep learning optimization software that enables scale and speed for Deep Learning training and inference for large scale models

- \Rightarrow Train/inference models with billions or trillions of parameters
- \Rightarrow Efficiently scale to thousands of computing units
- \Rightarrow Train/inference on GPU system with limited GPU memory
- \Rightarrow Low latency and high throughput for inference

DeepSpeed training technology – ZeRO stage 1/2/3



intel. 81

Intel Extension for DeepSpeed

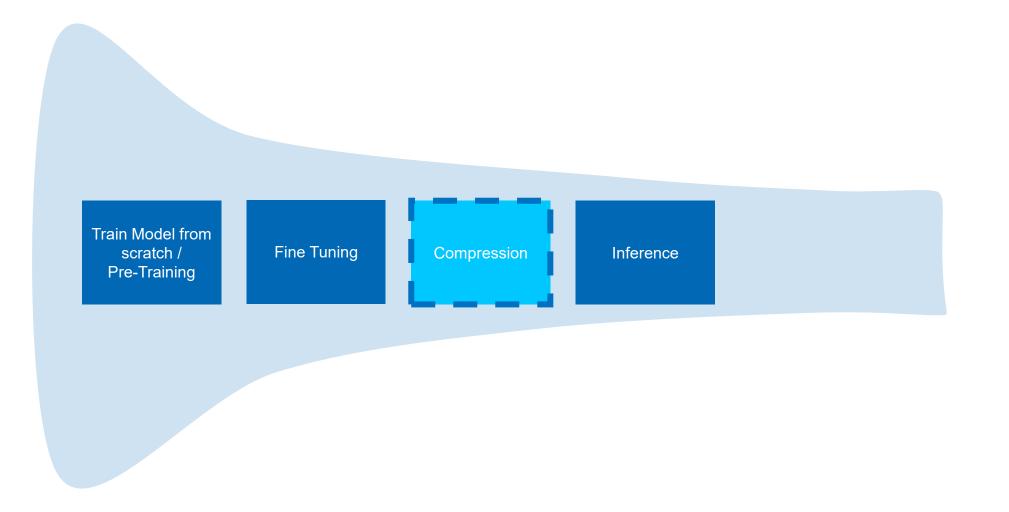
- Intel[®] Extension for DeepSpeed* is an extension that brings Intel GPU support to DeepSpeed
- Example to train GPT 3.6B, 20B, 175B

https://github.com/intel/intel-extension-fordeepspeed/tree/main/examples

A use-case: Aurora GPT

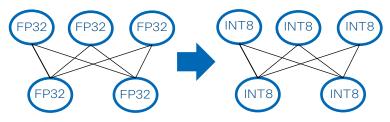
- Argonne National Labs and Intel are currently training a 1 trillion parameter GPT model for science, called AuroraGPT.
- AuroraGPT, also referred to as "ScienceGPT," will have a chatbot interface for researchers to use for insights and answers.
- The AI model could be used in various scientific fields, including biology, cancer research, and climate change.
- The training process will take several months and will scale from 256 to 10,000 nodes using Intel Extension for DeepSpeed

Deep Learning Funnel Pipeline

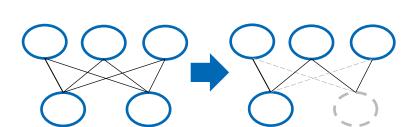


Deep Learning Inference Optimization

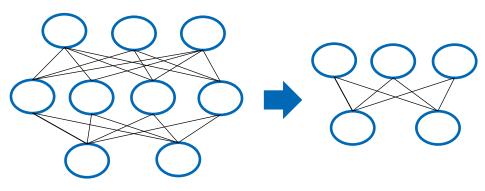
Quantization



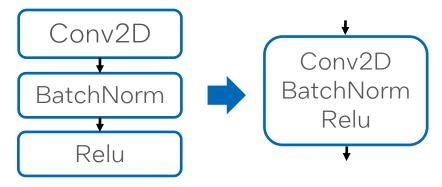
Pruning



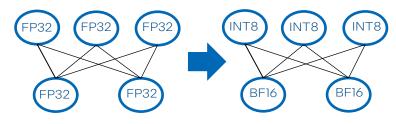
Knowledge Distillation



Graph Optimization



Mixed Precision Graph Optimization



INC use automatic accuracy-driven tuning strategies to help user **easily & quickly** find out the best optimization methods above.

