

DATA PARALLELISM: HOW TO
TRAIN DEEP LEARNING MODELS
ON MULTIPLE GPUS
LAB 1, PART 1: INTRODUCTION AND MOTIVATION

COURSE OVERVIEW

• Lab 1: Gradient Descent vs Stochastic
Gradient Descent, and the Effects of Batch
Size

• Lab 2: Multi-GPU DL Training Implementation
using DistributedDataParallel (DDP)

• Lab 3: Algorithmic Concerns for Training at
Scale

COURSE AGENDA

10:00-11:20 Neural Network Training and Stochastic Gradient
Descent

11:20-11:40 Coffee Break

11:40-13:00 Neural Network Training and Intro to Parallel Training

13:00-14:00 Lunch Break

14:00-15:20 Data Parallelism using Pytorch Distributed Data
Parallel

15:20-15:40 Coffee break

15:40-16:45 Challenges of Data Parallel using Multiple GPUs

16:45-17:00 Wrap up and Q&A

LAB 1 OVERVIEW
• Part 1: Gradient Descent

• Part 2: Stochastic Gradient Descent

• Part 3: Optimizing training with batch size

CONTEXT: WHY USE MULTIPLE GPUS?

TRENDS IN COMPUTATIONAL POWER
Historically we never had large datasets or compute

1980 1990 2000 2010 2020

102

103

104

105

106

107

Single-threaded perf

1.5X per year

1.1X per year
Transistors
(thousands)

GPU-Computing perf
1.5X per year 1000X

By 2025

TRENDS IN COMPUTATIONAL POWER
2 PF/s in November 2009

TRENDS IN COMPUTATIONAL POWER
32 PF/s today

8x NVIDIA H100 GPUs With 640 Gigabytes of Total GPU Memory

18x NVIDIA NVLink connections per GPU

900 gigabytes per second of bidirectional GPU-to-GPU bandwidth

24 TB/s memory bandwidth

4x NVIDIA NVSwitches

7.2 terabytes per second of bidirectional GPU-to-GPU bandwidth

10x NVIDIA ConnectX-7 400 Gigabits-Per-Second Network Interface

1 terabyte per second of peak bidirectional network bandwidth

Dual x86 CPUs and 2 Terabytes of System Memory

Powerful CPUs and massive system memory for the most intensive AI jobs

32 petaFLOPS AI performance
NVIDIA DGX H100

NEURAL NETWORK COMPLEXITY IS EXPLODING

Source: OpenAI

https://openai.com/blog/ai-and-compute/

1000 PETAFLOP/S-DAYS

O(100 YEARS) ON A DUAL CPU SERVER
OR

O(30 DAYS) DGX H100

EXPLODING DATASETS
Power-law relationship between dataset size and accuracy

Hestness, J., et al. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv: 1712.00409

https://arxiv.org/abs/1712.00409

EXPLODING DATASETS

Hestness, J., et al. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv: 1712.00409

Power-law relationship between dataset size and accuracy
• Translation

• Language Models

• Character Language Models

• Image Classification

• Attention Speech Models

https://arxiv.org/abs/1712.00409

EXPLODING MODEL COMPLEXITY
Though model size scales sublinearly

Hestness, J., et al. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv: 1712.00409

https://arxiv.org/abs/1712.00409

EXPLODING MODEL COMPLEXITY
Though model size scales sublinearly

Zoph, Barret, et al. (2017). "Learning transferable architectures for scalable image recognition." arXiv: 1707.07012

https://arxiv.org/abs/1707.07012

IMPLICATIONS

IMPLICATIONS

The good news: Requirements are predictable.

We can predict how much data we will need.

We can predict how much computing power we will need.

The bad news: The values can be significant.

The silver lining is that deep learning has taken impossible problems and made
them merely expensive.

