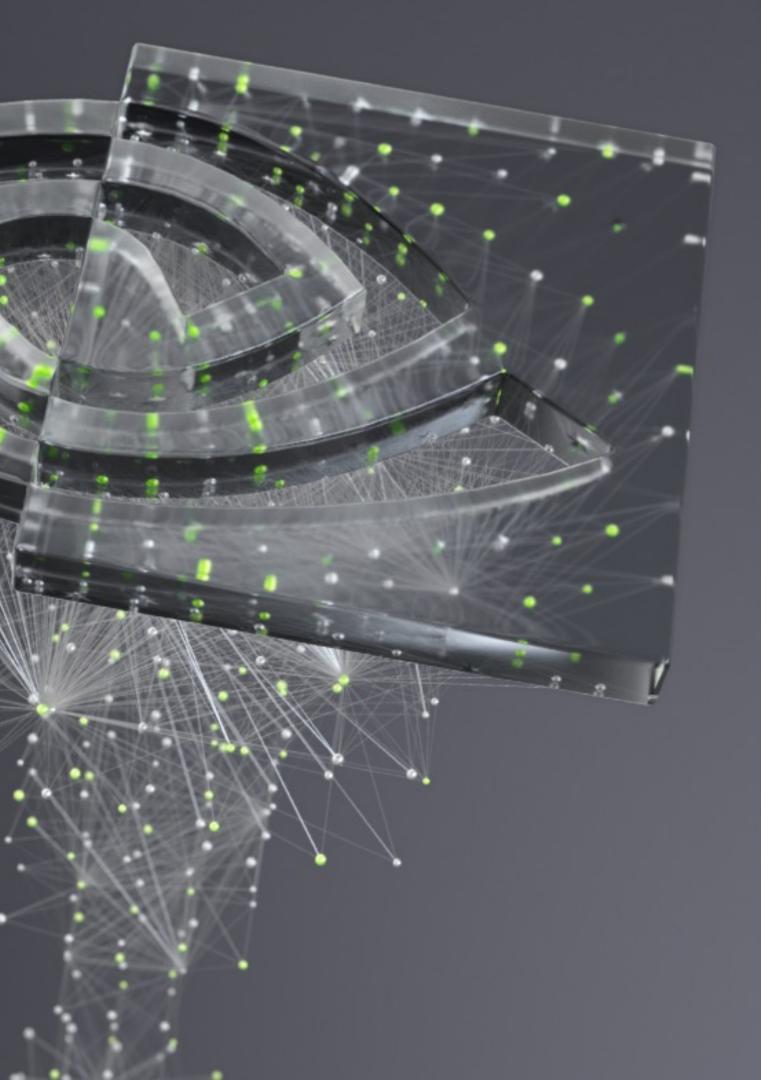


DEEP LEARNING INSTITUTE

MACHINE LEARNING IN NLP

Building Transformer-Based Natural Language Processing Applications (Part 1)



FULL COURSE AGENDA

Part 1: Machine Learning in NLP

Lecture: NLP background and the role of DNNs leading to the Transformer architecture

Lab: Tutorial-style exploration of a *translation task* using the Transformer architecture

Part 2: Self-Supervision, BERT, and Beyond

Lecture: Discussion of how language models with selfsupervision have moved beyond the basic Transformer to BERT and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo API and exercises to build a *text classification task* and a *named entity recognition task* using BERT-based language models

Part 3: Production Deployment

Lecture: Discussion of production deployment considerations and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example *question answering task* to NVIDIA Triton

Part 1: Machine Learning in NLP Lecture

- What is NLP?
- Problem Formulation
- Text Representations
- Embeddings
- RNNs

- BERT Model
- Pretraining BERT

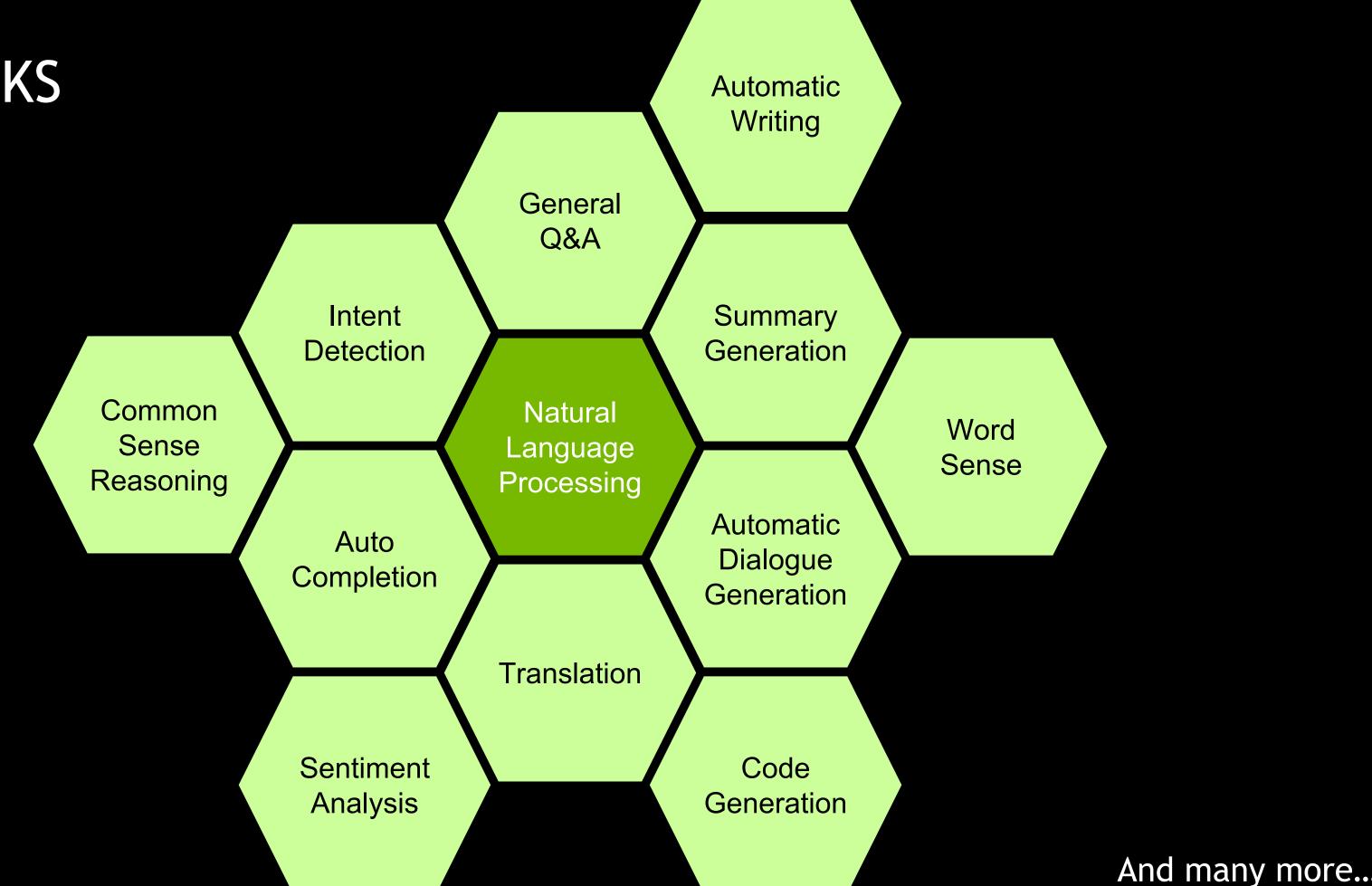
Dimensionality Reduction

• "Attention is All You Need"

Transformer Architecture

FOUNDATION OF COUNTLESS APPLICATIONS

NLP TASKS



And many more....

GLIMPSE OF WHAT IS POSSIBLE, TODAY...

Expert, Natural Q&A

with NVIDIA Omniverse Avatar for Project Tokkio

Large NLP models powers: Multi-turn Information Retrieval for Q&A

Part 1: Machine Learning in NLP Lecture

- What is NLP?
- Problem Formulation
- Text Representations
- Embeddings
- RNNs

- BERT Model
- Pretraining BERT

Dimensionality Reduction

• "Attention is All You Need"