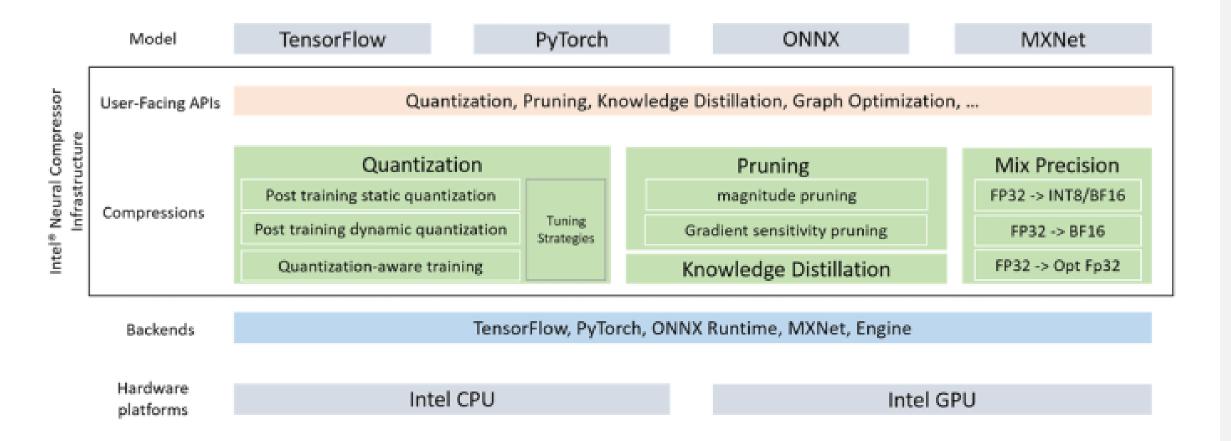
Intel tools necessary for it

Intel Neural Compressor

Intel Extension for Transformers

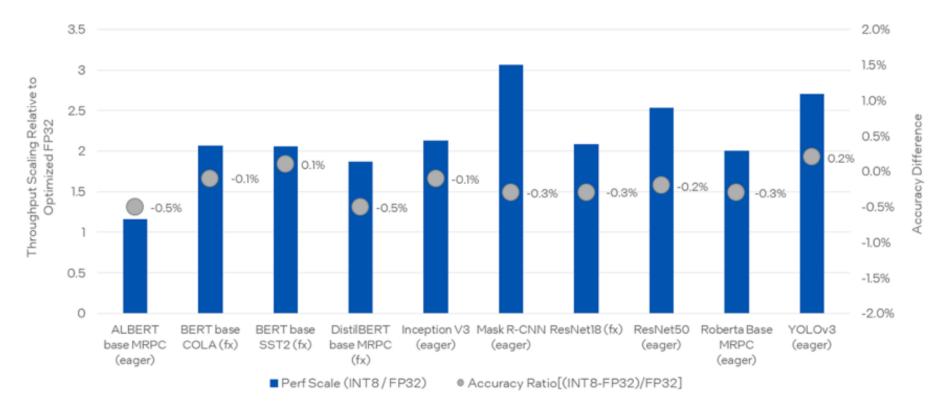
Includes more generic transformers optimizations

Intel[®] Neural Compressor Architecture



Performance vs Accuracy on INT8 Quantization with Intel® Neural Compressor

Post-Training Quantization and PyTorch* Inference



Testing Date: Performance results are based on testing by Intel as of June 7, 2022 and may not reflect all publicly available security updates.

Configuration Details and Workload Setup: PyTorch* v1.11.0+cpu; Intel® Neural Compressor v1.12; Platform: Intel® Xeon® Platinum 8380 CPU @ 2.30GHz; 1 socket; 4 cores/instance; 10 instances; batch size = 1; Turbo: On; BIOS version: SE5C6200.86B.0022.D64.2105220049; System DDR Mem Config: 256GB (16x16GB DDR4 3200MT/s [3200MT/s]); OS: Ubuntu 20.04.1 LTS; Kernel: 5.4.0-42-generic. Full benchmark results available on Intel® Neural Compressor GitHub* (https://github.com/intel/neural-compressor/blob/master/docs/validated_model_list.md).

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex. Your costs and results may vary.

Getting Intel® Neural Compressor

- Intel[®] Neural Compressor is included in the Intel[®] AI Analytics Toolkit (AI Kit):
 - <u>https://www.intel.com/content/www/us/en/developer/t</u> <u>ools/oneapi/ai-analytics-toolkit-</u> <u>download.html?operatingsystem=linux</u>
- Download the Stand-Alone Version:
 - <u>https://intel.github.io/neural-</u> <u>compressor/latest/docs/source/Welcome.html#installation</u>
- Use Intel[®] Developer Cloud:
 - <u>https://www.intel.com/content/www/us/en/secure/forms/dev</u> <u>cloud/enrollment.html?tgt=www.intel.com/content/www/us/e</u> <u>n/secure/forms/devcloud-enrollment/account-</u> <u>provisioning.html</u>

