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Building Transformer-Based Natural Language Processing Applications
(Part 1)

MACHINE LEARNING IN NLP
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Part 1: Machine Learning in NLP
Lecture: NLP background and the role of DNNs leading to the 
Transformer architecture

Lab: Tutorial-style exploration of a translation task using the 
Transformer architecture

Part 2: Self-Supervision, BERT, and Beyond
Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT 
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo API and 
exercises to build a text classification task and a named 
entity recognition task using BERT-based language models

Part 3: Production Deployment
Lecture: Discussion of production deployment considerations 
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering 
task to NVIDIA Triton

FULL COURSE AGENDA
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Part 1: Machine Learning in NLP
• Lecture
• What is NLP?
• Problem Formulation
• Text Representations
• Dimensionality Reduction
• Embeddings
• RNNs
• “Attention is All You Need”

• Lab
• Transformer Architecture
• BERT Model
• Pretraining BERT
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FOUNDATION OF COUNTLESS 
APPLICATIONS



Natural 
Language 
Processing

General 
Q&A

Translation

Summary 
Generation

Automatic 
Dialogue 

Generation

Intent 
Detection

Auto 
Completion

Word 
Sense

Code 
Generation

Common 
Sense 

Reasoning

Automatic 
Writing

And many more….

NLP TASKS

Sentiment 
Analysis
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GLIMPSE OF WHAT IS POSSIBLE, TODAY…





Large NLP models powers: 
o Multi-turn Information Retrieval for Q&A 



12

Part 1: Machine Learning in NLP
• Lecture
• What is NLP?
• Problem Formulation
• Text Representations
• Dimensionality Reduction
• Embeddings
• RNNs
• “Attention is All You Need”

• Lab
• Transformer Architecture
• BERT Model
• Pretraining BERT
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PROBLEM FORMULATION
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MACHINE LEARNING
Discovering the discussed structures in text

Machine Learning 
Algorithm

Text
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MACHINE LEARNING
Discovering the discussed structures in text

Machine Learning 
Algorithm

Text

?
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MACHINE LEARNING
Design decisions

Machine Learning 
Algorithm

Text Text 
Representation

Text Pre-
processing

???

Reweighting
Dimensionality 

Reduction
Vector 

Comparison

? ? ?
Problem formulation

?
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MACHINE LEARNING
All linear combinations feasible

Machine Learning 
Algorithm

Text Text 
Representation

Text Pre-
processing

???

Reweighting
Dimensionality 

Reduction
Vector 

Comparison

? ? ?
Problem formulation

?

GloVe Word2Vec
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MACHINE LEARNING
In this class

Machine Learning 
Algorithm

Text Text 
Representation

Text Pre-
processing

Reweighting
Dimensionality 

Reduction
Vector 

Comparison

Subset of Problem formulations

Subset of word representations
Subset of 

approaches
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Part 1: Machine Learning in NLP
• Lecture
• What is NLP?
• Problem Formulation
• Text Representations
• Dimensionality Reduction
• Embeddings
• RNNs
• “Attention is All You Need”

• Lab
• Transformer Architecture
• BERT Model
• Pretraining BERT
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TEXT REPRESENTATIONS

• Bag of words/ngrams – feature per word/ngram 

the cat sat on the mat

• Various ways of choosing the values:  Binary, Count, TF-IDF

The bag of words

cat sat on the mat quic
kly

1 1 1 2 1 0

…  |Vocabulary|
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THE BAG OF WORDS
Key challenges

Sparse Input (1-hot)

No semantic generalization

dog:   1 0 0 0 0 … 0

cat:    0 0 1 0 0 … 0 

…… …

Word 1 Word n

p >> n    (overfitting!)

lots of data required,
low accuracy

Word 1 Word n
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DISTRIBUTED WORD 
REPRESENTATIONS
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DISTRIBUTIONAL HYPOTHESIS
The intuition

‘You can tell a word by the company it keeps’
Firth 1957 

‘The complete meaning of a word is always contextual, 
and no study of meaning apart from context can be 
taken seriously.’

Firth 1957 

‘The meaning of a word is its use in the language’
Wittgenstein 1953

‘Distributional statements can cover all of the 
material of a language without requiring support from 
other types of information’

Harris 1954
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CO-OCCURRENCE PATTERNS
The latent information
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CO-OCCURRENCE PATTERNS
Where to find them?

Possible relationships:

- Word to documents (very sparse and very wide)

- Word to word (very dense and compact)

- Word to user / person

- Word to user behaviour

- Word to product

- Word to custom feature (e.g. movie raking)

Not only metrices:

- Word to user to product
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Part 1: Machine Learning in NLP
• Lecture
• What is NLP?
• Problem Formulation
• Text Representations
• Dimensionality Reduction
• Embeddings
• RNNs
• “Attention is All You Need”

• Lab
• Transformer Architecture
• BERT Model
• Pretraining BERT
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DIMENSIONALITY REDUCTION
Rationale

The need for compact and computationally efficient representations

More robust notions of distance exposing the information captured by our distributional representation
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LSA/LSI
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LSA/LSI
Latent Semantic Analysis / Latent Semantic Indexing

?
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LLSA/LSI
Truncated SVD

Dumais, Susan T., et al. "Using latent semantic analysis to improve access to textual information." Proceedings of the SIGCHI conference on 
Human factors in computing systems. 1988.

Terms x Documents
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LSA/LSI
Truncated SVD

K largest singular values

Terms x Documents

Dumais, Susan T., et al. "Using latent semantic analysis to improve access to textual information." Proceedings of the SIGCHI conference on 
Human factors in computing systems. 1988.
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LSA/LSI
Truncated SVD

K largest singular values

Latent Semantic Space

Terms x Documents

Dumais, Susan T., et al. "Using latent semantic analysis to improve access to textual information." Proceedings of the SIGCHI conference on 
Human factors in computing systems. 1988.
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LSA/LSI
Documents that are similar are closer

Landauer, Thomas K., Darrell Laham, and Marcia Derr. "From paragraph to graph: Latent semantic analysis for information visualization." Proceedings of the National Academy 
of Sciences 101.suppl 1 (2004): 5214-5219.
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LSA/LSI
Its so 1988

Dumais, Susan T., et al. "Using latent semantic analysis to improve access to textual information." Proceedings of the SIGCHI conference on 
Human factors in computing systems. 1988.
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DID WE MAKE FURTHER 
PROGRESS?
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STATUS AS OF 2010
Yes and No

Turian, Joseph, Lev Ratinov, and Yoshua Bengio. "Word representations: a simple and general method for semi-supervised 
learning." Proceedings of the 48th annual meeting of the association for computational linguistics. 2010.