Good and bad news

IMPLICATIONS
Deep learning is experimental; we need to train quickly to iterate

Idea

Code

Experiment

ITERATION TIME

1740

264
60 48

15
3,7

1,25 1,17
1

10

100

1000

10000

Micr
oso

ft (
2015-12)

Preferre
d Netw

orks
 (2

017-02)

Fa
ce

book (
2017-06)

IBM (2
017-08)

Preferre
d Netw

orks
 (2

017-11)

So
ny (

2018-11)

Fu
jits

u (2
019-03)

Fu
jits

u (2
019-11)

ResNet-50 training time in minutes

Short iteration time is fundamental for success

INTRO TO THE LAB

STARTING WITH A LINEAR MODEL

Our goal is to find best
model parameters
(combination of w and b)
to fit the data

y

x

w

1

b

y = w*x + b

DATA PARALLELISM: HOW TO
TRAIN DEEP LEARNING MODELS
ON MULTIPLE GPUS
LAB 1, PART 2: MORE REALISTIC NETWORKS

MODERN NEURAL NETWORKS
How do they differ from our trivial example?

Not significantly!

MODERN NEURAL NETWORKS
How do they differ from our trivial example?

y

x

w

1

b

y = w·x + b

y

x

w

1

b

y = f(w·x + b)

Nonlinearity

MODERN NEURAL NETWORKS
How do they differ from our trivial example?

More complex interconnection and many more
parameters

Kaiser, L., Gomez, A. N., Shazeer, N., Vaswani, A., Parmar, N., Jones, L., & Uszkoreit, J. (2017). One model to learn them all. arXiv preprint arXiv:1706.05137.
Iandola, F., Moskewicz, M., Karayev, S., Girshick, R., Darrell, T., & Keutzer, K. (2014). Densenet: Implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869.
Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., & Dean, J. (2017). Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538.

NON-CONVEX LOSS FUNCTIONS
Those differences make the optimization problem much more difficult

NON-CONVEX LOSS FUNCTIONS
Those differences make the optimization problem much more difficult

Li, H., Xu, Z., Taylor, G., & Goldstein, T. (2017). Visualizing the Loss
Landscape of Neural Nets. arXiv:1712.09913.

Linear model loss function ResNet-56 loss function projection to 3D – no skip
connections

https://arxiv.org/abs/1712.09913

NON-CONVEX LOSS FUNCTIONS
Those differences make the optimization problem much more difficult

Why do we succeed in finding
good local minima?

ResNet-56 loss function projection to 3D – no skip
connections

Li, H., Xu, Z., Taylor, G., & Goldstein, T. (2017). Visualizing the Loss
Landscape of Neural Nets. arXiv:1712.09913.

https://arxiv.org/abs/1712.09913

NON-CONVEX LOSS FUNCTIONS
Recent advances such as residual connections simplify optimization

Li, H., Xu, Z., Taylor, G., & Goldstein, T. (2017). Visualizing the Loss
Landscape of Neural Nets. arXiv:1712.09913.

https://arxiv.org/abs/1712.09913

DATA PARALLELISM: HOW TO
TRAIN DEEP LEARNING MODELS
ON MULTIPLE GPUS
LAB 1 CONCLUSION: DATA AND MODEL PARALLELISM

DATA PARALLELISM

How can we take advantage of multiple GPUs to
reduce the training time?

Focus of this course

DATA VS MODEL PARALLELISM

Data Parallelism

Allows you to speed up training

All workers train on different data

All workers have the same copy of
the model

Neural network gradients (weight
changes) are exchanged

Model Parallelism

Allows you to use a bigger model

All workers train on the same data

Parts of the model are distributed
across GPUs

Neural network activations are
exchanged

Comparison

DATA VS MODEL PARALLELISM

Data Parallelism Model Parallelism

Comparison

GPU1 GPU2
Averaging

Averaging

Averaging

Averaging

GPU2GPU1

Exchanging activations

TRAINING A NEURAL NETWORK
Single GPU

CPU/GPU

ℒ(#𝑦, 𝑦)

𝑊["] = 𝑊["] − 𝛼 ∗
𝜕ℒ

𝜕𝑊["]

𝑊[$] = 𝑊[$] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[$]

𝑊[%] = 𝑊[%] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[%]

GPU

W[1]

#𝑦

W[2]

W[3]