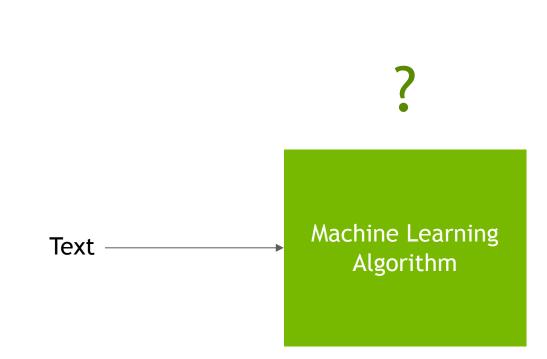
Transformer Architecture

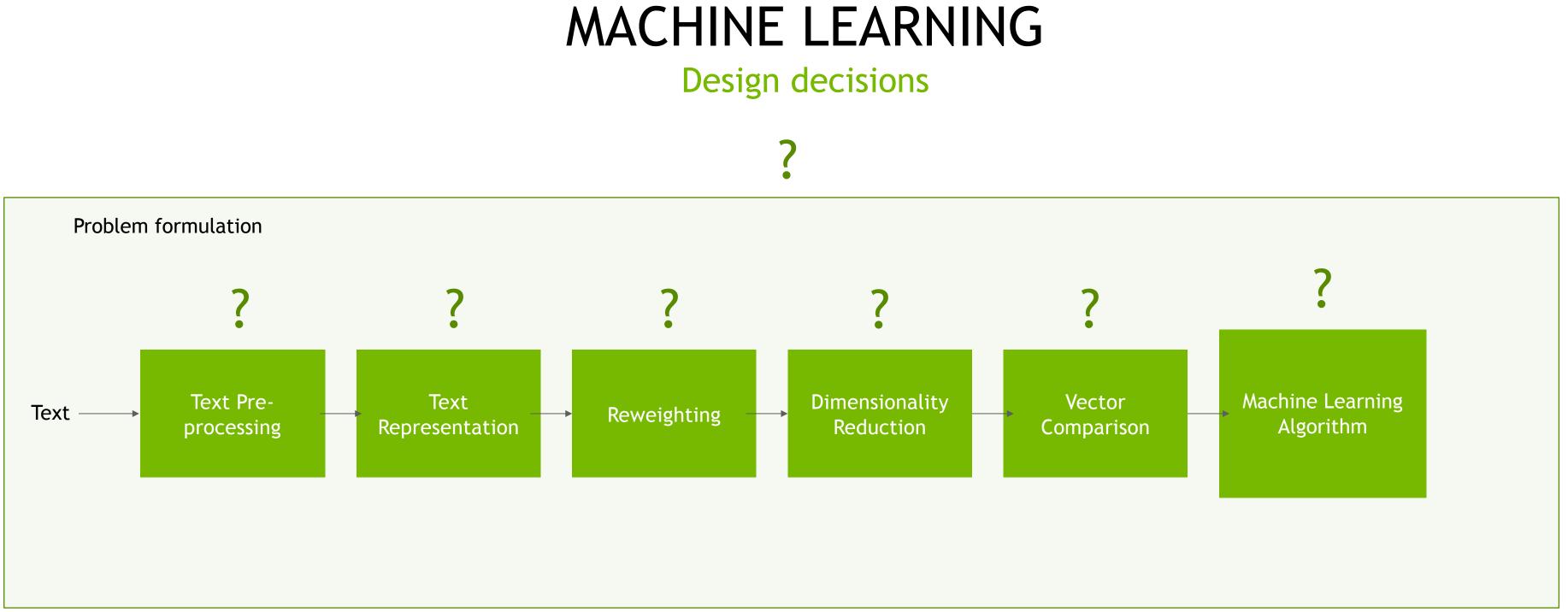
PROBLEM FORMULATION

MACHINE LEARNING Discovering the discussed structures in text

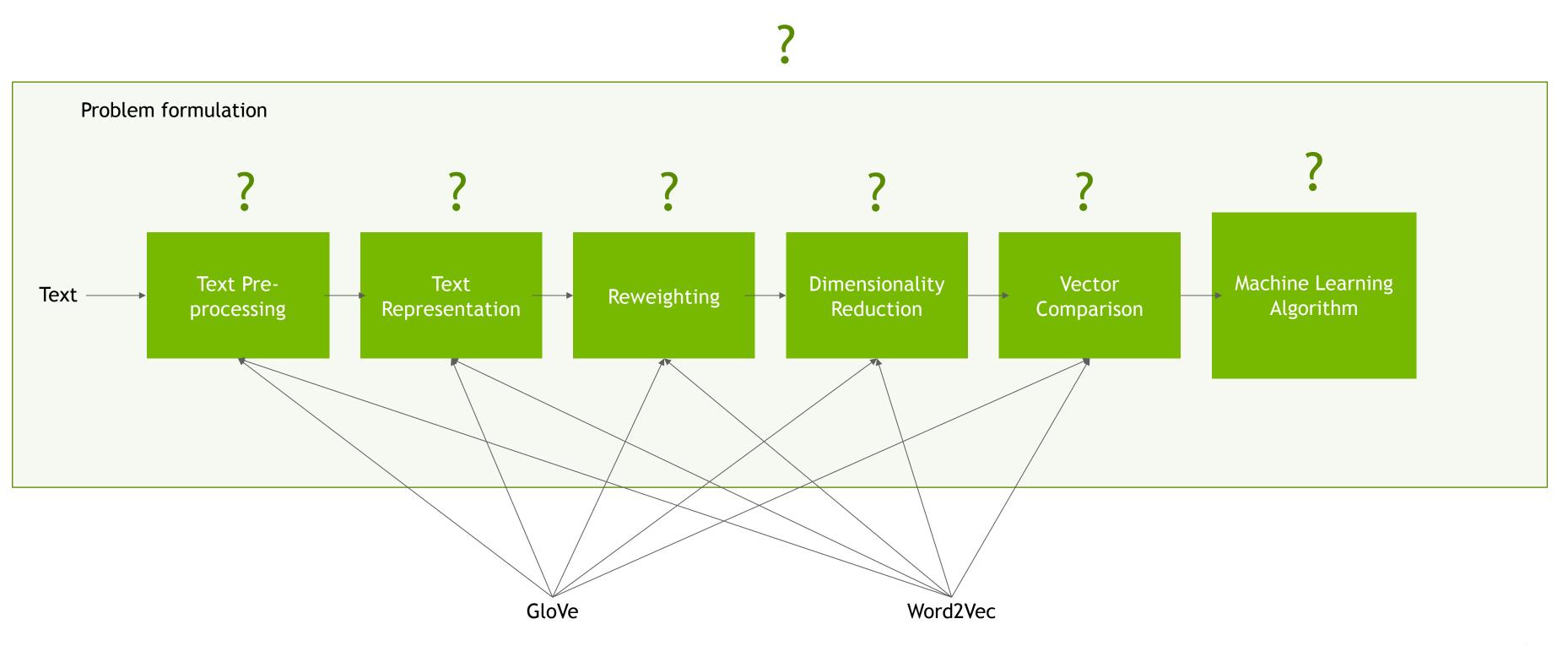
Machine Learning Text Algorithm

MACHINE LEARNING Discovering the discussed structures in text



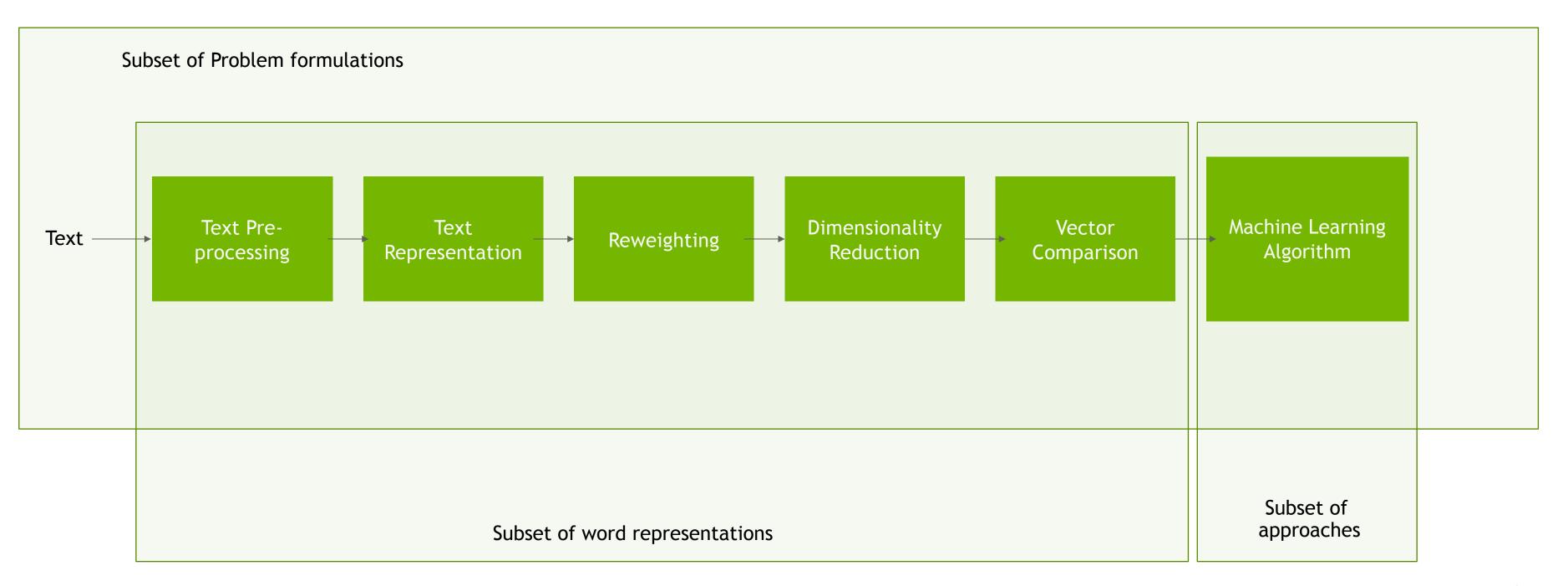


MACHINE LEARNING All linear combinations feasible



MACHINE LEARNING

In this class



Part 1: Machine Learning in NLP Lecture • What is NLP?

- Problem Formulation
- Text Representations
- Embeddings
- RNNs

- BERT Model
- Pretraining BERT

Dimensionality Reduction

• "Attention is All You Need"

Transformer Architecture

TEXT REPRESENTATIONS

The bag of words

• Bag of words/ngrams - feature per word/ngram

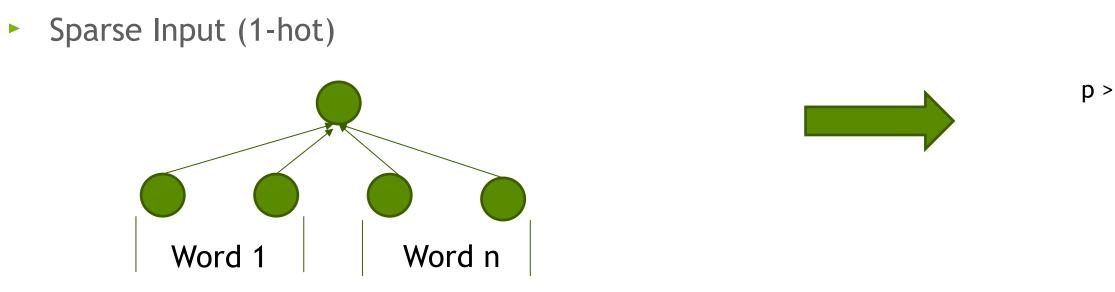
the cat sat on the mat

cat	sat	on	the	mat	quic kly
1	1	1	2	1	0

... ¡Vocabulary]

THE BAG OF WORDS

Key challenges



- No semantic generalization
- ► dog: 10000...0
- ► cat: 00100...0

p >> n (overfitting!)

lots of data required, low accuracy

DISTRIBUTED WORD REPRESENTATIONS

DISTRIBUTIONAL HYPOTHESIS The intuition

'You can tell a word by the company it keeps' Firth 1957

> 'Distributional statements can cover all of the material of a language without requiring support from other types of information'

'The meaning of a word is its use in the language' Wittgenstein 1953

> 'The complete meaning of a word is always contextual, and no study of meaning apart from context can be taken seriously.'

Harris 1954

Firth 1957

CO-OCCURRENCE PATTERNS

The latent information

	a	big	bug	the	little	but	beetle	bit	back
a	0	5	4	2	1	0	0	3	0
big	5	0	10	8	4	0	4	8	4
bug	4	10	0	8	4	0	4	8	5
the	2	8	8	0	8	3	8	10	3
little	1	4	4	13	1	3	10	8	0
but	0	0	0	7	7	0	7	3	0
beetle	0	4	4	11	11	4	1	8	1
bit	3	8	7	12	9	3	8	0	1
back	0	4	5	3	0	0	1	2	0

CO-OCCURRENCE PATTERNS

Where to find them?

Possible relationships:

- Word to documents (very sparse and very wide)
- Word to word (very dense and compact)
- Word to user / person
- Word to user behaviour
- Word to product
- Word to custom feature (e.g. movie raking)

Not only metrices:

Word to user to product

(A) Database of Titles

- c1: Human machine interface for ca
- c2: Survey of user opinion of comp
- c3: The EPS user interface manage c4: System and human system engi
- c5: User-perceived response time a
- m1: The generation of random, bin
- m2: The intersection graph of paths
- m3: Graph minors: Widths of trees
- m4: Graph minors: A survey

Figure 1. (A) A sample dataset consisting of the titles of nine technical memoranda. Terms occurring in more than one title are italicized. There are two classes of objects - five titles about human-computer interaction (cl-c5) and four about graphs (m1-m4). (B) This dataset can be described by means of a term by title matrix where each cell entry indicates the frequency with which a term occurs in a title. This matrix was used as the data, X, on which SVD was performed.