Distributional 
Representations

- LSA / LSI
- pLSA
- LDA
- HAL
- ICA
- Random Indexing
- …

Clustering Based 
Representations

- Brown Clustering
- HMM-LDA
- CRF Chunker with 

HMM
- …

Distributed 
Representations

- Collobert and 
Weston embeddings

- HLBL embeddings
- …

It was not clear that you can combine unsupervised approaches 
(i.e. embeddings) with supervised models 

Machine Learning 
Algorithm

Unsupervised 
embedding

Text
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Part 1: Machine Learning in NLP
• Lecture
• What is NLP?
• Problem Formulation
• Text Representations
• Dimensionality Reduction
• Embeddings
• RNNs
• “Attention is All You Need”

• Lab
• Transformer Architecture
• BERT Model
• Pretraining BERT
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WHY NOT DO THE SAME 
WITH NEURAL NETWORKS?
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STATUS AS OF 2010
Not enough computational power

Turian, Joseph, Lev Ratinov, and Yoshua Bengio. "Word representations: a simple and general method for semi-supervised 
learning." Proceedings of the 48th annual meeting of the association for computational linguistics. 2010.
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WORD2VEC
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WORD2VEC

Mikolov et al., 2013 (while at Google)

Linear model (trains quickly)

Two models for training embeddings in an unsupervised manner:

Continuous Bag-of-Words (CBOW) Skip-Gram

cat

E

PAD the sat on

E E E

Σ

1-hot (|V|)

d-dimensional

d-dimensional

1-hot (|V|)

1-hot (|V|)

d-dimensional

d-dimensional

1-hot (|V|)

cat

E

PAD

cat

E

the

cat

E

sat

cat

E

on

https://arxiv.org/abs/1301.3781
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GLOVE
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GLOVE

To learn vectors for words such that their dot product is proportional to their probability of co-occurence

The objective

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference 
on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).
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GLOVE
The objective

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference 
on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).
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GLOVE
Properties

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference 
on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).

Comparative - Superlative Man - Woman
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GLOVE
Not a distant past

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference 
on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).
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USING THE EMBEDDINGS
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THE APPROACH TO NLP
Unsupervised feature representation + Machine Learning models

Machine Learning 
Algorithm

Text Text 
Representation

Text Pre-
processing

Reweighting
Dimensionality 

Reduction
Vector 

Comparison

Subset of Problem formulations

Subset of word representations
Subset of 

approaches
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THE APPROACH TO NLP
What ML model to choose

Machine Learning 
Algorithm

Text Text 
Representation

Text Pre-
processing

Reweighting
Dimensionality 

Reduction
Vector 

Comparison

Subset of Problem formulations

Subset of word representations
Subset of 

approaches

?
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CLASSICAL APPROACHES
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CLASSICAL APPROACHES
Very broad selection of tools
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WHAT ABOUT FEATURE 
ENGINEERING?



53

DEEP REPRESENTATION 
LEARNING
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DEEP REPRESENTATION LEARNING
Beyond distributional hypothesis
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Part 1: Machine Learning in NLP
• Lecture
• What is NLP?
• Problem Formulation
• Text Representations
• Dimensionality Reduction
• Embeddings
• RNNs
• “Attention is All You Need”

• Lab
• Transformer Architecture
• BERT Model
• Pretraining BERT
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RECURRENT NEURAL NETWORKS

xt-1x

y yt-1

xt

yt

xt+1

yt+1

xt+2

yt+2

Unrolling in Time

s st-1 st st+1 st+2

Basic principles
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LONG SHORT TERM (LSTM) CELL
Addressing problems of stability
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CNNS
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CONVOLUTIONAL NEURAL NETWORKS
Basic principles

Severyn, Aliaksei, and Alessandro Moschitti. "Unitn: Training deep convolutional neural network for twitter sentiment 
classification." Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015). 2015.
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ATTENTION
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WHAT ABOUT LONG SEQUENCES?
The challenge illustrated with SQuAD

The impact of attention mechanism on Question Answering performance
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WHAT ABOUT LONG SEQUENCES?
The challenge

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
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ATTENTION
The mechanism

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
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ATTENTION
The mechanism

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
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ATTENTION
Examples

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., ... & Klingner, J. (2016). Google's neural machine translation system: Bridging the gap 
between human and machine translation. arXiv preprint arXiv:1609.08144.
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ATTENTION
Examples

Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017, July). Convolutional sequence to sequence learning. In International 
conference on machine learning (pp. 1243-1252). PMLR.
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Part 1: Machine Learning in NLP
• Lecture
• What is NLP?
• Problem Formulation
• Text Representations
• Dimensionality Reduction
• Embeddings
• RNNs
• “Attention is All You Need”

• Lab
• Transformer Architecture
• BERT Model
• Pretraining BERT
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ATTENTION IS ALL YOU NEED
Design

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural 
information processing systems (pp. 5998-6008).
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ATTENTION IS ALL YOU NEED
Design

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural 
information processing systems (pp. 5998-6008).
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WAS IT A BREAKTHROUGH 
IN ITSELF?
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ATTENTION IS ALL YOU NEED
Not a breakthrough in itself

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural 
information processing systems (pp. 5998-6008).
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ATTENTION IS ALL YOU NEED
But …

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural 
information processing systems (pp. 5998-6008).

“ … the Transformer can be trained significantly faster than 
architectures based on recurrent or convolutional layers.”
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NEURAL EMBEDDINGS
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FEATURE REUSE
The opportunity
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IT WAS DIFFICULT TO 
REUSE NLP EMBEDDINGS
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SEMI-SUPERVISED SEQUENCE LEARNING
More complex representations

Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. In Advances in neural information processing systems (pp. 3079-3087).
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SEMI-SUPERVISED SEQUENCE LEARNING
More complex representations

Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. In Advances in neural information processing systems (pp. 3079-3087).
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SEMI-SUPERVISED SEQUENCE LEARNING
More complex representations

Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. In Advances in neural information processing systems (pp. 3079-3087).
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ELMO
Embeddings for Language Models

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint 
arXiv:1802.05365.
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ELMO
Embeddings for Language Models

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint 
arXiv:1802.05365.
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ULM-FIT
Universal Language Model Fine-Tuning for Text Classification

Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146.
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TRANSFER LEARNING IN NLP
Not trivial to use and not universally applicable

Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint 
arXiv:1802.05365.

1957 1988 2010 2013/
2014

2018

Distributional 
Hypothesis LSA / LSI The use of unsupervised 

embeddings Success of NN First successes in 
transfer learning
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THIS CREATED A 
FOUNDATION FOR THE 

NEW NLP MODELS
(DISCUSSED IN THE NEXT CLASS)
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THE LAB
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ATTENTION IS ALL YOU NEED
Deep dive into the transformer design

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural 
information processing systems (pp. 5998-6008).
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BERT

86

How it relates to transformer and pretraining
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IN THE NEXT CLASS…
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SELF-SUPERVISION, BERT, AND BEYOND
Why did models start to work well? What does the future hold?

?
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Part 1: Machine Learning in NLP
• Lecture
• What is NLP?
• Problem Formulation
• Text Representations
• Dimensionality Reduction
• Embeddings
• RNNs
• “Attention is All You Need”

• Lab
• Transformer Architecture
• BERT Model
• Pretraining BERT





Building Transformer-Based Natural Language Processing Applications
(Part 2)

SELF-SUPERVISION, BERT, 
AND BEYOND
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Part 1: Machine Learning in NLP
Lecture: NLP background and the role of DNNs leading to the 
Transformer architecture

Lab: Tutorial-style exploration of a translation task using the 
Transformer architecture

Part 2: Self-Supervision, BERT, and Beyond
Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT 
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo API and 
exercises to build a text classification task and a named 
entity recognition task using BERT-based language models

Part 3: Production Deployment
Lecture: Discussion of production deployment considerations 
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering 
task to NVIDIA Triton

FULL COURSE AGENDA
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Part 2: Self-Supervision, BERT and Beyond
• Lecture

• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• The Scaling Laws
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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Part 2: Self-Supervision, BERT and Beyond
• Lecture

• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• The Scaling Laws
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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COMPUTE
Or lack of thereof

cat

E

PAD the sat on

E E E

Σ

Mikolov, Tomas, et al. "Efficient estimation of word representations in vector 
space." arXiv preprint arXiv:1301.3781 (2013).
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COMPUTE
Easy to forget about the computational progress of the last decades