Intel Extension for Transformers – Overview

- Intel Extension for Transformers (ITREX): Built on top of INC ecosystem and Hugging Face
- Its target is the democratization of NLP and Transformers for both training/fine-tuning and inference
- Brings compression and model optimizations in a high-level HF like API
- Staging area for all Intel's transformer feature enhancements:
 - Upstream to HF as much as possible (Transformers + Optimum)
 - Intel's differentiation remains, e.g., NAS, MoE, dynamic model, etc., and is ready for future upstream

Intel[®] Extension esp. for LLMs:

Intel® Extension for Transformers:

https://github.com/intel/intel-extension-for-transformers

Intel[®] Extension for Transformers is an innovative toolkit to accelerate Transformer-based models on Intel platforms, in particular effective on 4th Intel Xeon Scalable processor Sapphire Rapids The toolkit provides many key features and examples such as **Stable Diffusion, GPT-J-6B, GPT-NEOX, BLOOM-176B, T5, Flan-T5 and end-to-end workflows such as SetFit-based text classification and document level sentiment analysis (DLSA)**

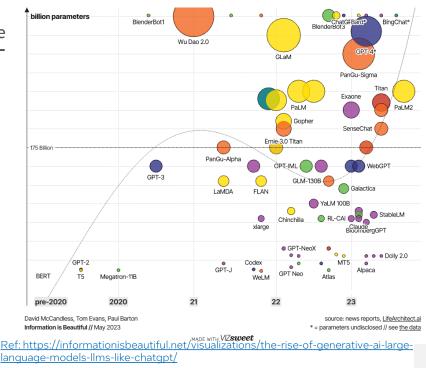
Get it through: pip install intel-extension-for-transformers

Intel[®] Extension for DeepSpeed:

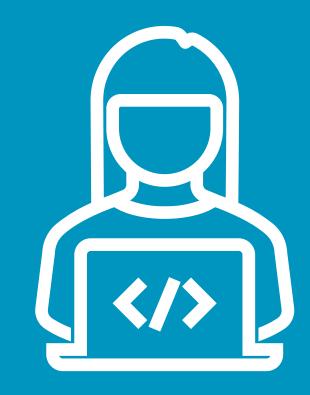
https://github.com/intel/intel-extension-for-deepspeed

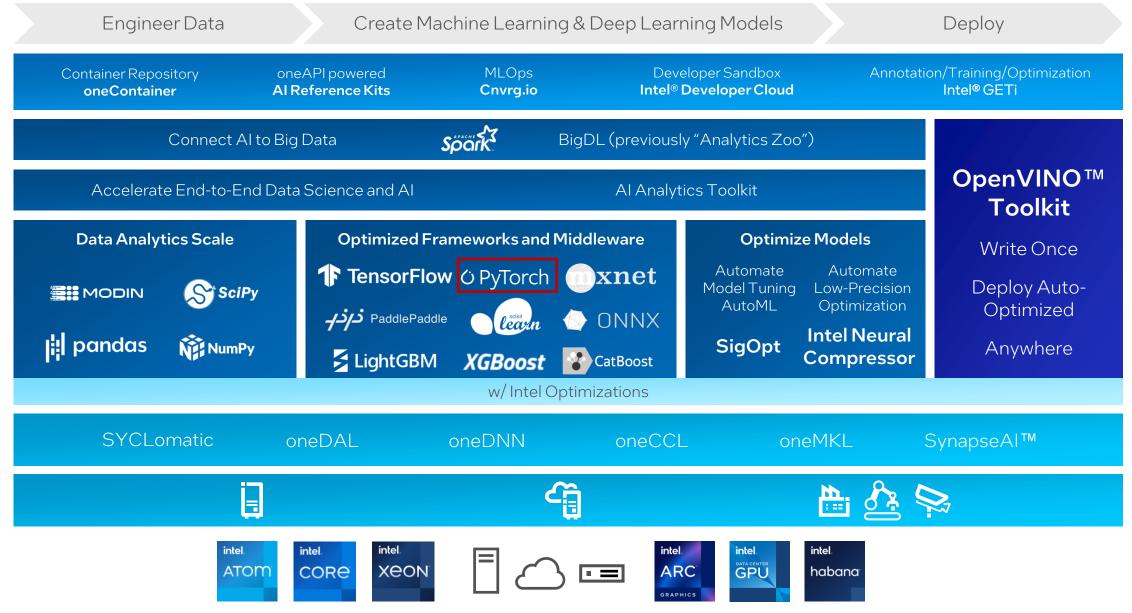
- Deep learning optimization software suite that enables scale and speed for Deep Learning Training and inference
 - Train/inference models with billions or trillions of parameters
 - Efficiently scale to thousands of computing units
 - Train/inference on GPU system with limited GPU memory
 - Low latency and high throughput for inference
 - Get it through: pip install intel-extension-for-deepspeed