Technical Memo Example

		Titles									
		c1	c2	c 3	c4	c5	m1	m 2	m3	m4	
	Terms										
computer applications	human	1	0	0	1	0	0	0	0	0	
puter system response time	interface	1	0	1	0	0	0	0	0	0	
ement system	computer	1	1	0	0	0	0	0	0	0	
ineering testing of EPS	user	0	1	1	0	1	0	0	0	0	
and error measurement	system	0	1	1	2	0	0	0	0	0	
	response	0	1	0	0	1	0	0	0	0	
nary, unordered trees	time	0	1	0	0	1	0	0	0	0	
hs in trees	EPS	0	0	1	1	0	0	0	0	0	
es and well-quasi-ordering	survey	0	1	0	0	0	0	0	0	1	
•	trees	0	0	0	0	0	1	1	1	0	
	graph	0	0	0	0	0	0	1	1	1	
	minors	0	0	0	0	0	0	0	1	1	
						-					

(B) Term by Title Matrix

Part 1: Machine Learning in NLP Lecture

- What is NLP?
- Problem Formulation
- Text Representations
- Embeddings
- RNNs

- BERT Model
- Pretraining BERT

Dimensionality Reduction

• "Attention is All You Need"

Transformer Architecture

DIMENSIONALITY REDUCTION Rationale

The need for compact and computationally efficient representations

More robust notions of distance exposing the information captured by our distributional representation

LSA/LSI

Latent Semantic Analysis / Latent Semantic Indexing

?

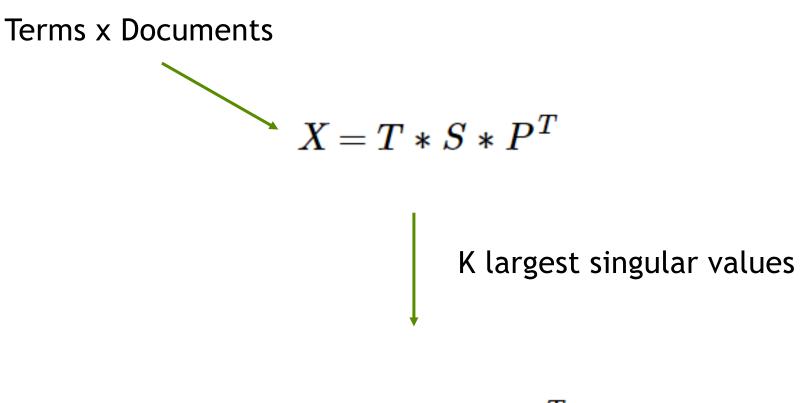
LLSA/LSI Truncated SVD

Terms x Documents

 $X = T * S * P^T$

Dumais, Susan T., et al. "Using latent semantic analysis to improve access to textual information." *Proceedings of the SIGCHI conference on Human factors in computing systems*. 1988.

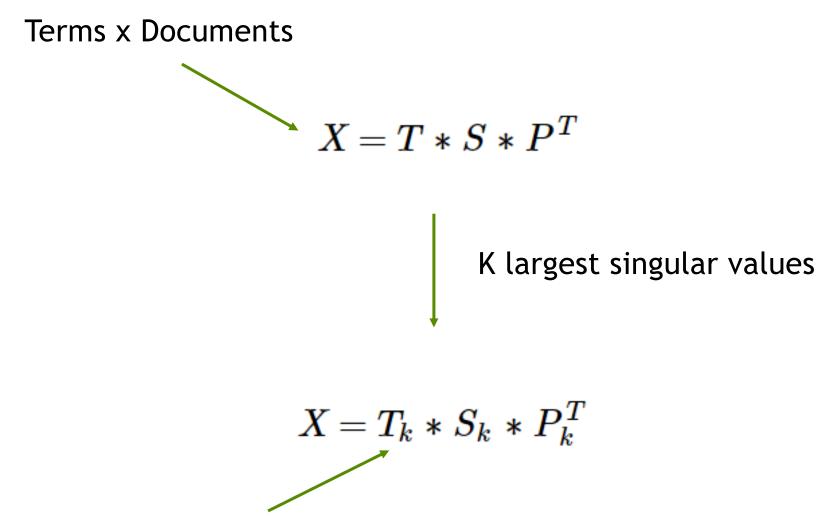
LSA/LSI **Truncated SVD**



$$X = T_k * S_k * P_k^T$$

Dumais, Susan T., et al. "Using latent semantic analysis to improve access to textual information." Proceedings of the SIGCHI conference on Human factors in computing systems. 1988.

LSA/LSI **Truncated SVD**



Latent Semantic Space

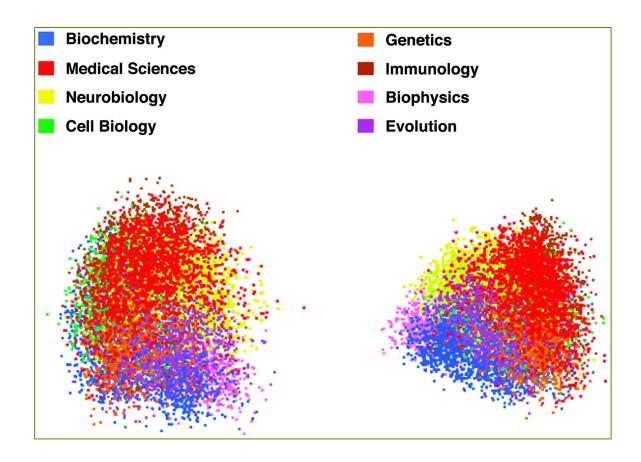
Dumais, Susan T., et al. "Using latent semantic analysis to improve access to textual information." Proceedings of the SIGCHI conference on Human factors in computing systems. 1988.

LSA/LSI Documents that are similar are closer

	Titles								
	c1	c2	c3	c4	c5	m1	m 2	m3	m 4
Terms									
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

 $X = T_k * S_k * P_k^T$

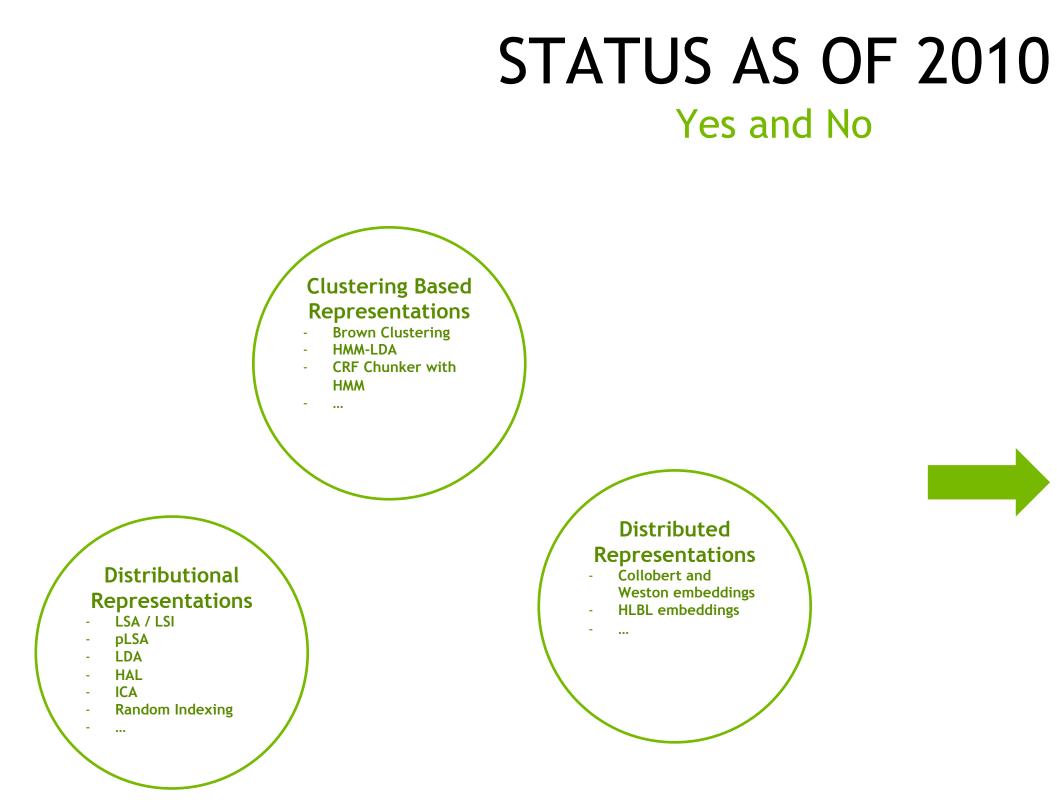
Landauer, Thomas K., Darrell Laham, and Marcia Derr. "From paragraph to graph: Latent semantic analysis for information visualization." *Proceedings of the National Academy of Sciences* 101.suppl 1 (2004): 5214-5219.



LSA/LSI Its so 1988

Dumais, Susan T., et al. "Using latent semantic analysis to improve access to textual information." *Proceedings of the SIGCHI conference on Human factors in computing systems*. 1988.

DID WE MAKE FURTHER PROGRESS?



Turian, Joseph, Lev Ratinov, and Yoshua Bengio. "Word representations: a simple and general method for semi-supervised learning." Proceedings of the 48th annual meeting of the association for computational linguistics. 2010.

It was not clear that you can combine unsupervised approaches (i.e. embeddings) with supervised models

Text

Unsupervised embedding

Machine Learning Algorithm

Part 1: Machine Learning in NLP Lecture

- What is NLP?
- Problem Formulation
- Text Representations
- Embeddings
- RNNs

- BERT Model
- Pretraining BERT

Dimensionality Reduction

• "Attention is All You Need"

Transformer Architecture

WHY NOT DO THE SAME WITH NEURAL NETWORKS?

STATUS AS OF 2010

Not enough computational power

Word embeddings are typically induced using neural language models, which use neural networks as the underlying predictive model (Bengio, 2008). Historically, training and testing of neural language models has been slow, scaling as the size of the vocabulary for each model computation (Bengio et al., 2001; Bengio et al., 2003). However, many approaches have been proposed in recent years to eliminate that linear dependency on vocabulary size (Morin & Bengio, 2005; Collobert & Weston, 2008; Mnih & Hinton, 2009) and allow scaling to very large training corpora.

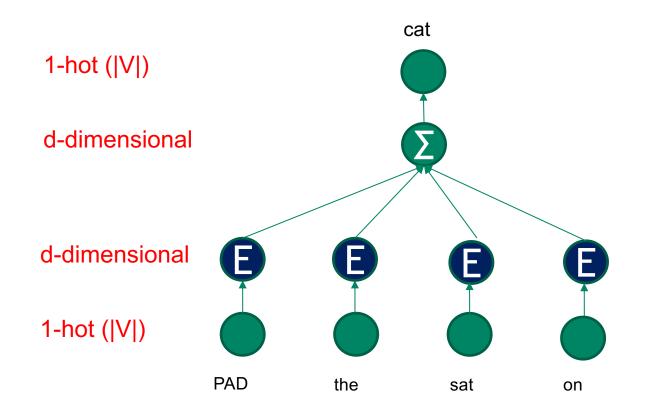
Turian, Joseph, Lev Ratinov, and Yoshua Bengio. "Word representations: a simple and general method for semi-supervised learning." Proceedings of the 48th annual meeting of the association for computational linguistics. 2010.

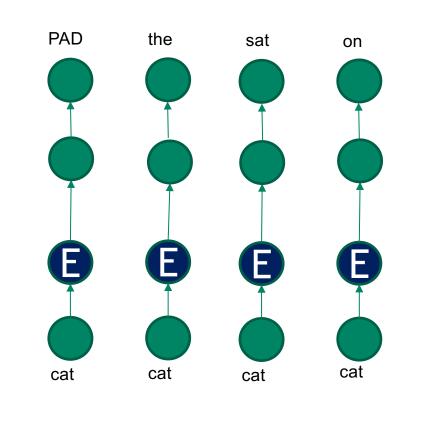
WORD2VEC

WORD2VEC

- Mikolov et al., 2013 (while at Google)
- Linear model (trains quickly)
- Two models for training embeddings in an unsupervised manner:

Continuous Bag-of-Words (CBOW)





Skip-Gram

1-hot (|V|)

d-dimensional

d-dimensional

1-hot (|V|)

GLOVE The objective

To learn vectors for words such that their dot product is proportional to their probability of co-occurence

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).