1980 1990 2000 2010 2020

102

103

104

105

106

107

Single-threaded perf

1.5X per year

1.1X per year
Transistors
(thousands)

GPU-Computing perf
1.5X per year 1000X

By 2025
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CONTEXT
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CONTEXT
8 petaFLOPs in June 2011 (K Computer)
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CONTEXT
5 petaFLOPs for AI - today



100

CONTEXT
~100 PFLOPS (FP16) or 48 PFLOPS (TF32) for AI - today
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100 EXAFLOPS
~= 

2 YEARS ON A DUAL CPU 
SERVER
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SCALING LAWS
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SCALING LAWS

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Power Law relationship between the dataset size and accuracy
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SCALING LAWS

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Applicable across all AI tasks

• Translation

• Language Models

• Character Language Models

• Image Classification

• Attention Speech Models
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THE COST
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THE COST OF LABELING

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Limits the utility of deep learning models

Exponential increase
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Part 2: Self-Supervision, BERT and Beyond
• Lecture

• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• The Scaling Laws
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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SELF-SUPERVISED  LEARNING

• Natural Language Processing:

• Masked Language Model: We mask a percentage of the input tokens at random (say 15%) and ask the neural network to predict the
entire sentence

• Next Sentence Prediction: We choose either two consecutive sentences from text, or two random sentences from the text. We ask
the neural network to establish whether the two sentences occur one after another.

• We use another simpler neural network to replace random words in the sequence and ask the primary neural network to detect 
which words were replaced (using a GAN like configuration).

• Computer Vision:

• Contrastive Learning: Randomly modify (crop and resize, flip, distort color, rotate, cut-out, noise, blur, etc.) and either feed the 
same image, or two randomly selected images, into the neural network, asking it to say whether it is the same image or not

• Noisy labels/Self Training: Use labels generated by a weak algorithm (potentially older generation of the target model) to train a 
target-robust feature extractor

Example training tasks

Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. In Advances in neural information processing systems (pp. 3079-3087).
Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709.
Xie, Q., Hovy, E., Luong, M. T., & Le, Q. V. (2019). Self-training with Noisy Student improves ImageNet classification. arXiv preprint arXiv:1911.04252.
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THE COST OF LABELING

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

Semi-supervised models

Manageable cost
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1

50

2.500

125.000

BookCorpus English Wikipedia Giga5 ClueWeb 2012-B Common Crawl Open Super-Large
Crawled ALMAnaCH2

corpus

800
2.500

4.000
15.000 16.000

800.000

Number of Words (in Millions)

SELF-SUPERVISED LEARNING
Abundance of unlabeled data
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1

50

2.500

125.000

6.250.000

HACS YFCC100M Moments in Time Sports-1M HowTo100M YouTube-8M

520.000 800.000 1.000.000 1.100.000 1.200.000

8.000.000

Number of videos

SELF-SUPERVISED LEARNING
Abundance of unlabeled data
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OLD IDEAS
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SELF-SUPERVISED LEARNING
What was missing?
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THE SCALE
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GENERATIVE PRETRAINING (GPT)
The scale

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

“Many previous approaches to NLP tasks train relatively small models on a single GPU from scratch.
Our approach requires an expensive pre-training step - 1 month on 8 GPUs. Luckily, this only has to
be done once and we’re releasing our model so others can avoid it. It is also a large model (in
comparison to prior work) and consequently uses more compute and memory — we used a 37-layer
(12 block) Transformer architecture, and we train on sequences of up to 512 tokens. Most
experiments were conducted on 4 and 8 GPU systems. The model does fine-tune to new tasks very
quickly which helps mitigate the additional resource requirements.”
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GENERATIVE PRETRAINING (GPT)
The design

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

Transformer 
Decoder

Self-Supervised
Training
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IT BECAME POSSIBLE TO 
TRANSFER LEARN!
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GENERATIVE PRETRAINING (GPT)
The approach

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.

Step 1 Step 2
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GENERATIVE PRETRAINING (GPT)
The implications

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.
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AND IT WORKED VERY 
WELL
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GENERATIVE PRETRAINING (GPT)
The implications

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.
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Part 2: Self-Supervision, BERT and Beyond
• Lecture

• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• The Scaling Laws
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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BIDIRECTIONAL TRANSFORMERS (BERT)
Building on the shoulders of giants

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
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BIDIRECTIONAL TRANSFORMERS (BERT)
The “pre” and “post” OpenAI ages

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
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SQUAD 2.0
Human performance 91.2
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JUST YET ANOTHER 
UNSUPERVISED 

REPRESENTATION
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USING BERT
Feature extractor

Machine Learning 
Algorithm

Text Text 
Representation

Text Pre-
processing

???

Reweighting
Dimensionality 

Reduction
Vector 

Comparison

? ? ?
Problem formulation

?

GloVe Word2Vec
BERT
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THE LAB
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LAB OVERVIEW
Notebooks 1, 2, 3

Machine Learning 
Algorithm

Text Text 
Representation

Text Pre-
processing

Reweighting
Dimensionality 

Reduction
Vector 

Comparison

Problem formulation

Text classification

Fixed pretrained BERT
Your task:

Text classification
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Part 2: Self-Supervision, BERT and Beyond
• Lecture

• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• The Scaling Laws
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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Part 2: Self-Supervision, BERT and Beyond
• Lecture

• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• The Scaling Laws
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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BIDIRECTIONAL TRANSFORMERS (BERT)
Base vs Large

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
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GPT-2

• Largely the same but:

• Larger in every way:

• More decoder layers: 12->48

• Larger vocabulary:  50,257

• Larger context: 512 -> 1024

• Larger batch size

• Changes to layer normalization

• Different initialization scheme

GPT vs GPT-2

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
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GPT-2
The Impact

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
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MEASURABLE 
IMPROVEMENT
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THE SCALING LAWS OF NEURAL LANGUAGE MODELS
Continuous improvement

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409. 2017
Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin Mann, Alec Radford, 
Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei, Sam McCandlish. Scaling Laws for Autoregressive Generative Modeling.2020
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Part 2: Self-Supervision, BERT and Beyond
• Lecture

• Why Do DNNs Work Well?
• Self-Supervised Learning
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• The Scaling Laws
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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SHOULD WE BUILD 
LARGER MODELS?



139

ARE LARGE LANGUAGE MODELS WORTH IT?
The cost of incremental improvement

Are we building those 
models only for the 
small incremental 

improvement in their 
performance?

Is it worth all of the 
engineering and 
computational 
investment?
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IS THIS REALLY THE ONLY 
THING WE HAVE 

ACHIEVED?
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IT IS MUCH MORE THAN 
JUST INCREMENTAL 

INCREASE IN ACCURACY!
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1. SAMPLE EFFICIENCY
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NOT ABOUT INCREMENTAL IMPROVEMENT
Sample efficiency

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.
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Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, 
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

LARGER MODELS ARE CHEAPER TO TRAIN
Optimal allocation of computational budget
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Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, 
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

LARGER MODELS ARE CHEAPER TO TRAIN
For every dataset there exists an optimal model size minimizing compute
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2. ARCHITECTURAL 
HYPERPARAMETERS
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LARGE MODELS ARE CHEAPER TO DESIGN
Impact of architectural hyperparameters

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, 
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

“… more importantly, we find that the precise architectural 
hyperparameters are unimportant compared to the overall 
scale of the language model.”
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NLP APPROACH (CIRCA 2019)

Step 1: Pre-training a Transformer Step 2. Fine tune for a specific task

1 = “Initially he supported himself and his family by farming on a plot of family land.”