1. Read the data

2. Transport the data

3. Pre-process the data

4. Queue the data

5. Transport the data

6. Calculate activations for layer one

7. Calculate activations for layer two

8. Calculate the output

9. Calculate the loss

10. Backpropagate through layer three

11. Backpropagate through layer two

12. Backpropagate through layer one

13. Execute optimization step

14. Update the weights

15. Return control

TRAINING A NEURAL NETWORK
Multiple GPUs

CPU/GPU

ℒ(#𝑦, 𝑦) GPU ℒ(#𝑦, 𝑦)

CPU/GPU

CPU/GPU

𝑊["] = 𝑊["] − 𝛼 ∗
𝜕ℒ

𝜕𝑊["]

𝑊[$] = 𝑊[$] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[$]

𝑊["] = 𝑊["] − 𝛼 ∗
𝜕ℒ

𝜕𝑊["]

𝑊[$] = 𝑊[$] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[$]

𝑊[%] = 𝑊[%] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[%]
𝑊[%] = 𝑊[%] − 𝛼 ∗

𝜕ℒ
𝜕𝑊[%]

W[1]

#𝑦

W[2]

W[3]

GPU

W[1]

#𝑦

W[2]

W[3]

PARALLEL/DISTRIBUTED ML TRAINING

Pipeline Model
• Complete layer per device

• Weights stay within device
• Activations are communicated between

GPUs
• Non efficient implementations may lead to

inefficient usage of resources
• Research area

1. Model Parallelism: Memory usage and
computation of a model distributed across
devices
Two main variants:

a) Pipeline parallelism
b) Tensor parallelism

PARALLEL/DISTRIBUTED ML
TRAINING

Tensor Parallelism
• Tensor operations (e.g., computing a layer output) distributed across device

• Allows larger, more computationally expensive models
• Activations are communicated between GPUs
• Further points for inefficiencies

• A device might depend on the activations computed by more than one device

1. Model Parallelism: Memory usage and
computation of a model distributed across
devices
Two main variants:

a) Pipeline parallelism
b) Tensor parallelism

DATA PARALLELISM: HOW TO TRAIN
DEEP LEARNING MODELS ON
MULTIPLE GPUS
LAB 2, PART 1: INTRODUCTION TO DISTRIBUTED DATA PARALLEL (DDP)

TRAINING A NEURAL NETWORK
Multiple GPUs

CPU/GPU

ℒ(#𝑦, 𝑦) GPU ℒ(#𝑦, 𝑦)

CPU/GPU

CPU/GPU

𝑊["] = 𝑊["] − 𝛼 ∗
𝜕ℒ

𝜕𝑊["]

𝑊[$] = 𝑊[$] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[$]

𝑊["] = 𝑊["] − 𝛼 ∗
𝜕ℒ

𝜕𝑊["]

𝑊[$] = 𝑊[$] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[$]

𝑊[%] = 𝑊[%] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[%]
𝑊[%] = 𝑊[%] − 𝛼 ∗

𝜕ℒ
𝜕𝑊[%]

W[1]

#𝑦

W[2]

W[3]

GPU

W[1]

#𝑦

W[2]

W[3]

MEET DDP

Library for distributed DL

Prepackaged into and optimized for
PyTorch, an increasingly popular platform
among ML engineers and researchers

41

USING DISTRIBUTED DATA PARALLEL
(DDP)

INITIALIZE THE PROCESS

def setup(global_rank, world_size):

dist.init_process_group(backend="nccl", rank=global_rank,
world_size=world_size)

43

PIN GPU TO BE USED

44

device = torch.device("cuda:" + str(local_rank))

model = Net().to(device)

ENCAPSULATE MODEL WITH DDP

model = nn.parallel.DistributedDataParallel(model,
device_ids=[local_rank])

45

SYNCHRONIZE INITIAL STATE

46

Handled internally by DDP across processes and nodes!