Amazon-owned Chinese Google Meta / Facebook Microsoft OpenAl Other



Demo Llama2 Inference on Multi-GPU





Note: not all components are necessarily compatible with all other components in other layers

LRZ Beginner Workshop AVX – Advanced Vector Extensions, VNNI – Vector Neural Network Instructions, AMX – Advanced Matrix Extensions, XMX – Xe Matrix Extensions

intel

Conclusion

Key Takeaways & Call to Action

- Intel provides a plethora of AI software tools
- 100% Python
- No to very minimal code changes necessary
- The new Intel[®] AMX & XMX instruction set accelerates training and inference workloads in BF16 and INT8 for 4th Gen Intel[®] Xeon[®] Scalable Processor & Intel[®] Data Center GPU Max Series respectively
- Multiple Intel[®] extensions for running your LLM models on XPU/CPU.
- "Low-hanging fruit" to run AI workloads efficiently on Intel hardware
- Code samples are available to get started.

Download the tools: Intel® oneAPI Toolkits Intel Extension for PyTorch Intel Extension for DeepSpeed Intel Extension for Transformers VTune Profiler Getting Started Samples Model Zoo for Intel® Architecture GitHub LRZ Beginner Workshop

GITHUB Repo

Document

PyTorch Benchmarking Configurations

4th Generation Intel® Xeon® Scalable Processors

Hardware and software configuration (measured October 24, 2022):

- Deep Learning config:
 - Hardware configuration for Intel[®] Xeon[®] Platinum 8480+ processor (formerly code named Sapphire Rapids): 2 sockets, 56 cores, 350 watts, 16 x 64 GB DDR5 4800 memory, BIOS version EGSDCRB1.SYS.8901.P01.2209200243, operating system: CentOS* Stream 8, using Intel[®] Advanced Matrix Extensions (Intel[®] AMX) int8 and bf16 with Intel[®] oneAPI Deep Neural Network Library (oneDNN) v2.7 optimized kernels integrated into Intel[®] Extension for PyTorch* v1.13, Intel[®] Extension for TensorFlow* v2.12, and Intel[®] Distribution of OpenVINO[™] toolkit v2022.3. Measurements may vary.
 - Wall power refers to platform power consumption.
 - If the dataset is not listed, a synthetic dataset was used to measure performance. Accuracy (if listed) was validated with the specified dataset.

Transfer Learning config:

 Hardware configuration for Intel[®] Xeon[®] Platinum 8480+ processor (formerly code named Sapphire Rapids): Use DLSA single node fine tuning, Vision Transfer Learning using single node, 56 cores, 350 watts, 16 x 64 GB DDR5 4800 memory, BIOS version EGSDREL1.SYS.8612.P03.2208120629, operating system: Ubuntu 22.04.1 LT, using Intel[®] Advanced Matrix Extensions (Intel[®] AMX) int8 and bf16 with Intel[®] oneAPI Deep Neural Network Library (oneDNN) v2.6 optimized kernels integrated into Intel[®] Extension for PyTorch* v1.12, and Intel[®] oneAPI Collective Communications Library v2021.5.2. Measurements and some software configurations may vary.

3rd Generation Intel® Xeon® Scalable Processors

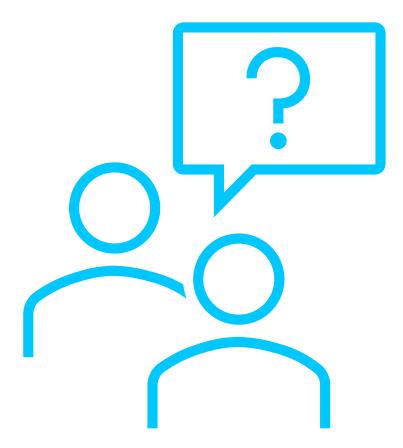
Hardware and software configuration (measured October 24, 2022):

- Hardware configuration for Intel® Xeon® Platinum 8380 processor (formerly code named Ice Lake): 2 sockets, 40 cores, 270 watts, 16 x 64 GB DDR5 3200 memory, BIOS version SE5C620.86B.01.01.0005.2202160810, operating system: Ubuntu 22.04.1 LTS, int8 with Intel® oneAPI Deep Neural Network Library (oneDNN) v2.6.0 optimized kernels integrated into Intel® Extension for PyTorch* v1.12, Intel® Extension for TensorFlow* v2.10, and Intel® oneAPI Data Analytics Library (oneDAL) 2021.2 optimized kernels integrated into Intel® Extension for Scikit-learn* v2021.2. XGBoost v1.6.2, Intel® Distribution of Modin* v0.16.2, Intel oneAPI Math Kernel Library (oneMKL) v2022.2, and Intel® Distribution of OpenVINO™ toolkit v2022.3. Measurements may vary.
- If the dataset is not listed, a synthetic dataset was used to measure performance. Accuracy (if listed) was validated with the specified dataset.