2 = “This in turn attracted the attention of the St. Louis Post-Dispatch, which sent a 
reporter to Murray to personally review Stubblefield's wireless telephone.”

Input: Two sentences with 15% of words masked out 

family, of, this, the, Louis, personally, telephone
Output 1: Reconstruct missing words 

Decoder
Encoder

Decoder
Encoder

Classifier

High dimensional vector

Labelled Data

High dimensional vector

Output
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3. GENERALIZATION
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Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, 
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

YES THEY CREATE INCREMENTAL IMPROVEMENT IN ACCURACY
Larger models generalize better
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DOWNSTREAM TASKS
Zero/Few Shot Learners

Benjamin Mann et al. "Language Models are Few-Shot Learners". 2020. https://arxiv.org/abs/2005.14165
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DOWNSTREAM TASKS
Zero/Few Shot Learners

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-lm: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165..
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DOWNSTREAM TASKS
Zero/Few Shot Learners

Q: Would you say this movie review is positive or negative?
“I loved that movie”’ • positive

• great
• awsome …

Prompt
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DOWNSTREAM TASKS
Prompt Engineering

Zhengbao Jiang et al. "How Can We Know What Language Models Know?".2020.

https://arxiv.org/pdf/1911.12543.pdf%E2%80%8B%E2%80%8B
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DOWNSTREAM TASKS
Prompt Learning on a Small Training Dataset

Positive

Q: Would you say this movie review is positive or negative?
“I loved that movie”’

[0.252454, 5.414523, 2.349844]
“I loved that movie”’

[0.252454, 5.414523, 2.349844]
Learned soft Prompt

Task: Sentiment Analysis

Prompt Learning
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DOWNSTREAM TASKS
Prompt Tuning / P-Tuning

Brian Lester, Rami Al-Rfou, Noah Constant The Power of Scale for Parameter-Efficient Prompt Tuning. 2021. https://arxiv.org/abs/2104.08691 
Xiao Liu et al. " P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks. 2021. https://arxiv.org/abs/2110.07602
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DOWNSTREAM TASKS
Customize Models using Parameter-efficient tuning | Adapters

Junxian He Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, Graham Neubig. TOWARDS A UNIFIED VIEW OF PARAMETER-EFFICIENT TRANSFER LEARNING. ICLR 2022
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INSTRUCTED LLM
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INSTRUCTIONS FINETUNING
Dataset of Instructions (Queries and Answers)

“Q: Who is the president of USA? 

Joseph Robinette Biden Jr. is an American 
politician who is the 46th and current president of the 
United States. A member of the Democratic Party, he 
previously served as the 47th vice president from 2009 to 
2017 under President Barack Obama, and represented 
Delaware in the United States Senate from …”
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INSTRUCTIONS FINETUNING
FLAN [Google ] InstructGPT [OpenAI ]

LaMDA [Google ]

https://arxiv.org/pdf/2201.08239.pdf
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INSTRUCTIONS FINETUNING
FLAN [Google 
]

InstructGPT [OpenAI
]

LaMDA [Google ]

https://arxiv.org/pdf/2201.08239.pdf


162

CHANGE IN THE NLP 
PARADIGM
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NEW NLP APPROACH (CIRCA 2021)

Step 1: Train a Very Deep/HUGE model Step 2. Ask questions

General 
Knowledg

e

Scienc
e

Literat
ure

GitHu
b

‘Q: Would you say this movie 
review is positive or negative? 

“I loved that movie”’
‘A: Negative’

Huge means Billions of parameters
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TOWARDS GENERAL INTELLIGENCE

★ Needs Labelled data 
▪ Cost of data collection/labelling
▪ Legal/Privacy concerns around using data

★ 1 model per task results in 
▪ Increased model development/tuning cost 
▪ Increased operational costs
▪ Increased money spent on sourcing data

★ Relatively Limited generalization
★ Computationally cheaper (~300 Million parameters)

★ Does not need labelled data
★ Single generic model can do more than one tasks
★ More generalized: in addition to language also learns 

higher level concepts, styles, etc.
★ Computationally Expensive (~500 Billion parameters)

Old way New way

Leveraging more compute to get a general model without significant data/labelling cost
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HISTORY OF LANGUAGE MODELS 
Language Model became more complex and larger
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MEGATRON-TURING NLG 530B
The Trend Continues

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
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LLM FOR SEARCH
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EXTERNAL KNOWLEDGE SOURCE

Instructed LLM Knowledge source
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EXTERNAL KNOWLEDGE SOURCE
Searching through the web
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EXTERNAL KNOWLEDGE SOURCE
Examples of Search Engine Powered by LLM

New Bing Search Engine [Microsoft]NORA - No One Right Answer [Google] 

https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web/
https://blog.google/technology/ai/bard-google-ai-search-updates/
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LLM FOR CHATBOTS
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CHATBOTS POWERED BY INSTRUCTED LLM
ChatGPT is a sibling model to InstructGPT



173

CHATBOTS POWERED BY INSTRUCTED LLM
Bing Chat powered by Next generation GPT | Bard powered by LaMDA
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TECHNICALLY, CAN WE 
BUILD LARGER MODELS?
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GOING BIGGER

• If we only consider Parameters, Gradients, and Optimizer states and ignore activations

• If we use FP16 data representation (so two bytes)

• If we use Adam as an optimizer (storing twelve bytes per parameter in mixed precision mode)

• If we consider a model with one billion parameters

10^9 * ( 2B + 2B + 12B) = 10^9*16B = 14.90GB

The challenge

1 billion parameters

2 bytes per parameter

2 bytes per gradient
12 bytes per optimizer 

state
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GOING BIGGER

• What about activations?

• What about 2 or 3 billion parameter models?

10^9 * ( 2B + 2B + 12B) = 10^9*16B = 14.90GB

The challenge

1 billion parameters

2 bytes per parameter

2 bytes per gradient
12 bytes per optimizer 

state
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TRANSFORMER MODELS
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MODEL IMPLEMENTATION
Data, Pipeline and Tensor Parallelism

D
at

a 
Pa

ra
lle

lis
m

 1
D

at
a 

Pa
ra

lle
lis

m
 2
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MODEL PARALLELISM

• Pipeline (Inter-Layer) Parallelism

• Split sets of layers across multiple devices

• Layer 0,1,2 and layer 3,4,5 are on difference devices

• Tensor (Intra-Layer) Parallelism

• Split individual layers across multiple devices

• Both devices compute difference parts of Layer 0,1,2,3,4,5
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SELF-ATTENTION

f and g are conjugate, f is identity operator in the forward pass and all-reduce in the backward 
pass while g is all-reduce in forward and identity in backward.