DATA PARTITIONING

Shuffle the dataset

Partition records among
workers

Train by sequentially reading
the partition

After epoch is done, reshuffle
and partition again

47

DATA PARTITIONING

train_sampler =
torch.utils.data.distributed.DistributedSampler(train_set,
num_replicas=world_size, rank=global_rank)

train_loader =
torch.utils.data.DataLoader(train_set,
batch_size=args.batch_size, sampler=train_sampler)

48

I/O ON ONLY ON ONE WORKER

download = True if local_rank == 0 else False
if local_rank == 0:

train_set = torchvision.datasets.FashionMNIST("./data",
download=download)

if global_rank == 0:
print("Epoch = {:2d}: Validation Loss = {:5.3f},
Validation Accuracy = {:5.3f}".format(epoch+1, v_loss,
val_accuracy[-1]))

49

DATA PARALLELISM: HOW TO
TRAIN DEEP LEARNING MODELS
ON MULTIPLE GPUS
LAB 3, PART 1: SCALING THE BATCH SIZE

CAN WE INCREASE THE BATCH SIZE
INDEFINITELY?

IN TERMS OF IMAGES / SECOND?
Yes

Kurth, T., Treichler, S., Romero, J., Mudigonda, M., Luehr, N., Phillips, E., ... & Houston, M. (2018, November). Exascale deep
learning for climate analytics. In Proceedings of the International Conference for High Performance Computing, Networking,
Storage, and Analysis (p. 51). IEEE Press. arXiv:1810.01993

https://arxiv.org/abs/1810.01993

IN TERMS OF STEPS TO CONVERGENCE?
There are limits

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J., Frostig, R., & Dahl, G. E. (2018). Measuring the effects of data parallelism on
neural network training. arXiv:1811.03600

https://arxiv.org/abs/1811.03600

IN TERMS OF STEPS TO CONVERGENCE?
There are limits

https://blog.openai.com/science-of-ai/

https://blog.openai.com/science-of-ai/

LARGE MINIBATCH AND ITS IMPACT ON
ACCURACY

IMPACT ON ACCURACY
Naïve approaches lead to degraded accuracy

You, Y., Zhang, Z., Hsieh, C., Demmel, J., & Keutzer, K. (2017). ImageNet training in minutes. arXiv: 1709.05011

https://arxiv.org/abs/1709.05011

IMPACT ON ACCURACY
Naïve approaches lead to degraded accuracy

Hoffer, E., Hubara, I., & Soudry, D. (2017). Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. arXiv:1705.08741

https://arxiv.org/abs/1705.08741

IMPACT ON ACCURACY
Why? Generalization and flatness of minima?

Keskar, N. S., et al. (2016). On large-batch training for deep learning: Generalization gap and sharp minima. arXiv:1609.04836

https://arxiv.org/abs/1609.04836

IMPACT ON ACCURACY
Why does it happen? Noise in the gradient update.

Keskar, N. S., et al. (2016). On large-batch training for deep learning: Generalization gap and sharp minima. arXiv:1609.04836

https://arxiv.org/abs/1609.04836

IMPACT ON ACCURACY
Why? Generalisation and Flatness of minima?

Li, H., Xu, Z., Taylor, G., & Goldstein, T. (2017). Visualizing the Loss Landscape of Neural Nets. arXiv:1712.09913

https://arxiv.org/abs/1712.09913

DATA PARALLELISM: HOW TO
TRAIN DEEP LEARNING MODELS
ON MULTIPLE GPUS
LAB 3, PART 2: OPTIMIZATION STRATEGIES

WHAT CAN WE DO TO IMPROVE THE
OPTIMIZATION PROCESS?

• Manipulate the learning rate?

• Add noise to the gradient?

• Manipulate the batch size?

• Change the learning algorithm?

WHAT CAN WE DO ABOUT IT?

“Theory suggests that when multiplying the batch size by k, one
should multiply the learning rate by √(k) to keep the variance in the
gradient expectation constant.

...

Theory aside, for the batch sizes considered in this note, the heuristic
that I found to work the best was to multiply the learning rate by k
when multiplying the batch size by k. I can’t explain this discrepancy
between theory and practice.”

In practice linear scaling is still frequently used.