*All performance numbers are acquired running with 1 instance of 4 cores per socket

Thank you for your attention!

Questions?



Complete this Short Survey

Give us feedback...

- Tell us what you thought of this webinar.
- Give us feedback on what topics you'd like to see in future webinars.

Webinar Survey

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

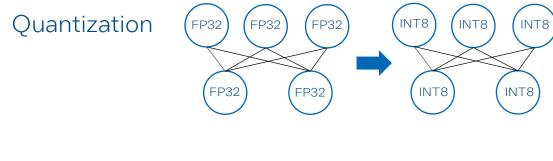
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, Xeon, Core, VTune, OpenVINO, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

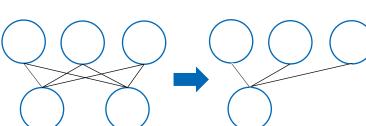
Appendix

Intel[®] Neural Compressor

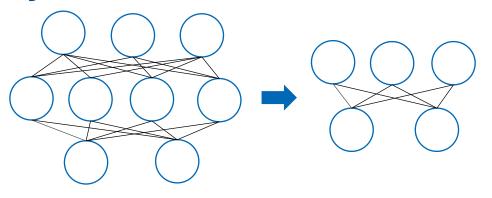
Deep Learning Inference Optimization



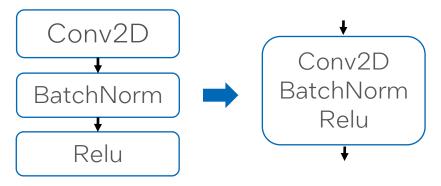
Pruning



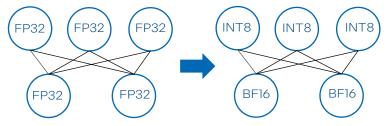
Knowledge Distillation



Graph Optimization

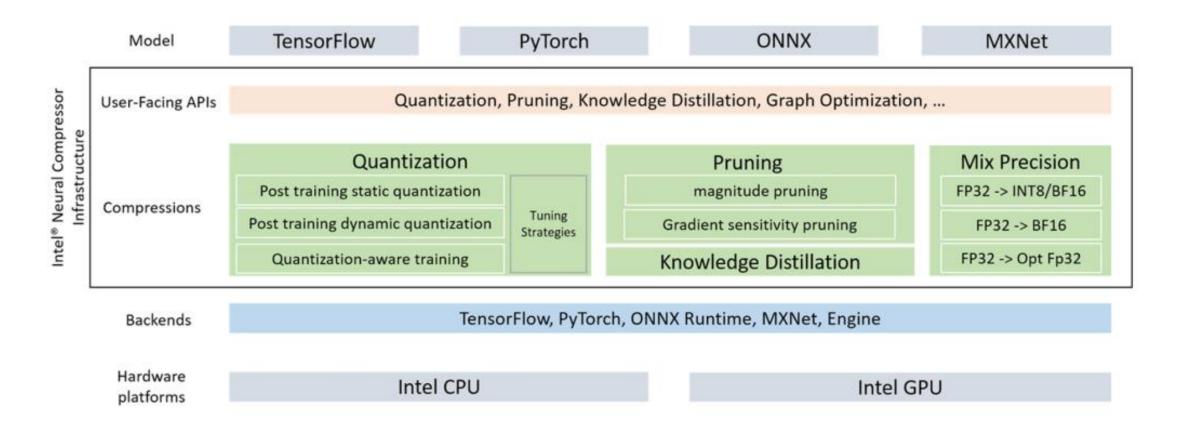


Mixed Precision Graph Optimization



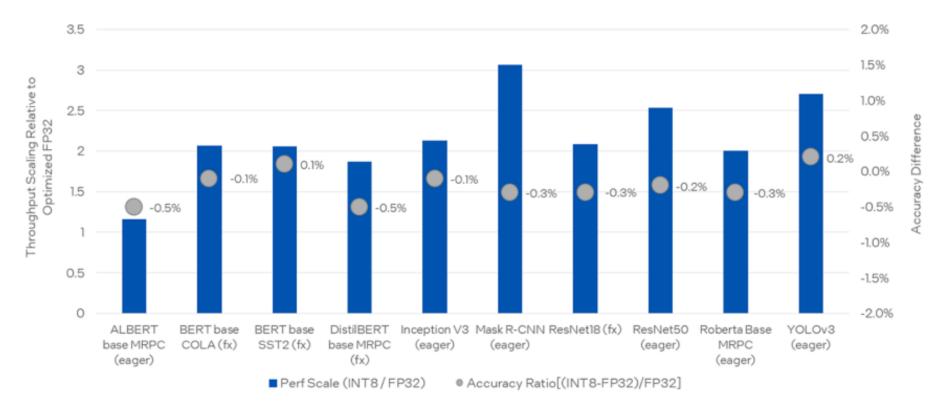
INC use automatic accuracy-driven tuning strategies to help user **easily & quickly** find out the best optimization methods above.