180
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PARALLEL TRANSFORMER LAYER

181
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GPU 2

GPU 1

Tensor Parallelism

Communication expensive

Good performance across 
batch sizes

GPU 2GPU 1

Pipeline Parallelism

Communication cheap

Good performance at larger 
batch sizes (pipeline stall 

amortized)

COMPARING TENSOR AND PIPELINE PARALLELISM
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1

1

1

1 1

1a 1a

1a 1a

1a 1a

1a 1a

GPU 1

GPU 2

GPU 3

GPU 4

GPU 1

GPU 2

GPU 3

GPU 4

Time

Time

Split batch into microbatches
and pipeline execution

PIPELINING
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1a 1b 1a 1b

1a 1b 1a 1b

1a 1b 1a 1b

1a 1a 1b 1b

1

1

1

1 1

Split batch into microbatches
and pipeline execution

PIPELINING

Time

Time

GPU 1

GPU 2

GPU 3

GPU 4

GPU 1

GPU 2

GPU 3

GPU 4
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1a 1b 1c 1a 1b 1c

1a 1b 1c 1a 1b 1c

1a 1b 1c 1a 1b 1c

1a 1a 1b 1b 1c 1c

1

1

1

1 1

Split batch into microbatches
and pipeline execution

PIPELINING

Time

Time

GPU 1

GPU 2

GPU 3

GPU 4

GPU 1

GPU 2

GPU 3

GPU 4
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1a 1b 1c 1d 1a 1b 1c 1d

1a 1b 1c 1d 1a 1b 1c 1d

1a 1b 1c 1d 1a 1b 1c 1d

1a 1a 1b 1b 1c 1c 1d 1d

1

1

1

1 1

Split batch into microbatches
and pipeline execution

PIPELINING

Time

Time

GPU 1

GPU 2

GPU 3

GPU 4

GPU 1

GPU 2

GPU 3

GPU 4
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1a 1b 1c 1d 1a 1b 1c 1d 2a 2b

1a 1b 1c 1d 1a 1b 1c 1d 2a

1a 1b 1c 1d 1a 1b 1d 1d

1a 1a 1b 1b 1c 1c 1d 1d

1

1

1

1 1

Split batch into microbatches
and pipeline execution

PIPELINING

Time

Time

GPU 1

GPU 2

GPU 3

GPU 4

GPU 1

GPU 2

GPU 3

GPU 4
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GPU 1 1 2 3 4 1 5 2 6 3 7 4 8 5 9 6 7 8 9

GPU 2 1 2 3 1 4 2 5 3 6 4 7 5 8 6 9 7 8 9

GPU 3 1 2 1 3 2 4 3 5 4 6 5 7 6 8 7 9 8 9

GPU 4 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9

PIPELINE BUBBLES
Time



189https://developer.nvidia.com/nemo/megatron

https://developer.nvidia.com/nemo/megatron
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MEGATRON-TURING NLG 530B
Enabling the biggest of NLP models

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
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THE LAB
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Part 2: Self-Supervision, BERT and Beyond
• Lecture

• Why DNNs?
• Self-Supervision
• BERT

• Lab
• Explore the Data
• Explore NeMo
• Text Classifier Project

• Lecture (cont’d)
• The Scaling Laws
• Can and should we go even bigger?

• Lab (cont’d)
• Named Entity Recognizer
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IN THE NEXT CLASS…
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NEXT CLASS

1. Discuss how to design your model for efficient inference

2. Discuss how to optimise your model for efficient execution

3. Discuss how to efficiently host a largely Conversational AI application

Overview





Building Transformer-Based Natural Language Processing 
Applications
(Part 3)

PRODUCTION DEPLOYMENT



197

Part 1: Machine Learning in NLP
Lecture: NLP background and the role of DNNs leading to the 
Transformer architecture

Lab: Tutorial-style exploration of a translation task using the 
Transformer architecture

Part 2: Self-Supervision, BERT, and Beyond
Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT 
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo API and 
exercises to build a text classification task and a named 
entity recognition task using BERT-based language models

Part 3: Production Deployment
Lecture: Discussion of production deployment considerations 
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering 
task to NVIDIA Triton

FULL COURSE AGENDA
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Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model
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YOUR NETWORK IS 
TRAINED
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YOUR NETWORK IS TRAINED
Now what?

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
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MEETING REQUIREMENTS 
OF YOUR BUSINESS 
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NLP MODELS ARE LARGE
The Inference cost is high

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
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THEY DO NOT LIVE IN ISOLATION
Example of a conversational AI application
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THEY DO NOT LIVE IN ISOLATION
Real Time Applications Need to Deliver Latency <300 ms
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THEY DO NOT LIVE IN ISOLATION
Real Time Applications Need to Deliver Latency <300 ms
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THEY DO NOT LIVE IN ISOLATION
Application bandwidth = Cost

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu/
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AND THEY NEED TO EVOLVE OVER TIME
A lot of processes are not stationary

https://en.wikipedia.org/wiki/Stationary_process
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THERE’S MORE TO AN APPLICATION
THAN JUST THE MODEL

Nonfunctional requirements

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden technical debt in machine learning 
systems. In Advances in neural information processing systems (pp. 2503-2511).
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THERE’S MORE TO AN APPLICATION
THAN JUST THE MODEL

Nonfunctional requirements

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden technical debt in machine learning 
systems. In Advances in neural information processing systems (pp. 2503-2511).
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Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model
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MODEL SELECTION
Not all models are created equally

NLP Image Classification Object detection



212

MODEL SELECTION
Not all models respond in the same way to knowledge distillation, pruning and quantization

https://bair.berkeley.edu/blog/2020/03/05/compress/
Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., & Gonzalez, J. E. (2020). Train large, then compress: Rethinking model size for efficient training and inference of transformers. arXiv preprint arXiv:2002.11794.

https://bair.berkeley.edu/blog/2020/03/05/compress/
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MODEL SELECTION
And very large models are and will continue to be prevalent in NLP

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165.
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DIRECT IMPLICATIONS
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INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION
E.g. Train Large then compress

https://bair.berkeley.edu/blog/2020/03/05/compress/
Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., & Gonzalez, J. E. (2020). Train large, then compress: Rethinking model size for efficient training and inference of transformers. arXiv preprint arXiv:2002.11794.

https://bair.berkeley.edu/blog/2020/03/05/compress/
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INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION
Hardware acceleration for reduced precision arithmetic and sparsity

A100
SPARSE 
TF32

A100
SPARSE 
FP16

A100
FP64

A100
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FP16
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Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model
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QUANTIZATION
The idea
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QUANTIZATION
The rationale
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QUANTIZATION
The rationale
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QUANTIZATION
The results (speedup and throughput)

TensorRT optimized models executed on Tesla T4, input size 224x224 for all apart from the Inception networks for which the input size was 299x299
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QUANTIZATION
Beyond INT8

INT4 quantization for resnet50
"Int4 Precision for AI Inference"
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IMPACT ON ACCURACY
In a wide range of cases minimal



224

IMPACT OF MODEL DESIGN
Not all neural network mechanisms quantize well
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IMPACT OF MODEL DESIGN

• GeLU produces highly asymmetric range

• Negative values between [-0.17,0]

• All negative values clipped to 0 

• GeLU10 allows to maintain negative values

Model alterations required
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LOSS OF ACCURACY

Outlier in the tensor:

• Example: BERT, Inception V4

• Solution: Clip. Tighten the range, use bits more efficiently

Not enough precision in quantized representation

• Example: Int8 for MobileNet V1

• Example: Int4 for Resnet50

• Solution: Train/fine tune for quantization

Reasons
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LEARN MORE

• S9659: Inference at Reduced Precision on GPUs

• S21664: Toward INT8 Inference: Deploying Quantization-Aware Trained Networks using TensorRT

GTC Talks
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QUANTIZATION TOOLS
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NVIDIA TENSORRT
From Every Framework, Optimized For Each Target Platform
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INT8 QUANTIZATION EXAMPLE
TF-TRT

https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html

https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html
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PRUNING
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PRUNING
The idea 

The opportunity:

• Reduced memory bandwidth

• Reduced memory footprint

• Acceleration (especially in presence of 
hardware acceleration)

Tambe, T., Yang, E. Y., Wan, Z., Deng, Y., Reddi, V. J., Rush, A., ... & Wei, G. Y. (2019). AdaptivFloat: A Floating-point based Data Type for Resilient Deep Learning Inference. arXiv preprint arXiv:1909.13271.
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DIFFICULT TO GET TO 
WORK RELIABLY
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STRUCTURED SPARSITY
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SPARSITY IN A100 GPU