GLOVE The objective

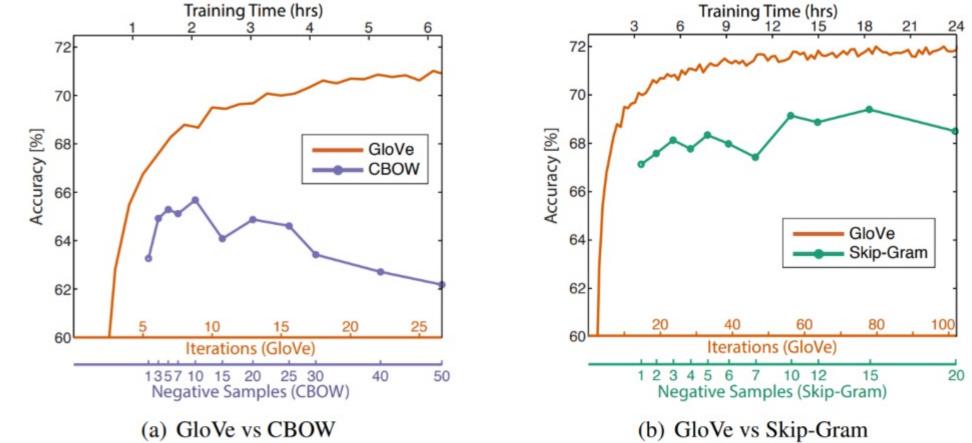
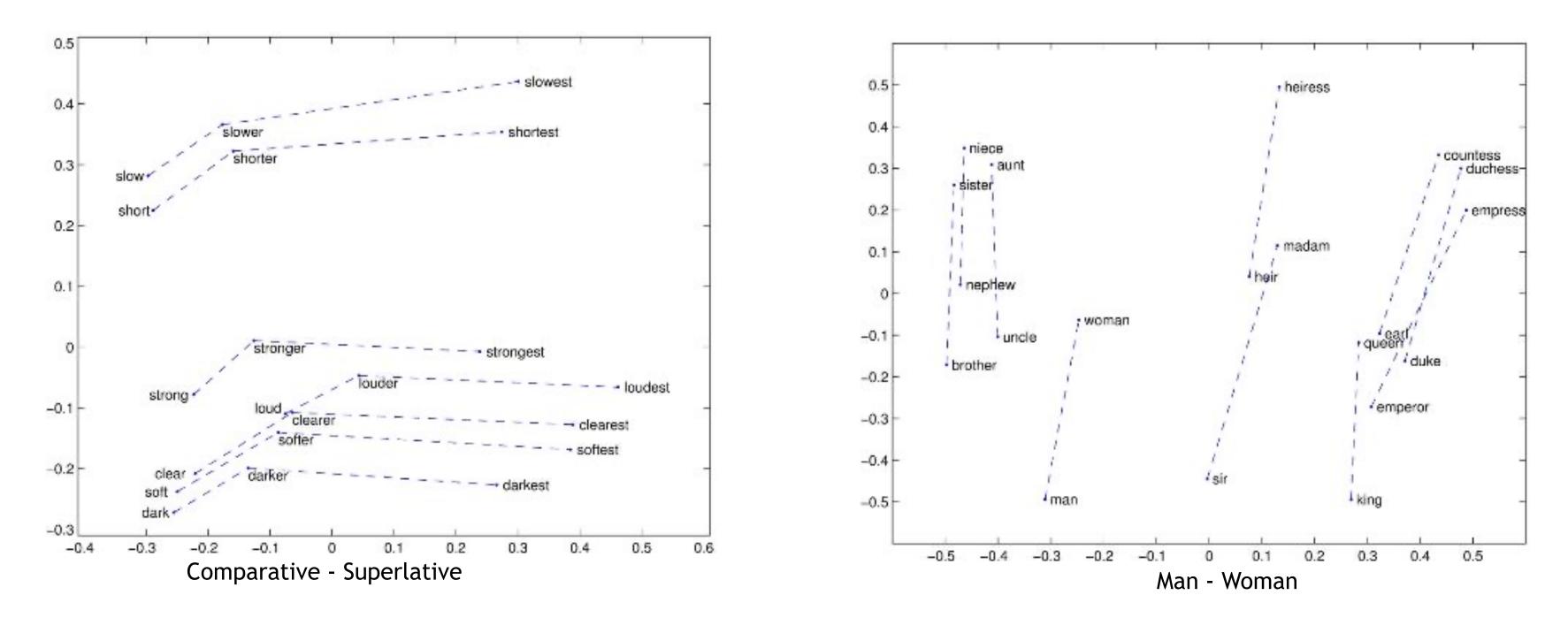


Figure 4: Overall accuracy on the word analogy task as a function of training time, which is governed by the number of iterations for GloVe and by the number of negative samples for CBOW (a) and skip-gram (b). In all cases, we train 300-dimensional vectors on the same 6B token corpus (Wikipedia 2014 + Gigaword 5) with the same 400,000 word vocabulary, and use a symmetric context window of size 10.

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).

GLOVE **Properties**



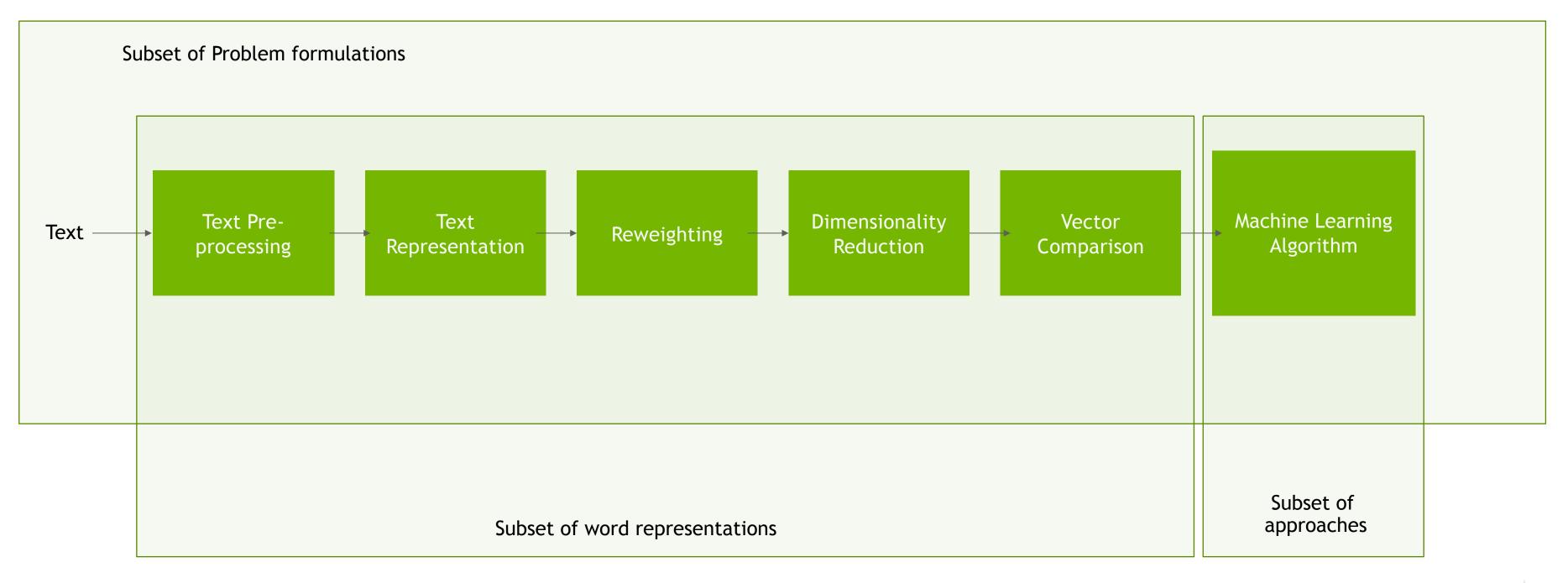
Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).

GLOVE Not a distant past

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)* (pp. 1532-1543).

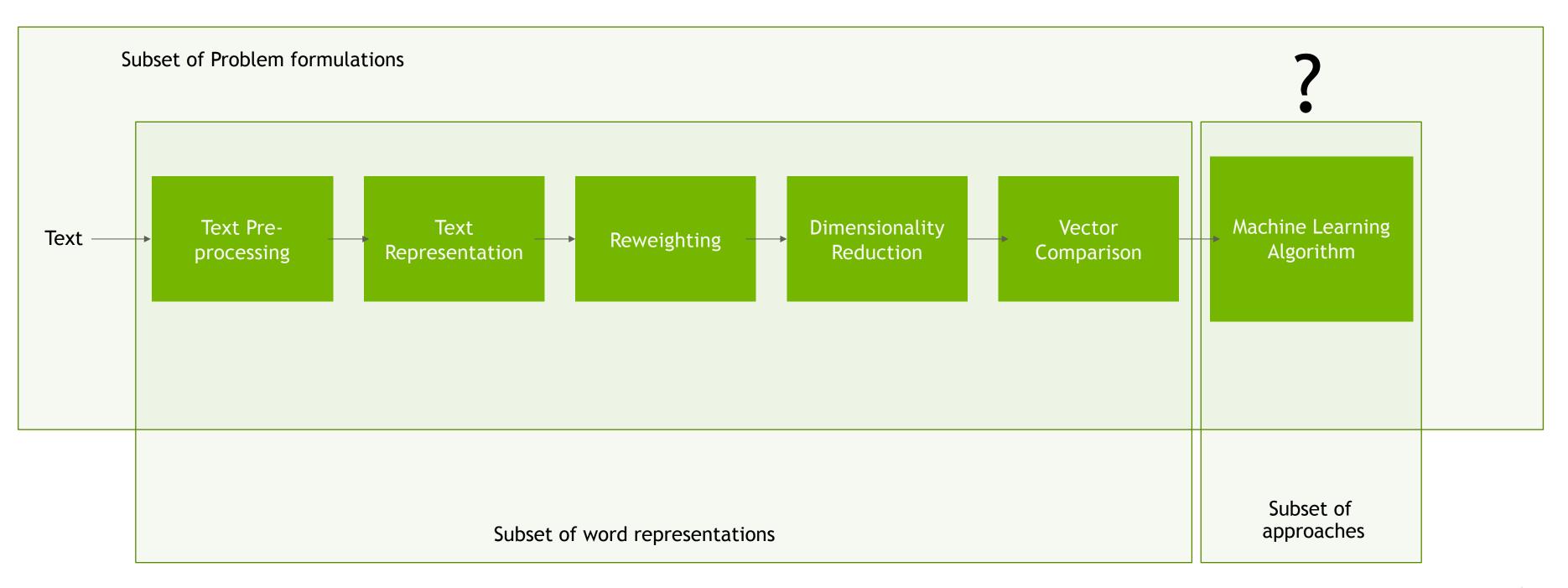
USING THE EMBEDDINGS

THE APPROACH TO NLP Unsupervised feature representation + Machine Learning models