Intel® Neural Compressor Architecture



Performance vs Accuracy on INT8 Quantization with Intel® Neural Compressor

Post-Training Quantization and PyTorch* Inference



Testing Date: Performance results are based on testing by Intel as of June 7, 2022 and may not reflect all publicly available security updates.

Configuration Details and Workload Setup: PyTorch* v1.11.0+cpu; Intel® Neural Compressor v1.12; Platform: Intel® Xeon® Platinum 8380 CPU @ 2.30GHz; 1 socket; 4 cores/instance; 10 instances; batch size = 1; Turbo: On; BIOS version: SE5C6200.86B.0022.D64.2105220049; System DDR Mem Config: 256GB (16x16GB DDR4 3200MT/s [3200MT/s]); OS: Ubuntu 20.04.1 LTS; Kernel: 5.4.0-42-generic. Full benchmark results available on Intel® Neural Compressor GitHub* (https://github.com/intel/neural-compressor/blob/master/docs/validated_model_list.md).

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure.

Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex. Your costs and results may vary.

Getting Intel® Neural Compressor

- Intel[®] Neural Compressor is included in the Intel[®] Al Analytics Toolkit (Al Kit):
 - <u>https://www.intel.com/content/www/us/en/dev</u> <u>eloper/tools/oneapi/ai-analytics-toolkit-</u> <u>download.html?operatingsystem=linux</u>
- Download the Stand-Alone Version:
 - <u>https://intel.github.io/neural-</u> <u>compressor/latest/docs/source/Welcome.html#ins</u> <u>tallation</u>
- Use Intel[®] Developer Cloud:
 - <u>https://www.intel.com/content/www/us/en/secure/forms/devcloud/enrollment.html?tgt=www.intel.com/content/www/us/en/secure/forms/devcloud-enrollment/account-provisioning.html</u>

Intel[®] Optimization for LLMs

Intel[®] Extension esp. for LLMs:

Intel[®] Extension for Transformers:

https://github.com/intel/intel-extension-for-transformers

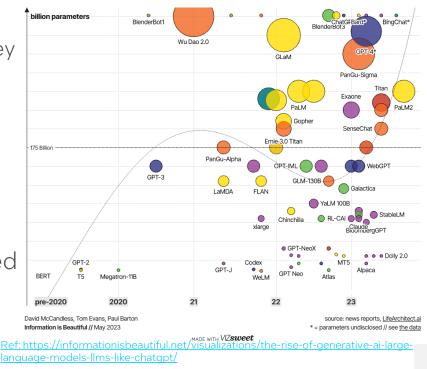
Intel® Extension for Transformers is an innovative toolkit to accelerate Transformer-based models on Intel platforms, in particular effective on 4th Intel Xeon Scalable processor Sapphire Rapids The toolkit provides many key features and examples such as **Stable Diffusion**, GPT-J-6B, GPT-NEOX, **BLOOM-176B**, T5, Flan-T5 and end-to-end workflows such as SetFit-based text classification and document level sentiment analysis (DLSA)

Intel[®] Extension for DeepSpeed:

https://github.com/intel/intel-extension-for-deepspeed

- Deep learning optimization software suite that enables scale and speed for Deep Learning Training and inference
 - Train/inference models with billions or trillions of parameters
 - Efficiently scale to thousands of computing units
 - Train/inference on GPU system with limited GPU memory
 - Low latency and high throughput for inference

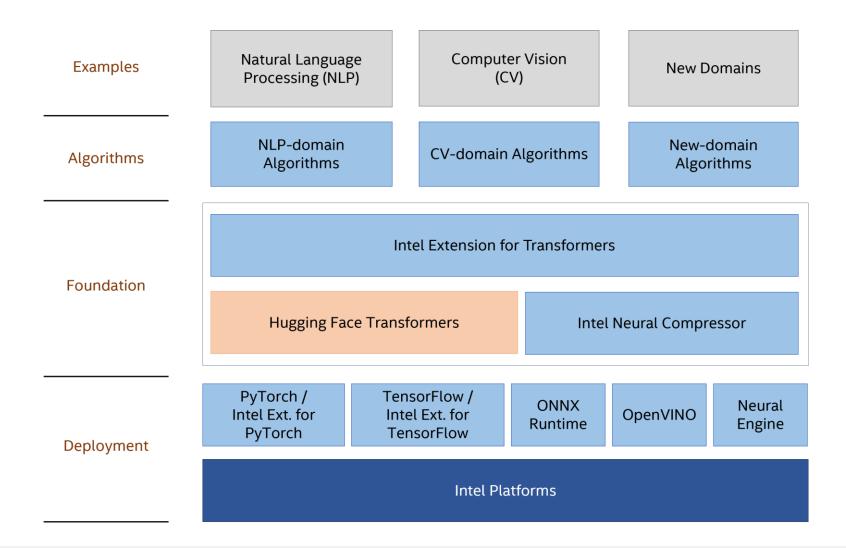
Amazon-owned Chinese Ocogle Meta / Facebook Microsoft OpenAl Other