Fine-grained structured sparsity for Tensor Cores

• 50% fine-grained sparsity

• 2:4 pattern: 2 values out of each contiguous block of 4 must be 0

Addresses the 3 challenges:

• Accuracy: maintains accuracy of the original, unpruned network

• Medium sparsity level (50%), fine-grained

• Training: a recipe shown to work across tasks and networks

• Speedup: 

• Specialized Tensor Core support for sparse math

• Structured: lends itself to efficient memory utilization

= zero value

2:4 structured-sparse matrix
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PRUNING
Structured sparsity
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RELIABLE APPROACH
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PRUNING
Model performance
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PRUNING
Model performance
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PRUNING
Model performance
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IMPACT ON NLP
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NETWORK PERFORMANCE
BERT-Large

1.8x GEMM Performance -> 1.5x Network Performance
Some operations remain dense:

Non-GEMM layers (Softmax, Residual add, Normalization, Activation functions, …)
GEMMs without weights to be pruned – Attention Batched Matrix Multiplies
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TRAINING RECIPE
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2) Prune for 2:4 sparsity

RECIPE FOR 2:4 SPARSE NETWORK TRAINING

1) Train (or obtain) a dense network

Dense weights

2:4 sparse weights

Retrained 2:4 sparse 
weights

1) Train (or obtain) a dense network

2) Prune for 2:4 sparsity

3) Repeat the original training procedure
• Same hyper-parameters as in step-1

• Initialize to weights from step-2

• Maintain the 0 pattern from step-2: no need to recompute the mask
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EXAMPLE LEARNING RATE SCHEDULE

Le
ar

ni
ng

 R
at

e Dense Training Sparse Retraining

Step 1 Step 3Step 2
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BERT SQUAD EXAMPLE
SQuAD Dataset and fine-tuning is too small to compensate for pruning on its own

Le
ar

ni
ng

 R
at

e

Phase 1:
Pretrain language model

Le
ar

ni
ng

 R
at

e

Phase2:
Finetune for SQuAD

Phase 1: Sparse
Pretrain language model

Phase2: Sparse
Finetune for SQuAD

Phase 1:
Pretrain language model

Step 1 Step 3Step 2
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APEX: AUTOMATIC 
SPARSITY
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TAKING ADVANTAGE OF STRUCTURED SPARSITY
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Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model
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QUANTIZATION
Approaches

Quantization-aware training (QAT)Post-training quantization(PTQ)
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EXTREME MODEL COMPRESSION
Training with quantization noise

Polino, A., Pascanu, R., & Alistarh, D. (2018). Model compression via distillation and quantization. arXiv preprint arXiv:1802.05668.
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“We used Quant-Noise to compress Facebook AI’s
state-of-the-art RoBERTa Base model from 480 MB
to 14 MB while achieving 82.5 percent on MNLI,
compared with 84.8 percent for the original model.”
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KNOWLEDGE DISTILLATION
The idea
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KNOWLEDGE DISTILLATION
DistillBERT

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
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NOT ALL MODELS HAVE 
THE SAME CODE QUALITY
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COMPUTE MATTERS
But so does code quality

Monthly DL Framework Updates & Optimizations Drive Performance

ResNet-50 v1.5 Training  | 8x V100 | DGX-1
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NGC: GPU-OPTIMIZED SOFTWARE HUB
Simplifying DL, ML and HPC Workflows

Pre-trained Models
NLP, Classification, Object Detection & more

Model Training Scripts
NLP, Image Classification, 
Object Detection & more

NGC
Helm Charts

AI applications, K8s cluster, Registry
Containers
DL, ML, HPC

Industry SDKs
Medical Imaging, Intelligent Video Analytics
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PRETRAINED MODELS & MODEL SCRIPTS

PRE-TRAINED MODELS

• Deploy AI quickly with models for industry specific use cases

Covers everything from speech to object detection

Integrate into existing workflows with code samples

• Easily use transfer learning to adapt to your bespoke use case

MODEL SCRIPTS

• Reference neural network architectures across all domains and popular 
frameworks with latest SOTA

• Jupyter notebook starter kits

Build AI Solutions Faster

Healthcare (~30 models) BioBERT (NLP), Clara (Computer Vision)

Manufacturing (~25 Models) Object Detection, Image Classification

Retail (~25 models) BERT, Transformer

70 TensorRT Plans Classification/Segmentation for v5, v6, v7

Natural Language Processing 25 Bert Configurations

Recommendation Engines Neural Collaborative Filtering, VAE

Speech Jasper, Tacotron, WaveGlow

Translation GNMT
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THIS APPLIES NOT ONLY 
TO TRAINING BUT 

INFERENCE AS WELL



262

CODE QUALITY IS KEY
Dramatic differences in model performance

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu

3-layer BERT with 128 sequence length

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu
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OPTIMIZING INFERENCE 
WITH TENSORRT
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NVIDIA TENSORRT
From Every Framework, Optimized For Each Target Platform



265

TENSORRT
Optimizations

developer.nvidia.com/tensorrt
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TensorRT ONNX PARSER

Optimize and deploy models from ONNX-supported 
frameworks to production

Apply TensorRT optimizations to any ONNX 
framework (Caffe 2, Microsoft Cognitive Toolkit, 
MxNet & PyTorch)

Import TensorFlow and Keras through converters 
(tf2onnx, keras2onnx)

Use with C++ and Python apps

20+ New Ops in TensorRT 7

Support for Opset 11 (See List of Supported Ops)

High-Performance Inference for ONNX 
Models

developer.nvidia.com/tensorrt

https://github.com/onnx/onnx-tensorrt/blob/7.0/operators.md
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TENSORRT
Tight integration with DL frameworks

Pytorch -> TRTorch TensorFlow -> TF-TRT
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WIDELY ADOPTED
Accelerating most demanding applications
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IMPACT ON NLP
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TENSORRT
BERT Encoder optimizations
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CUSTOM PLUGINS

• Naïve implementation would require a large 
number of TensorRT elementary layers

• For k layers, the naïve implementation would 
require k-1 memory roundtrips

• The skip and layer-normalization(LN) layers occur 
twice per Transformer layer and are fused in a 
single kernel

Optimized GeLU as well as skip and layer-normalization operations

Result = x^3
Result = c * Result
Result = x + Result
Result = b * Result
Result = tanh(Result)
Result = x * Result
Result = a * Result

gelu(x) = a * x * (1 + tanh( b * (x + c * x^3) ))
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CUSTOM PLUGINS
Self-attention layer
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IMPLICATIONS
Significant impact on latency and throughput (batch 1)

Using a Tesla T4 GPU, BERT optimized with TensorRT can perform inference in 2.2 ms for a QA task similar to available in SQuAD with batch size =1 and sequence length = 128.
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IMPLICATIONS
Significant impact on latency and throughput
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BEYOND BERT
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FASTER TRANSFORMER

• Encoder:
• 1.5x compare to TensorFlow with XLA on FP16

• Decoder on NVIDIA Tesla T4
• 2.5x speedup for batch size 1 (online translating scheme)
• 2x speedup for large batch size in FP16

• Decoding on NVIDIA Tesla T4
• 7x speedup for batch size 1 and beam width 4 (online translating scheme)
• 2x speedup for large batch size in FP16.

• Decoding on NVIDIA Tesla V100
• 6x speedup for batch size 1 and beam width 4 (online translating scheme)
• 3x speedup for large batch size in FP16.