THE APPROACH TO NLP

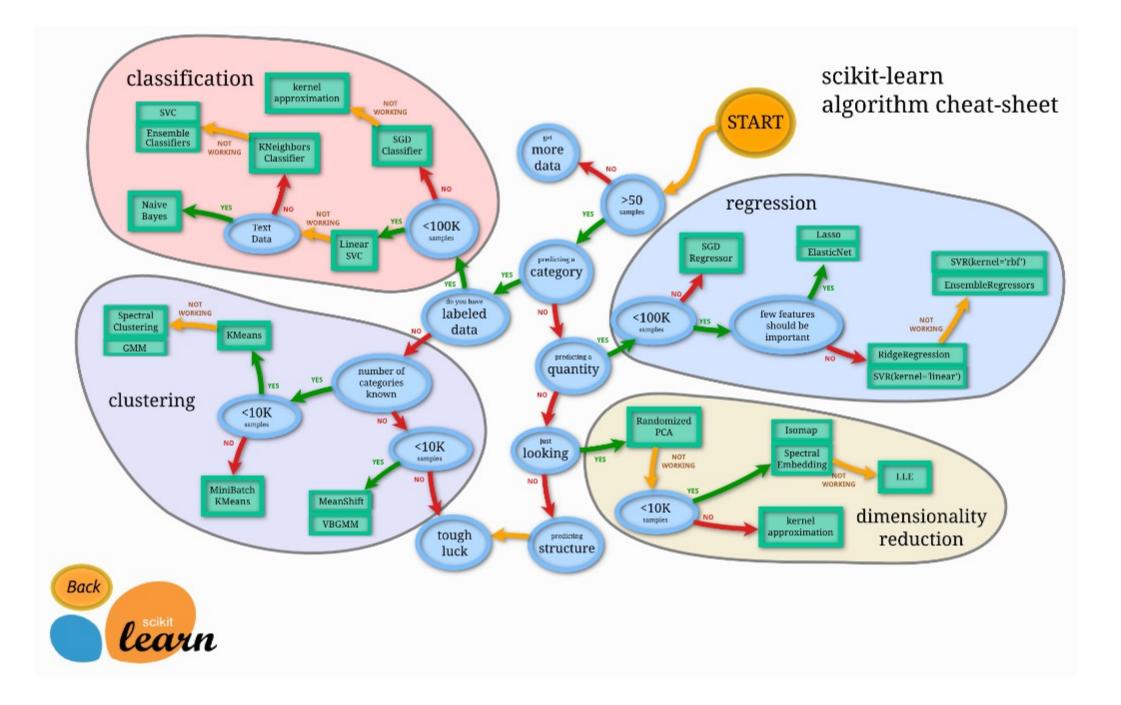
What ML model to choose



CLASSICAL APPROACHES

CLASSICAL APPROACHES

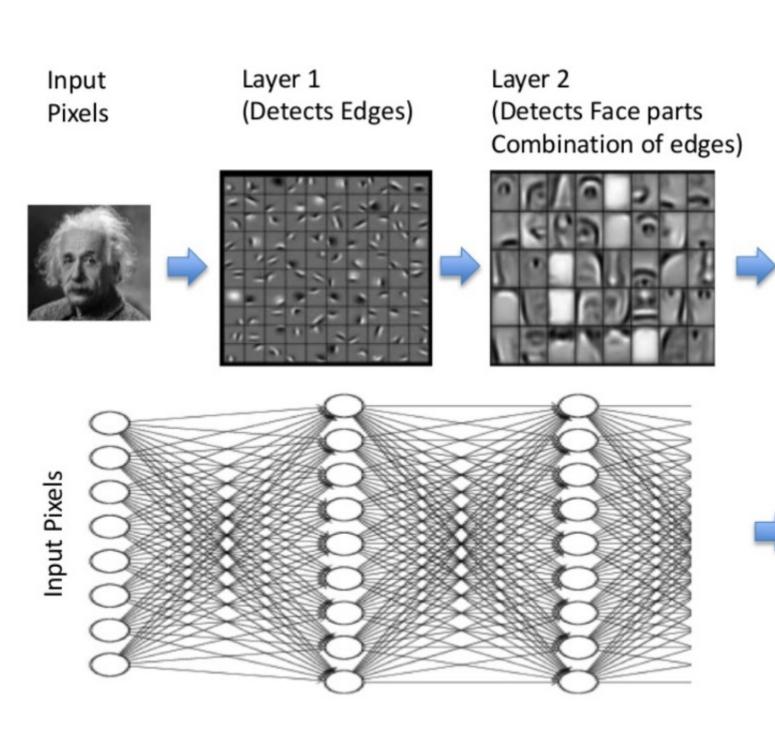
Very broad selection of tools



WHAT ABOUT FEATURE ENGINEERING?

DEEP REPRESENTATION LEARNING

DEEP REPRESENTATION LEARNING Beyond distributional hypothesis



Deeper layer (Detects Faces)

Part 1: Machine Learning in NLP Lecture

- What is NLP?
- Problem Formulation
- Text Representations
- Embeddings
- RNNs

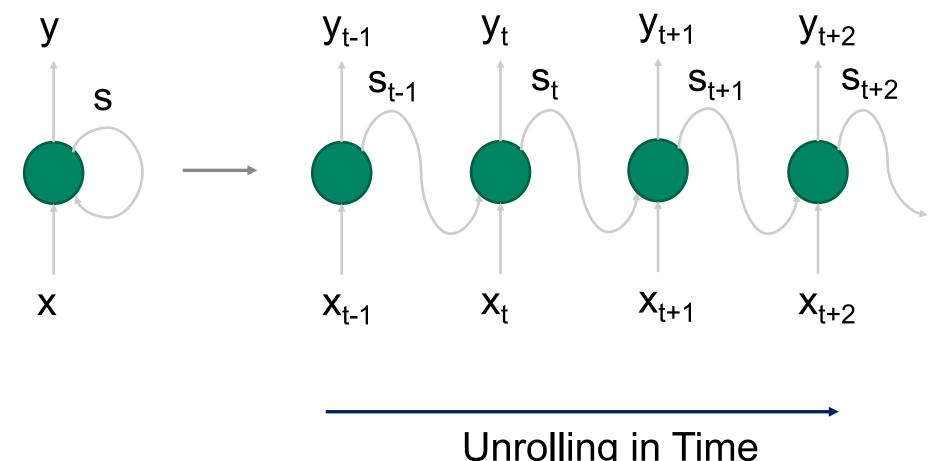
- BERT Model
- Pretraining BERT

Dimensionality Reduction

• "Attention is All You Need"

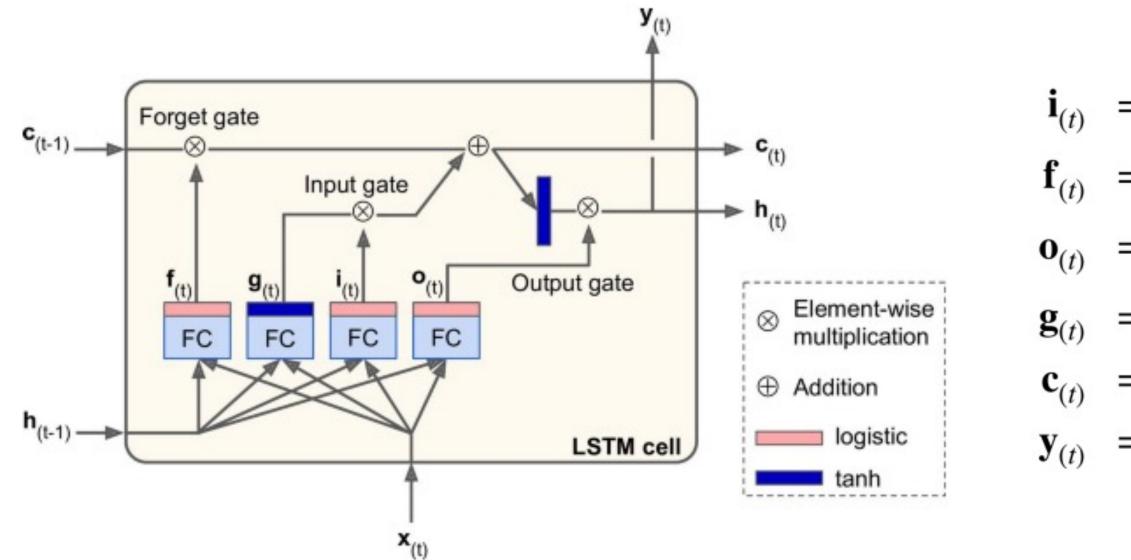
Transformer Architecture

RECURRENT NEURAL NETWORKS Basic principles



Unrolling in Time

LONG SHORT TERM (LSTM) CELL Addressing problems of stability



$$= \sigma(\mathbf{W}_{xi}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hi}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{b}_{i})$$

$$= \sigma(\mathbf{W}_{xf}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hf}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{b}_{f})$$

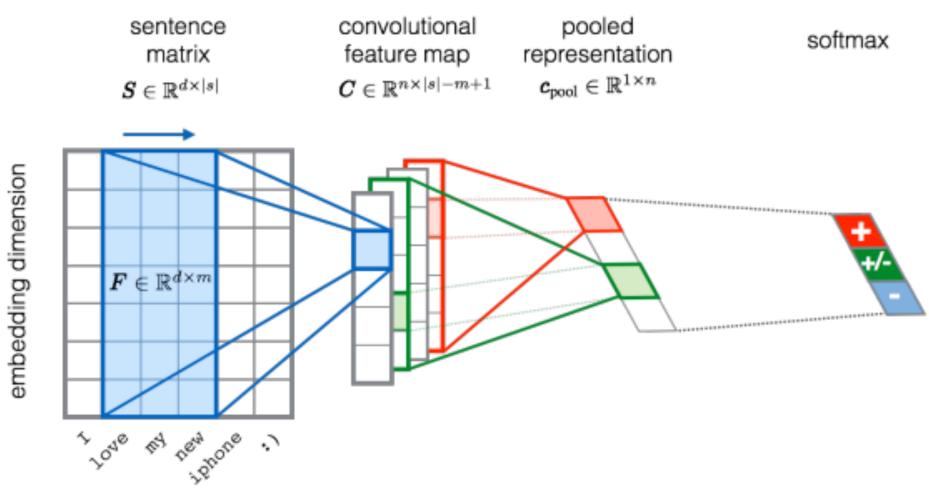
$$= \sigma(\mathbf{W}_{xo}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{ho}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{b}_{o})$$

$$= \tanh(\mathbf{W}_{xg}^{T} \cdot \mathbf{x}_{(t)} + \mathbf{W}_{hg}^{T} \cdot \mathbf{h}_{(t-1)} + \mathbf{b}_{g})$$

$$= \mathbf{f}_{(t)} \otimes \mathbf{c}_{(t-1)} + \mathbf{i}_{(t)} \otimes \mathbf{g}_{(t)}$$

$$= \mathbf{h}_{(t)} = \mathbf{o}_{(t)} \otimes \tanh(\mathbf{c}_{(t)})$$

CONVOLUTIONAL NEURAL NETWORKS Basic principles



Severyn, Aliaksei, and Alessandro Moschitti. "Unitn: Training deep convolutional neural network for twitter sentiment classification." Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015). 2015.