Intel[®] Extension for Transformers – Overview

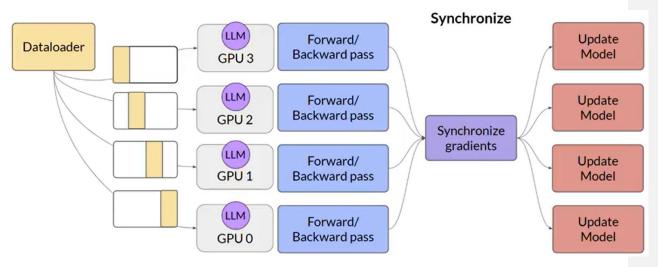
- Intel[®] Extension for Transformers (ITREX): Built on top of INC ecosystem and HF
- Its target is the democratization of NLP and Transformers for both training/fine-tuning and inference
- Extension to HF's Transformers and Optimum
- Staging area for all Intel's transformer feature enhancements:
 - Upstream to HF as much as possible (Transformers + Optimum)
 - Intel's differentiation remains, e.g., NAS, MoE, dynamic model, etc., and is ready for future upstream

Intel[®] Extension for Transformers – Architecture



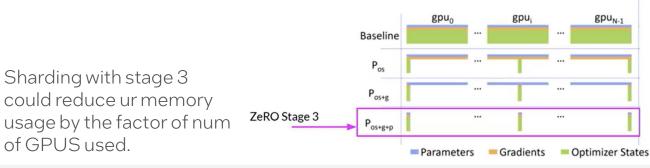
DeepSpeed Training technology

- When to use distributed compute
 - Model too big for single GPU
 - Model fits on GPU, but for faster training, train data in parallel
- DDP (Distributed Data Parallel) (Pytorch)
 - It requires all your training params should fit into 1 GPU
- If your model is too bigger to fit on single GPU:
 - Model Sharding
 - Zero (Zero data overlap between GPUs)
 - Zero (Memory optimizations toward training trillion parameter models)



Zero Redundancy Optimizer (ZeRO)

• Reduces memory by distributing (sharding) the model parameters, gradients, and optimizer states across GPUs



Ref: https://www.coursera.org/learn/generative-ai-with-llms/

Building LLM Solutions

- Use dev branch before optimizations are provided in release branches.
 - https://intel.github.io/intel-extension-for-pytorch/llm/cpu/
 - https://intel.github.io/intel-extension-for-pytorch/llm/xpu/
- Models fitting one tile: PyTorch/ IPEX, similar experience as PyTorch CUDA
- Models not fitting one tile: PyTorch/IPEX, DeepSpeed/IDEX, similar experience as PyTorch CUDA + DeepSpeed
- Inference (16bit, 8bit, 4bit), fine-tune, pre-train

Llama 2 Inference Performance

Llama 2 Next Token Latency on Habana Gaudi2 (Lower is Better) Greedy mode, mixed precision (bfloat16), BS = 1, 256 output tokens

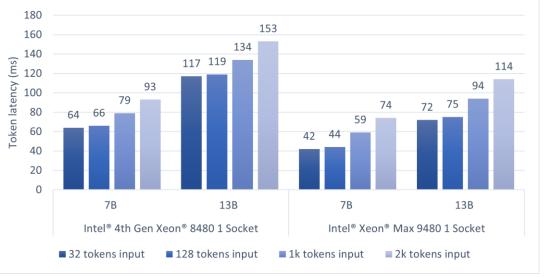


Gaudi2 has demonstrated excellent training performance on large language models on the recently published <u>MLPerf benchmark</u> for training the 175 billion parameter GPT-3 model on 384 Gaudi2 accelerators

One 4th Gen Xeon socket delivers latencies under 100ms with 7 billon parameter and 13 billon parameter size of models. Users can run 2 parallel instances, one on each socket, for higher throughput and to serve clients independently

Intel Data Center GPU Max: Users can run 2 parallel instances, one on each tile, for higher throughput and to serve clients independently.