Designed for training and inference speed

https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer#feature-support-matrix

https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer
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CONSIDER USING 
TENSORRT
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Part 3: Production Deployment
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• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
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• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model
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INEFFICIENCY LIMITS INNOVATION
Difficulties with deploying data center inference

Single Framework OnlySingle Model Only Custom Development 

Some systems are overused while 
others are underutilized

Solutions can only support
models from one framework

Developers need to reinvent the 
plumbing for every application

ASR NLP
Rec-

ommender

!
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NVIDIA TRITON INFERENCE SERVER
Production data center inference server

Maximize real-time inference 
performance of GPUs

Quickly deploy and manage multiple 
models per GPU per node  

Easily scale to heterogeneous GPUs 
and multi GPU nodes

Integrates with orchestration 
systems and auto-scalers via latency 
and health metrics

Now open source for thorough 
customization and integration

Tr
ito

n
In

fe
re

nc
e 

Se
rv

er

NVIDIA 
T4

NVIDIA 
T4

Tr
ito

n
In

fe
re

nc
e 

Se
rv

er

Tesla 
V100

Tesla 
V100

Tr
ito

n
In

fe
re

nc
e 

Se
rv

er Tesla P4

Tesla P4



281

Concurrent Model Execution
Multiple models (or multiple instances of same 
model) may execute on GPU simultaneously

CPU Model Inference Execution
Framework native models can execute inference 
requests on the CPU

Metrics
Utilization, count, memory, and latency

Custom Backend
Custom backend allows the user more flexibility 
by providing their own implementation of an 
execution engine through the use of a shared 
library

Model Ensemble
Pipeline of one or more models and the 
connection of input and output tensors between 
those models (can be used with custom 
backend)

Dynamic Batching
Inference requests can be batched up by the 
inference server to 1) the model-allowed 
maximum or 2) the user-defined latency SLA

Multiple Model Format Support
PyTorch JIT (.pt)
TensorFlow GraphDef/SavedModel
TensorFlow and TensorRT GraphDef
ONNX graph (ONNX Runtime)
TensorRT Plans
Caffe2 NetDef (ONNX import path)

CMake build
Build the inference server from source making it 
more portable to multiple OSes and removing 
the build dependency on Docker

Streaming API
Built-in support for audio streaming input e.g. 
for speech recognition

FEATURES
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DYNAMIC BATCHING SCHEDULER

Framework Backend

Dynamic 
Batcher

Runtime

Context

Context

Batch-1 Request
Batch-4 Request

Triton Inference Server
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DYNAMIC BATCHING SCHEDULER

ModelY Backend

Dynamic 
Batcher

Runtime

Context

Context

Preferred batch size and wait 
time are configuration options.

Assume 4 gives best utilization in 
this example.

Grouping requests into a 
single “batch” increases 
overall GPU throughput

Triton Inference Server
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DYNAMIC BATCHING

Triton Inference Server groups 
inference requests based on 
customer defined metrics for 
optimal performance

Customer defines 1) batch size 
(required) and 2) latency 
requirements (optional)

Example: No dynamic batching   
(batch size 1 & 8) vs dynamic 
batching

2.5X Faster Inferences/Second at a 50ms End-to-End Server Latency Threshold
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CONCURRENT MODEL EXECUTION - RESNET 50

Time

6x Better Performance and Improved GPU Utilization Through Multiple Model Concurrency

Common Scenario 1

One API using multiple copies of the 
same model on a GPU

Example: 8 instances of TRT FP16 ResNet50 
(each model takes 2 GB GPU memory) are 
loaded onto the GPU and can run 
concurrently on a 16GB T4 GPU.
10 concurrent inference requests happen: 
each model instance fulfills one request 
simultaneously and 2 are queued in the 
per-model scheduler queues in Triton 
Inference Server to execute after the 8 
requests finish. With this configuration, 
2680 inferences per second at 152 ms with 
batch size 8 on each inference server 
instance is achieved.

Inference 
Requests

Triton Inference Server

ResNet
50

Request 
Queue

T4 16GB GPU

RN50 Instance 1 CUDA Stream

RN50 Instance 2 CUDA Stream

RN50 Instance 3 CUDA Stream

RN50 Instance 4 CUDA Stream

RN50 Instance 5 CUDA Stream

RN50 Instance 6 CUDA Stream

RN50 Instance 8 CUDA Stream

RN50 Instance 7 CUDA Stream

10 
concurrent 
requests
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Common Scenario 1

One API using multiple copies of the 
same model on a GPU

Example: 8 instances of TRT FP16 ResNet50 
(each model takes 2 GB GPU memory) are 
loaded onto the GPU and can run 
concurrently on a 16GB T4 GPU.
10 concurrent inference requests happen: 
each model instance fulfills one request 
simultaneously and 2 are queued in the 
per-model scheduler queues in Triton 
Inference Server to execute after the 8 
requests finish. With this configuration, 
2680 inferences per second at 152 ms with 
batch size 8 on each inference server 
instance is achieved.

CONCURRENT MODEL EXECUTION - RESNET 50
6x Better Performance and Improved GPU Utilization Through Multiple Model Concurrency



287Time

Common Scenario 2

Many APIs using multiple different
models on a GPU

Example: 4 instances of TRT FP16 ResNet50 
and 4 instances of TRT FP16 Deep 
Recommender are running concurrently on 
one GPU. Ten requests come in for both 
models at the same time (5 for each 
model) and fed to the appropriate model 
for inference. The requests are fulfilled 
concurrently and sent back to the user. 
One request is queued for each model.
With this configuration, 5778 inferences 
per second at 80 ms with batch size 8 on 
each inference server instance is achieved.

CONCURRENT MODEL EXECUTION
RESNET 50 & DEEP RECOMMENDER

Inference 
Requests

Triton Inference Server

Resnet
50

Request 
Queue

T4 16GB GPU

RN50 Instance 1 CUDA Stream

RN50 Instance 2 CUDA Stream

RN50 Instance 3 CUDA Stream

RN50 Instance 4 CUDA Stream

DeepRec Instance 1 CUDA Stream

DeepRec Instance 2 CUDA Stream

DeepRec Instance 4 CUDA Stream

DeepRec Instance 3 CUDA Stream

5 concurrent 
requests

Deep 
Rec

Request 
Queue

5 concurrent 
requests
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Common Scenario 2

Many APIs using multiple different
models on a GPU

Example: 4 instances of TRT FP16 ResNet50 
and 4 instances of TRT FP16 Deep 
Recommender are running concurrently on 
one GPU. Ten requests come in for both 
models at the same time (5 for each 
model) and fed to the appropriate model 
for inference. The requests are fulfilled 
concurrently and sent back to the user. 
One request is queued for each model.
With this configuration, 5778 inferences 
per second at 80 ms with batch size 8 on 
each inference server instance is achieved.