ATTENTION

WHAT ABOUT LONG SEQUENCES? The challenge illustrated with SQuAD

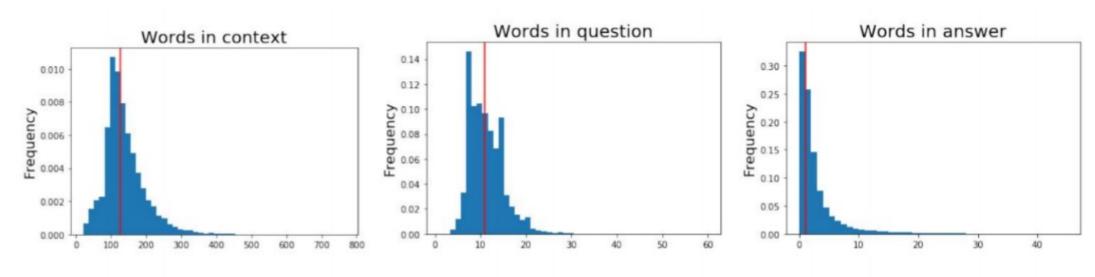


Figure 1: Number of words in contexts, questions, and answers in SQuAD training set.

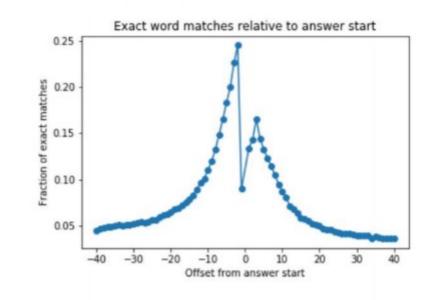
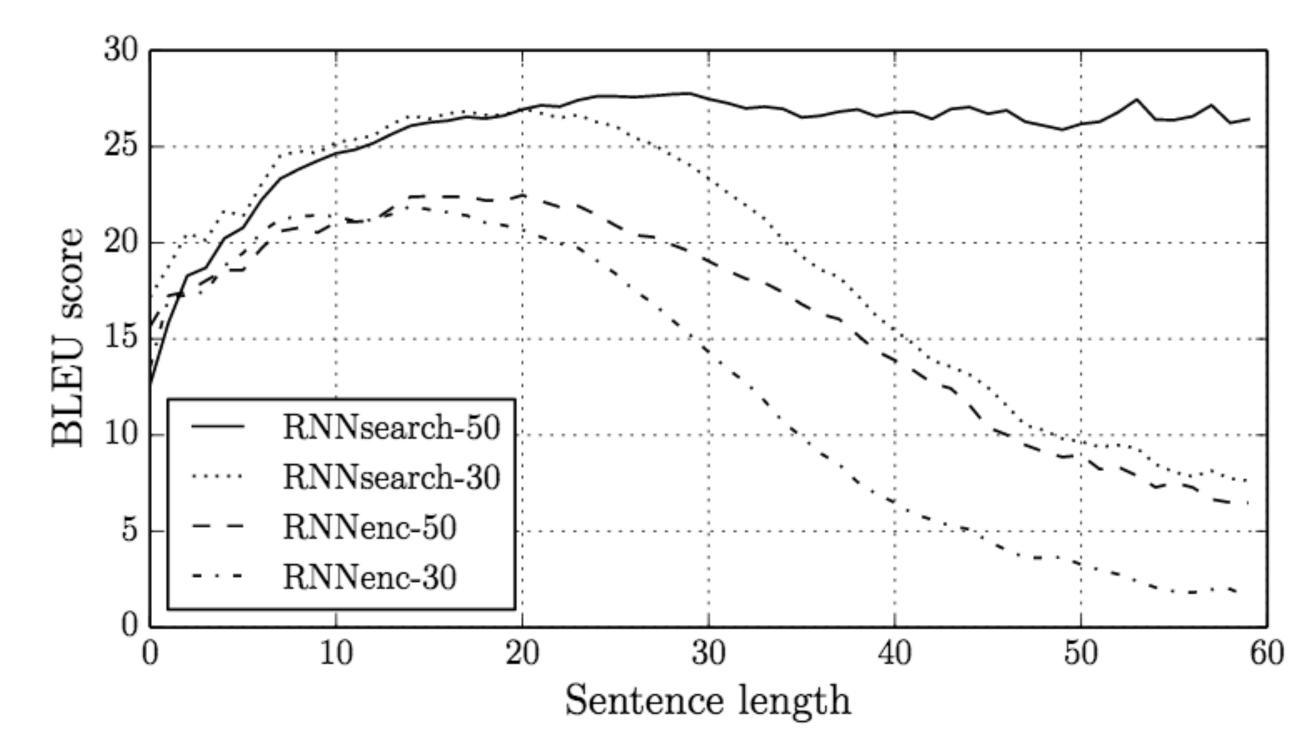


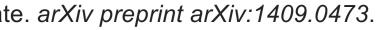
Figure 2: Frequency of exact word matches relative to answer start position

The impact of attention mechanism on Question Answering performance

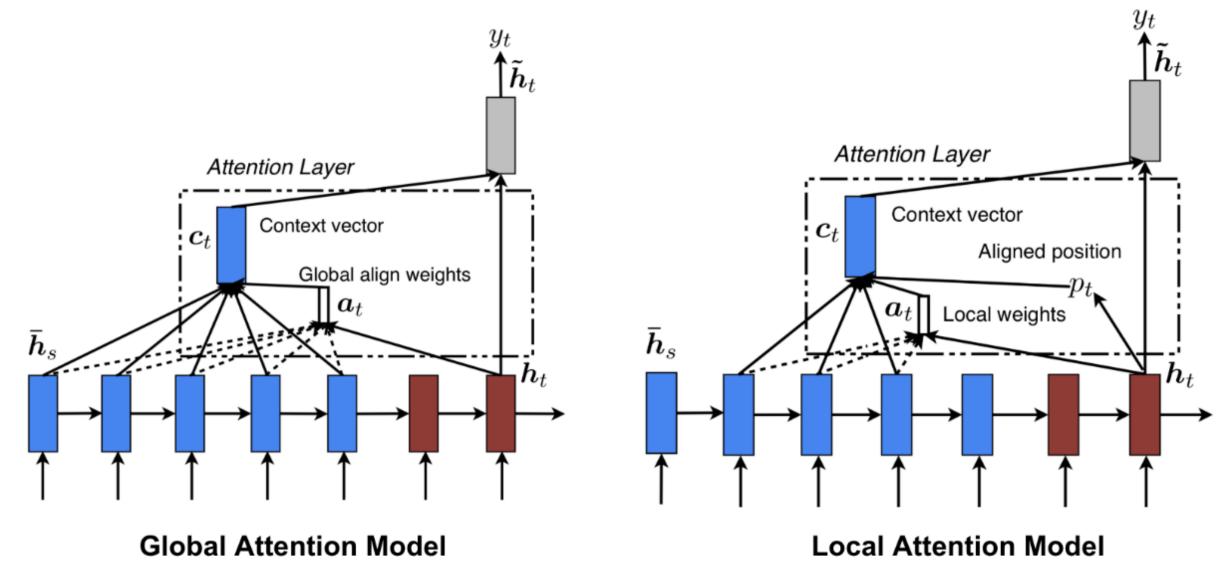
WHAT ABOUT LONG SEQUENCES? The challenge



Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.



ATTENTION The mechanism



Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

ATTENTION The mechanism

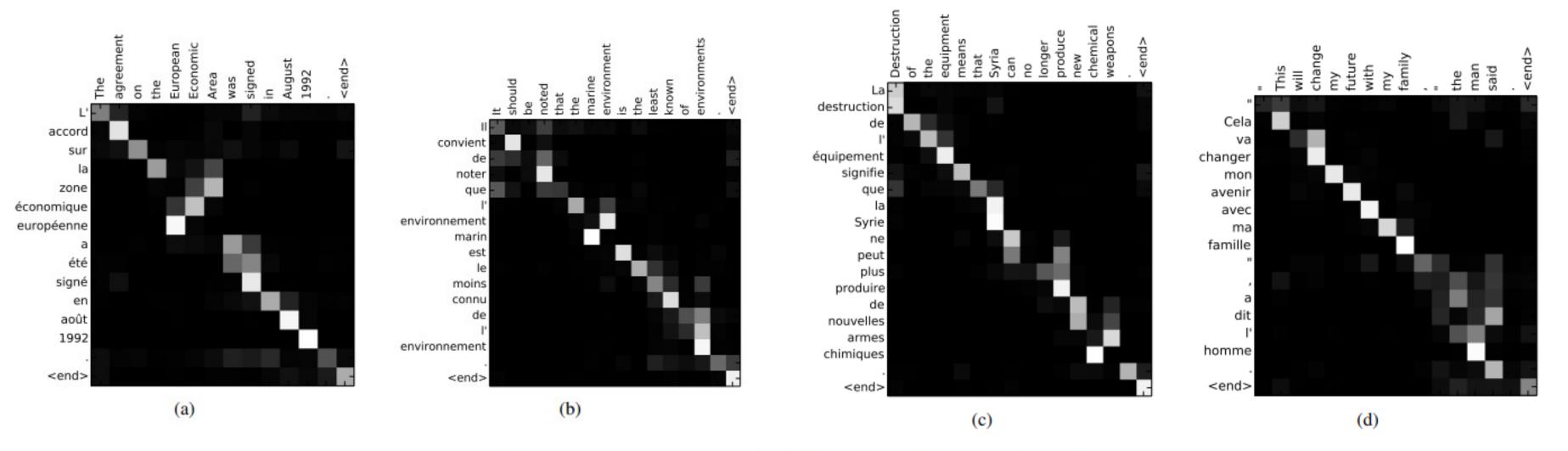
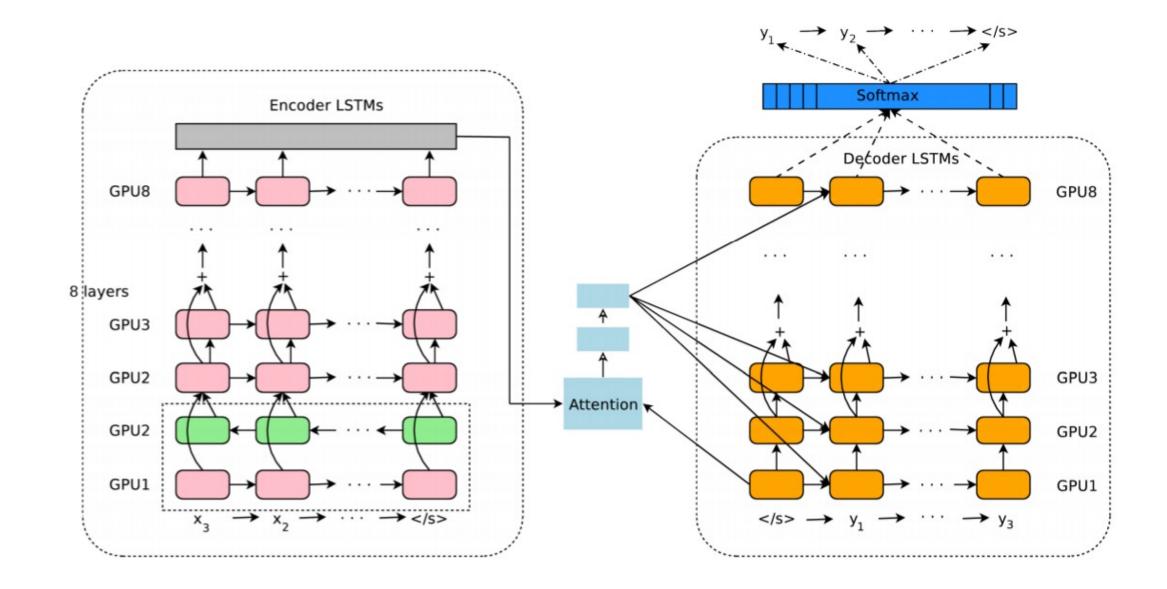


Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot correspond to the words in the source sentence (English) and the generated translation (French), respectively. Each pixel shows the weight α_{ij} of the annotation of the *j*-th source word for the *i*-th target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b-d) three randomly selected samples among the sentences without any unknown words and of length between 10 and 20 words from the test set.