Llama 2 Next Token Latency (BFloat16, Lower is Better) On 1 Socket Intel[®] Xeon[®] Scalable processor



Llama 2 Next Token Latency (Float16, Lower is Better) On 1 tile (out of 2 tiles per card) Intel[®] Data Center GPU Max 1550 40 33.8 35 31.6 29.5 29.2
 30

 25

 20

 15

 10
 18.9 17.2 15.6 15.2 5 0 7B 13B Intel® Data Center GPU Max 1550 single tile (1 card has 2 tiles) ■ 32 tokens input 128 tokens input 1k tokens input 2k tokens input

LRZ Beginner Workshop

Ref: https://www.intel.com/content/www/us/en/developer/articles/news/llama2.html

XeonAl Performance

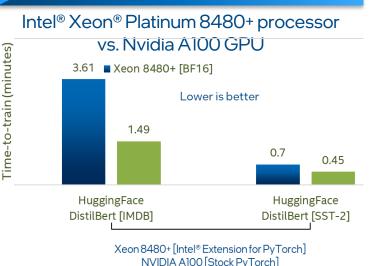
Training: TTT

Only CPU submitted

- Train models from scratch in hours
- Multi-node Intel Ethernet scaling at > 97%

Great for intermittent training using standard industry frameworks

Fine Turning: TTT



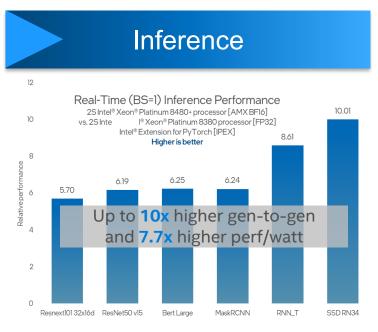
Fine tune in <1 day for \$100's

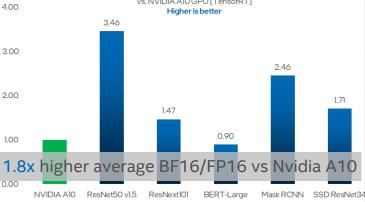
Small models: <1 minutes

Medium sized models: <5minutes

Larger models: ~5m across multi nodes

- Stable Diffusion Few-Shot fine tuning across 4 XeonSP nodes: 4 minutes
- All Intel SW optimizations default and automated in HuggingFace Framework





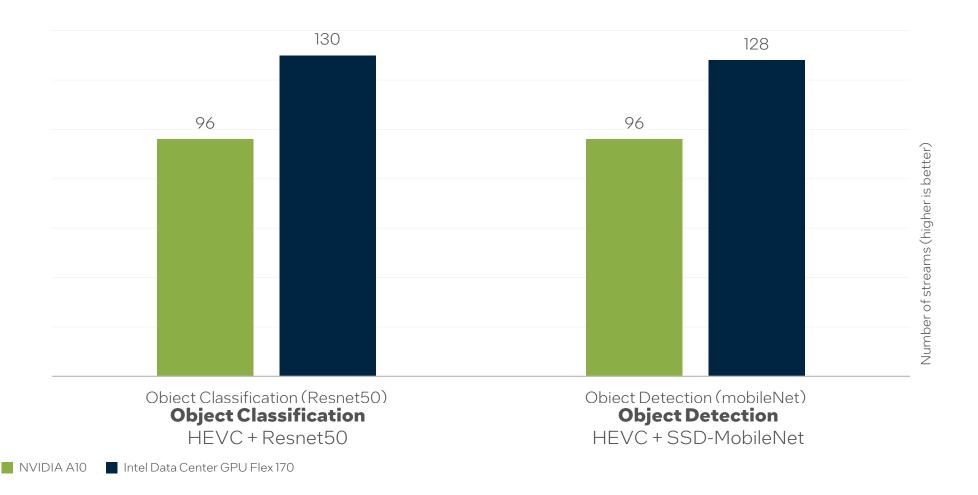
OpenVINOTM

OpenVINO[™] Toolkit Overview

Convert and optimize models, and deploy across a mix of hardware and environments, on-premises and on-device, in the browser or in the cloud

,¢

Al Visual Inference (Media + Al) OpenVINO



Based on OV 2022.2 For workloads and configurations visit www.Intel.com/PerformanceIndex. Click on the Events tab and Intel® Innovation 2022. Results may vary. For workloads and configurations see this slide 7.

HEVC 1080p30 8 bit 3Mbps Resnet50: 224x224; BS 64 SSD-MobileNet: 300x300; BS 64

Ready to get OpenVINO?

Choose and download free directly from Intel

Intel[®] Distribution of OpenVINO[™] Toolkit

Also available from these sources:

Intel[®] Developer Cloud <u>PIP</u> Docker Hub Dockerfile Anaconda Cloud <u>YUM</u> <u>APT</u>

Build from source: <u>GitHub</u> | <u>Gitee</u> (for China)