CONCURRENT MODEL EXECUTION
RESNET 50 & DEEP RECOMMENDER
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● One model per GPU
● Requests are steady across all models
● Utilization is low on all GPUs

● Spike in requests for blue model
● GPUs running blue model are being fully utilized
● Other GPUs remain underutilized

Before Triton Inference Server - 5,000 FPSBefore Triton Inference Server - 800 FPS

TRITON INFERENCE SERVER
METRICS FOR AUTOSCALING
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● Load multiple models on every GPU 
● Load is evenly distributed between all GPUs 

● Spike in requests for blue model
● Each GPU can run the blue model concurrently
● Metrics to indicate time to scale up

○ GPU utilization
○ Power usage
○ Inference count
○ Queue time
○ Number of requests/sec

After Triton Inference Server - 15,000 FPSAfter Triton Inference Server - 5,000 FPS

TRITON INFERENCE SERVER
METRICS FOR AUTOSCALING
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STREAMING INFERENCE REQUESTS

Corr 2Corr 2

Corr 3Corr 3

Corr 1Corr 1Corr 1Corr 1

Corr 2Corr 2Corr 3Corr 3

DeepSpeech2

Wave2Letter

Per Model Request Queues

Corr 1Corr 1Corr 1Corr 1

DeepSpeech2 Sequence Batcher

Wav2Letter Sequence Batcher

Corr 1Corr 1Corr 1Corr 1 Corr 2 Corr 2 Corr 3 Corr 3

New Streaming API

Based on the correlation ID, the 
audio requests are sent to the 
appropriate batch slot in the 

sequence batcher*

*Correct order of requests is 
assumed at entry into the endpoint
Note: Corr = Correlation ID

Inference Request

Framework 
Inference 
Backend

NEW

NEW
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MODEL ENSEMBLING

• Pipeline of one or more models and the 
connection of input and output tensors between 
those models

• Use for model stitching or data flow of multiple 
models such as data preprocessing → inference 
→ data post-processing

• Collects the output tensors in each step, 
provides them as input tensors for other steps 
according to the specification

• Ensemble models will inherit the characteristics 
of the models involved, so the meta-data in the 
request header must comply with the models 
within the ensemble



293293

perf_client TOOL

• Measures throughput (inf/s) and 
latency under varying client loads

• perf_client Modes

1. Specify how many concurrent 
outstanding requests and it 
will find a stable latency and 
throughput for that level

2. Generate throughput vs 
latency curve by increasing 
the request concurrency until 
a specific latency or 
concurrency limit is reached

• Generates a file containing CSV 
output of the results

• Easy steps to help visualize the 
throughput vs latency tradeoffs
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ALL CPU WORKLOADS SUPPORTED

294

Deploy the CPU workloads used today and benefit from Triton Inference 
Server features (TRT not required)

Triton relies on framework backends (Tensorflow, Caffe2, 
PyTorch) to execute the inference request on CPU

Support for Tensorflow and Caffe2 CPU optimizations using Intel 
MKL-DNN library

Allows frameworks backends to make use of multiple CPUs and 
cores

Benefit from Triton features:
• Multiple Model Framework Support
• Dynamic batching
• Custom backend
• Model Ensembling
• Audio Streaming API
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TRITON INFERENCE SERVER COLLABORATION 
WITH KUBEFLOW

What is Kubeflow?

• Open-source project to make ML workflows on Kubernetes simple, portable, and 
scalable

• Customizable scripts and configuration files to deploy containers on their chosen 
environment

Problems it solves

• Easily set up an ML stack/pipeline that can fit into the majority of enterprise 
datacenter and multi-cloud environments

How it helps Triton Inference Server

• Triton Inference Server is deployed as a component inside of a production workflow 
to

• Optimize GPU performance

• Enable auto-scaling, traffic load balancing, and redundancy/failover via 
metrics

https://github.com/kubeflow/kubeflow/tree/master/kubeflow/nvidia-inference-server
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TRITON INFERENCE SERVER HELM CHART

Helm: Most used “package manager” for Kubernetes

We built a simple chart (“package”) for the Triton 
Inference Server.

You can use it to easily deploy an instance of the server.
It can also be easily configured to point to a different 
image, model store, …
https://github.com/NVIDIA/tensorrt-inference-
server/tree/b6b45ead074d57e3d18703b7c0273672c5e92893/deploy/single_server

Simple helm chart for installing a single instance of the NVIDIA Triton Inference Server

https://github.com/NVIDIA/tensorrt-inference-server/tree/b6b45ead074d57e3d18703b7c0273672c5e92893/deploy/single_server
https://github.com/NVIDIA/tensorrt-inference-server/tree/b6b45ead074d57e3d18703b7c0273672c5e92893/deploy/single_server
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• Using the Model
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APPLICATION != SINGLE 
MODEL



299

THE APPLICATION
Typically composed of many components

Audio Feature Extraction Acoustic Model Decoder

Language Model

Machine Translation

Query Search

Autocorrect

Visual Search

Search Ranking

Speech SynthesisVoice EncoderAudio

ASR

TTS

NLU

“What date is the 
Chinese New Year?”
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RIVA
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NVIDIA RIVA
Fully Accelerated Framework for Multimodal Conversational AI Services

End-to-End Multimodal Conversational AI Services

Pre-trained SOTA models-100,000 Hours of DGX 

Retrain with NeMo

Interactive Response – 150ms  on A100  versus 25sec on CPU

Deploy Services with One Line of Code

RETRAIN

video

audio

Multi-Speaker
TranscriptionNVIDIA GPU CLOUD NVIDIA AI TOOLKIT

Transfer Learning

NeMo

Service Maker

TRITON INFERENCE SERVER

Dialog Manager

ChatbotMulti-Speaker 
Transcription Look to Talk

Gesture 
Recognition

Speech

Vision

NLU

Riva



302

PRETRAINED MODELS AND AI TOOLKIT
Train SOTA Models on Your Data to Understand your Domain and Jargon

100+ pretrained models in NGC

SOTA models trained over 100,000 hours on NVIDIA DGX™

Retrain for your domain using NeMo & TAO Toolkit

Deploy trained models to real-time services using Helm charts
Riva
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MULTIMODAL SKILLS
Use speech and vision for natural interaction

Multimodal application with multiple users and contexts

Build new skills by fusing services for ASR, NLU, TTS, and CV

Reference skills include:

• Multi-speaker transcription

• Chatbot

• Look-to-talk

Dialog manager manages multi-user and multi-context scenarios

Riva
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BUILD CONVERSATIONAL AI SERVICES
Optimized Services for Real Time Applications

Build applications easily by connecting 
performance tuned services

Task specific services include:

• ASR

• Intent Classification

• Slot Filling

• Pose Estimation

• Facial Landmark Detection

Services for streaming & batch usage

Build new services from any model in ONNX format

Access services for gRPC and HTTP endpoints

https://ngc.nvidia.com/catalog/model-scripts/nvidia:jasper_for_trtis

Riva Client 
Applications

Riva

Riva Services

Dialog Manager

ASR

Intent

TTS

...

Dialog Manager

Riva AI services

https://ngc.nvidia.com/catalog/model-scripts/nvidia:jasper_for_trtis
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DEPLOY MODELS AS REAL-TIME SERVICES
One Click to Create High-Performance Services from SOTA Models

Deploy models to services in the cloud, data 
center, and at the edge

Single command to set up and run the entire Riva application 

through Helm charts on Kubernetes cluster

Customization of Helm charts for your setup and use case.

Riva SERVICES

One click deployment

Speech 
Synthesis

Voice 
Encoder

Decoder Feature 
Extraction

Acoustic 
Model

NLU &
Recommenders

Speech

Vision

NLU

Language 
Model

TensorRT
Triton Inference Server

Riva API Server

Helm command to deploy models to production
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Look To Talk Virtual Assistant

RIVA SAMPLES

Visual Diarization



307

Part 3: Production Deployment
• Lecture
• Model Selection
• Post-Training Optimization
• Product Quantization
• Knowledge Distillation
• Model Code Efficiency
• Model Serving
• Building the Application

• Lab
• Exporting the Model
• Hosting the Model
• Server Performance
• Using the Model