Early approaches: scaling the learning rate

Krizhevsky, A. (2014). One weird trick for parallelizing convolutional neural networks. arXiv:1404.5997

https://arxiv.org/abs/1404.5997

WHAT CAN WE DO ABOUT IT?
Warmup strategies

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., ... & He, K. (2017). Accurate, Large
Minibatch SGD: Training ImageNet in 1 Hour. arXiv:1706.02677

• A lot of networks will diverge early in the learning process

• Warmup strategies address this challenge

https://arxiv.org/abs/1706.02677

WHAT CAN WE DO ABOUT IT?

Batch normalization improves the learning
process by minimizing drift in the
distribution of inputs to a layer

It allows higher learning rates and reduces
the need to use dropout

The idea is to normalize the inputs to all
layers in every batch (this is more
sophisticated than simply normalizing the
input dataset)

Batch Normalization

Ioffe and Szegedy (2015). Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. arXiv:1502.03167

https://arxiv.org/abs/1502.03167

WHAT CAN WE DO ABOUT IT?
Ghost Batch Normalization

• The original batch normalization paper suggests using the statistics for the entire
batch, but what should that mean when we have multiple GPUs?

• We can introduce additional noise by calculating smaller batch statistics (“ghost
batches”).

• Batch normalization is thus carried out in isolation on a per-GPU basis.

Hoffer, E., Hubara, I., & Soudry, D. (2017). Train longer, generalize better: closing the generalization gap in large batch
training of neural networks. arXiv:1705.08741

https://arxiv.org/abs/1705.08741

WHAT CAN WE DO ABOUT IT?
Adding noise to the gradient

• Keeps the covariance constant with changing batch size (as)

• Does not change the mean

Hoffer, E., Hubara, I., & Soudry, D. (2017). Train longer, generalize better: closing the generalization gap in large batch
training of neural networks. arXiv:1705.08741

https://arxiv.org/abs/1705.08741

WHAT CAN WE DO ABOUT IT?
Longer training with larger learning rate

Hoffer, E., Hubara, I., & Soudry, D. (2017). Train longer, generalize better: closing the generalization gap in large batch
training of neural networks. arXiv:1705.08741

https://arxiv.org/abs/1705.08741

WHAT CAN WE DO ABOUT IT?
Increasing the batch size, instead of learning rate decay

Smith, S. L., Kindermans, P. J., & Le, Q. V. (2017). Don't Decay the Learning Rate, Increase the Batch Size. arXiv:1711.00489

https://arxiv.org/abs/1711.00489

WHAT CAN WE DO ABOUT IT?
LARS: Layer-wise Adaptive Rate Scaling

You, Y., Gitman, I., & Ginsburg, B. Large batch training of convolutional networks. arXiv:1708.03888

https://arxiv.org/abs/1708.03888

WHAT CAN WE DO ABOUT IT?
LARS: Layer-wise Adaptive Rate Scaling

Control magnitude of the layer k update through local learning rate 𝜆(:

∆ 𝑤(𝑡 + 1 = 𝜆(∗ 𝐺((𝑤(𝑡))

where:

𝐺((𝑤(𝑡)): stochastic gradient of 𝐿 with respect to𝑤(,

𝜆(: local learning rate for layer 𝑘, defined as

𝜆(= 𝑚𝑖𝑛(𝛾, 𝜂 5 ||*! + ||"
||,!(*(+))||"

)

where

𝜂 is trust coefficient (how much we trust stochastic gradient)

𝛾 is global learning rate policy (steps, exponential decay, …)

You, Y., Gitman, I., & Ginsburg, B. Large batch training of convolutional networks. arXiv:1708.03888

https://arxiv.org/abs/1708.03888

WHAT CAN WE DO ABOUT IT?

LARC: Layer-wise learning rates with clipping; SGD with momentum is base optimizer

LAMB: Layer-wise learning rates; Adam as base optimizer

• More successful than LARC at language models like BERT

NovoGrad: Moving averages calculated on a per-layer basis

• Also useful in several different domains

https://github.com/NVIDIA/apex/blob/master/apex/parallel/LARC.py
https://arxiv.org/abs/1904.00962
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1905.11286

SURVEY
Before you go … https://survey.lrz.de/index.php/848953?lang=en

https://survey.lrz.de/index.php/848953?lang=en

www.nvidia.com/dli