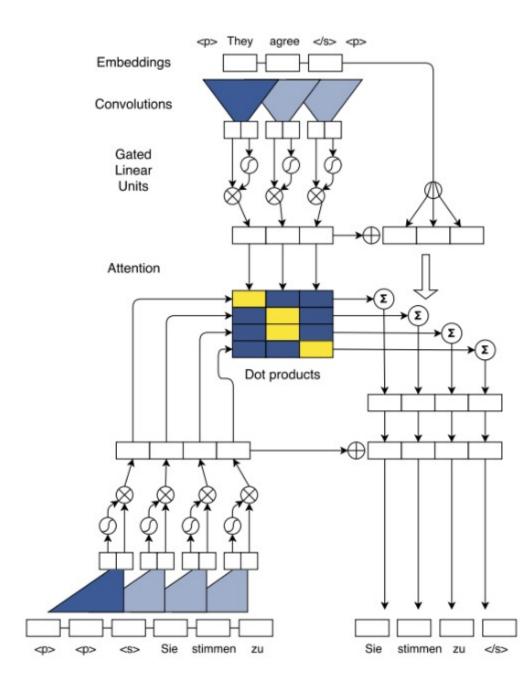
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

ATTENTION Examples



Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., ... & Klingner, J. (2016). Google's neural machine translation system: Bridging the gap between human and machine translation. *arXiv preprint arXiv:1609.08144*.

ATTENTION Examples



Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017, July). Convolutional sequence to sequence learning. In *International conference on machine learning* (pp. 1243-1252). PMLR.

Part 1: Machine Learning in NLP Lecture • What is NLP?

- Problem Formulation
- Text Representations
- Embeddings
- RNNs

- BERT Model
- Pretraining BERT

Dimensionality Reduction

• "Attention is All You Need"

Transformer Architecture

ATTENTION IS ALL YOU NEED Design

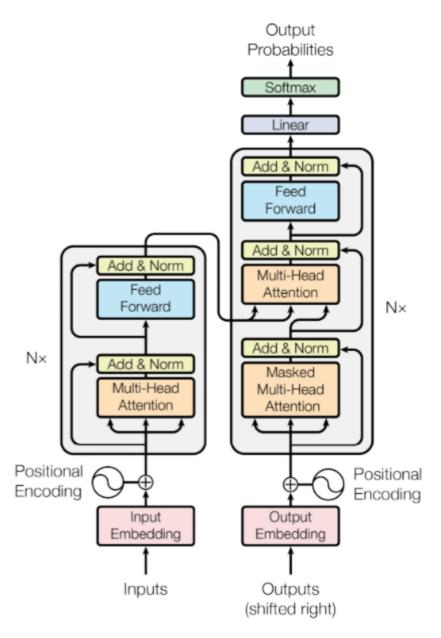


Figure 1: The Transformer - model architecture.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

ATTENTION IS ALL YOU NEED Design

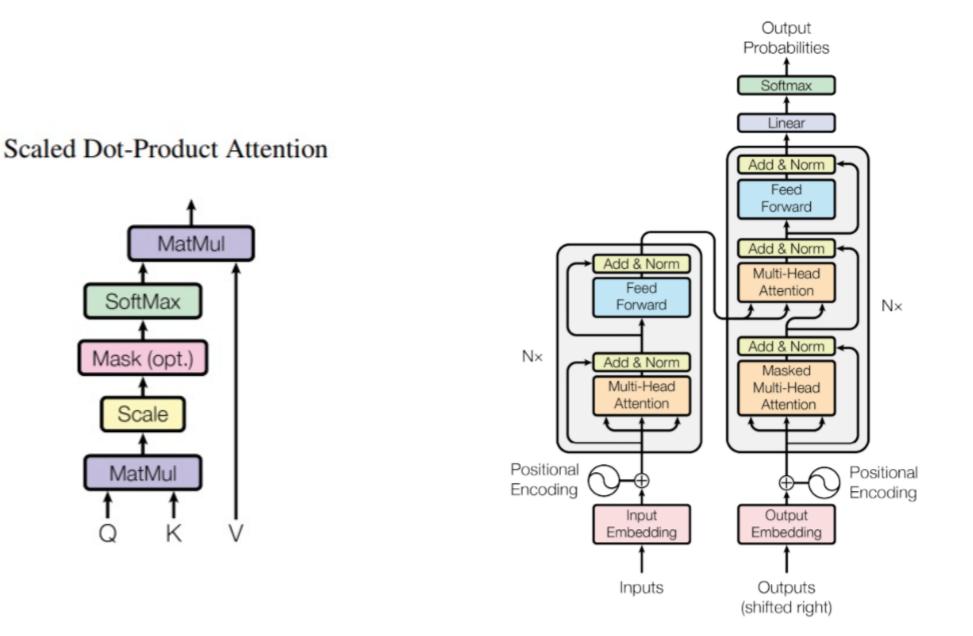
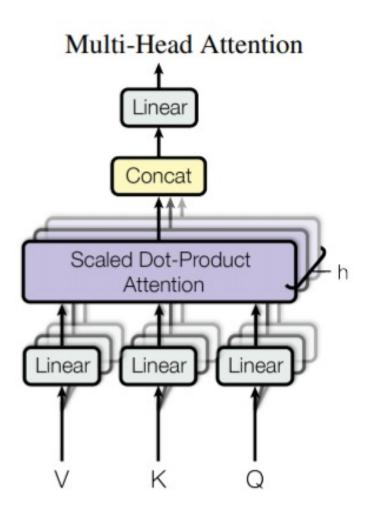


Figure 1: The Transformer - model architecture.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).





WAS IT A BREAKTHROUGH IN ITSELF?

ATTENTION IS ALL YOU NEED Not a breakthrough in itself

Madal	BLEU		Training Cost (FLOPs)	
Model	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet [15]	23.75			
Deep-Att + PosUnk [32]		39.2		$1.0 \cdot 10^{20}$
GNMT + RL [31]	24.6	39.92	$2.3\cdot10^{19}$	$1.4 \cdot 10^{20}$
ConvS2S [8]	25.16	40.46	$9.6 \cdot 10^{18}$	$1.5 \cdot 10^{20}$
MoE [26]	26.03	40.56	$2.0\cdot10^{19}$	$1.2 \cdot 10^{20}$
Deep-Att + PosUnk Ensemble [32]		40.4	tor a transmission	$8.0 \cdot 10^{20}$
GNMT + RL Ensemble [31]	26.30	41.16	$1.8\cdot10^{20}$	$1.1 \cdot 10^{21}$
ConvS2S Ensemble [8]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot10^{21}$
Transformer (base model)	27.3	38.1	$3.3\cdot10^{18}$	
Transformer (big)	28.4	41.0	$2.3\cdot 10^{19}$	

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

ATTENTION IS ALL YOU NEED But ...

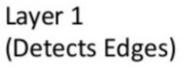
"... the Transformer can be trained significantly faster than architectures based on recurrent or convolutional layers."

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

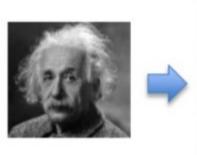
NEURAL EMBEDDINGS

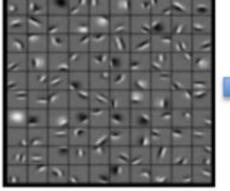
FEATURE REUSE The opportunity

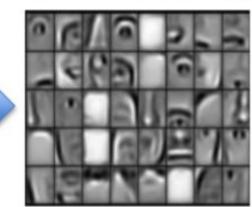
Input **Pixels**

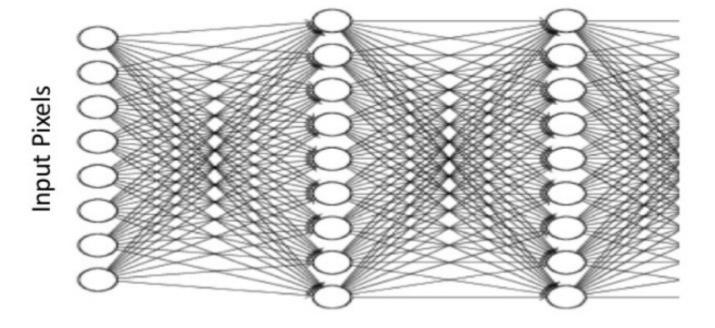


Layer 2 (Detects Face parts Combination of edges)









Deeper layer (Detects Faces)

IT WAS DIFFICULT TO REUSE NLP EMBEDDINGS

SEMI-SUPERVISED SEQUENCE LEARNING More complex representations

We present two approaches that use unlabeled data to improve sequence learning with recurrent networks. The first approach is to predict what comes next in a sequence, which is a conventional language model in natural language processing. The second approach is to use a sequence autoencoder, which reads the input sequence into a vector and predicts the input sequence again. These two algorithms can be used as a "pretraining" step for a later supervised sequence learning algorithm. In other words, the parameters obtained from the unsupervised step can be used as a starting point for other supervised training models. In our experiments, we find that long short term memory recurrent networks after being pretrained with the two approaches are more stable and generalize better. With pretraining, we are able to train long short term memory recurrent networks up to a few hundred timesteps, thereby achieving strong performance in many text classification tasks, such as IMDB, DBpedia and 20 Newsgroups.

Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. In Advances in neural information processing systems (pp. 3079-3087).

SEMI-SUPERVISED SEQUENCE LEARNING More complex representations

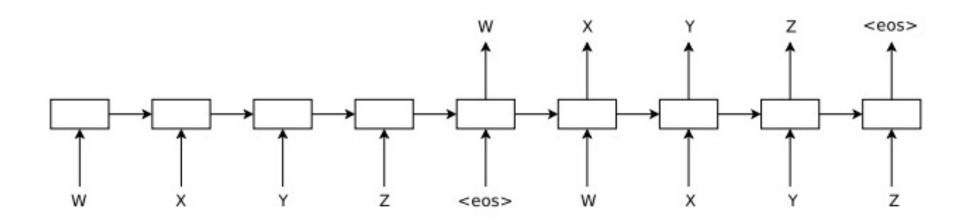


Figure 1: The sequence autoencoder for the sequence "WXYZ". The sequence autoencoder uses a recurrent network to read the input sequence in to the hidden state, which can then be used to reconstruct the original sequence.

Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. In Advances in neural information processing systems (pp. 3079-3087).

SEMI-SUPERVISED SEQUENCE LEARNING More complex representations

After training the recurrent language model or the sequence autoencoder for roughly 500K steps with a batch size of 128, we use both the word embedding parameters and the LSTM weights to initialize the LSTM for the supervised task. We then train on that task while fine tuning both the embedding parameters and the weights and use early stopping when the validation error starts to increase. We choose the dropout parameters based on a validation set.

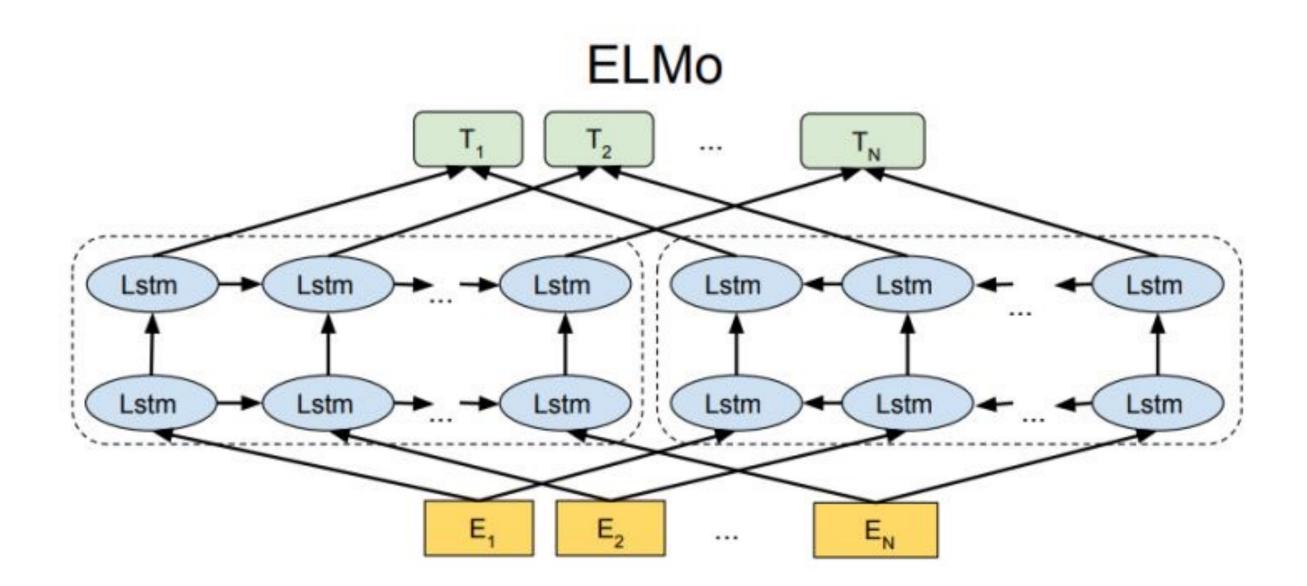
Using SA-LSTMs, we are able to match or surpass reported results for all datasets. It is important to emphasize that previous best results come from various different methods. So it is significant that one method achieves strong results for all datasets, presumably because such a method can be used as a general model for any similar task. A summary of results in the experiments are shown in Table 1. More details of the experiments are as follows.

Dataset	SA-LSTM	Previous best result	
IMDB	7.24%	7.42%	
Rotten Tomatoes	16.7%	18.5%	
20 Newsgroups	15.6%	17.1%	
DBpedia	1.19%	1.74%	

Table 1: A summary of the error rates of SA-LSTMs and previous best reported results.

ELMO

Embeddings for Language Models



Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

ELMO **Embeddings for Language Models**

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2/9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06/21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3/6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across six benchmark NLP tasks. The performance metric varies across tasks - accuracy for SNLI and SST-5; F1 for SQuAD, SRL and NER; average F1 for Coref. Due to the small test sizes for NER and SST-5, we report the mean and standard deviation across five runs with different random seeds. The "increase" column lists both the absolute and relative improvements over our baseline.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

ULM-FIT

Universal Language Model Fine-Tuning for Text Classification

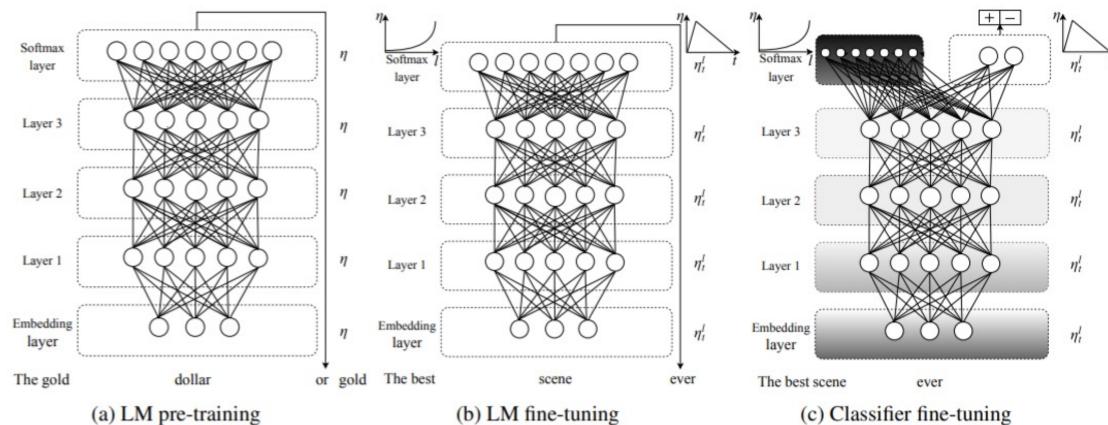
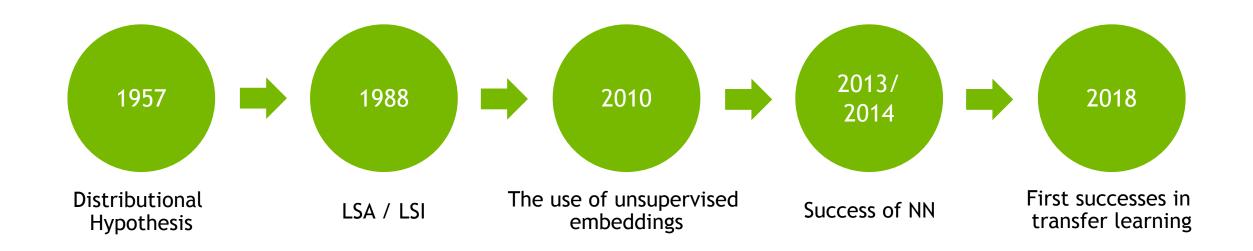


Figure 1: ULMFiT consists of three stages: a) The LM is trained on a general-domain corpus to capture general features of the language in different layers. b) The full LM is fine-tuned on target task data using discriminative fine-tuning ('Discr') and slanted triangular learning rates (STLR) to learn task-specific features. c) The classifier is fine-tuned on the target task using gradual unfreezing, 'Discr', and STLR to preserve low-level representations and adapt high-level ones (shaded: unfreezing stages; black: frozen).

Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146.

TRANSFER LEARNING IN NLP Not trivial to use and not universally applicable

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint arXiv:1802.05365.



THIS CREATED A FOUNDATION FOR THE NEW NLP MODELS (DISCUSSED IN THE NEXT CLASS)

ATTENTION IS ALL YOU NEED Deep dive into the transformer design

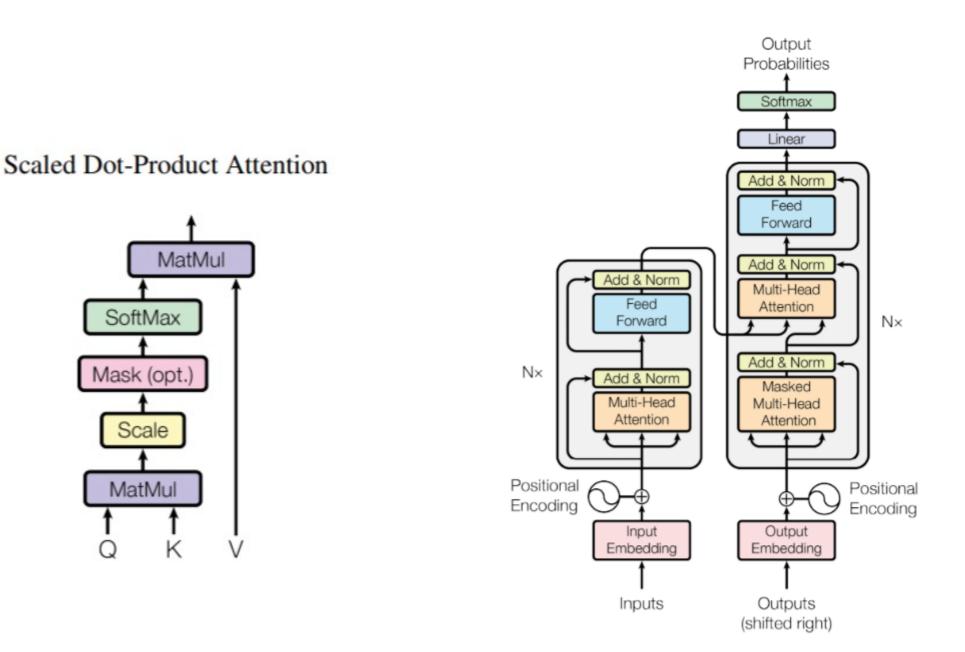
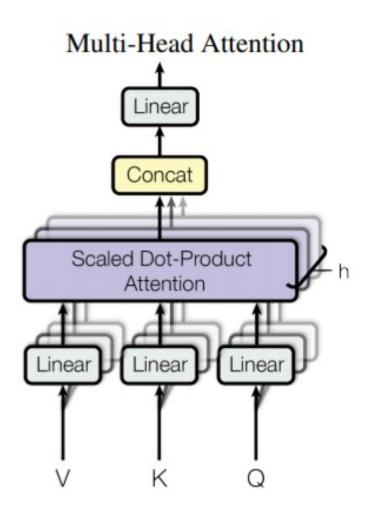


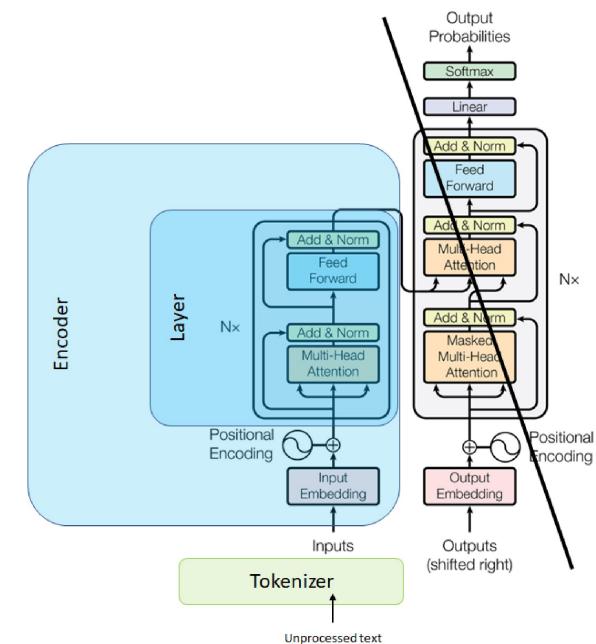
Figure 1: The Transformer - model architecture.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).



BERT

How it relates to transformer and pretraining



N×

incoding

IN THE NEXT CLASS...

SELF-SUPERVISION, BERT, AND BEYOND

Why did models start to work well? What does the future hold?

?

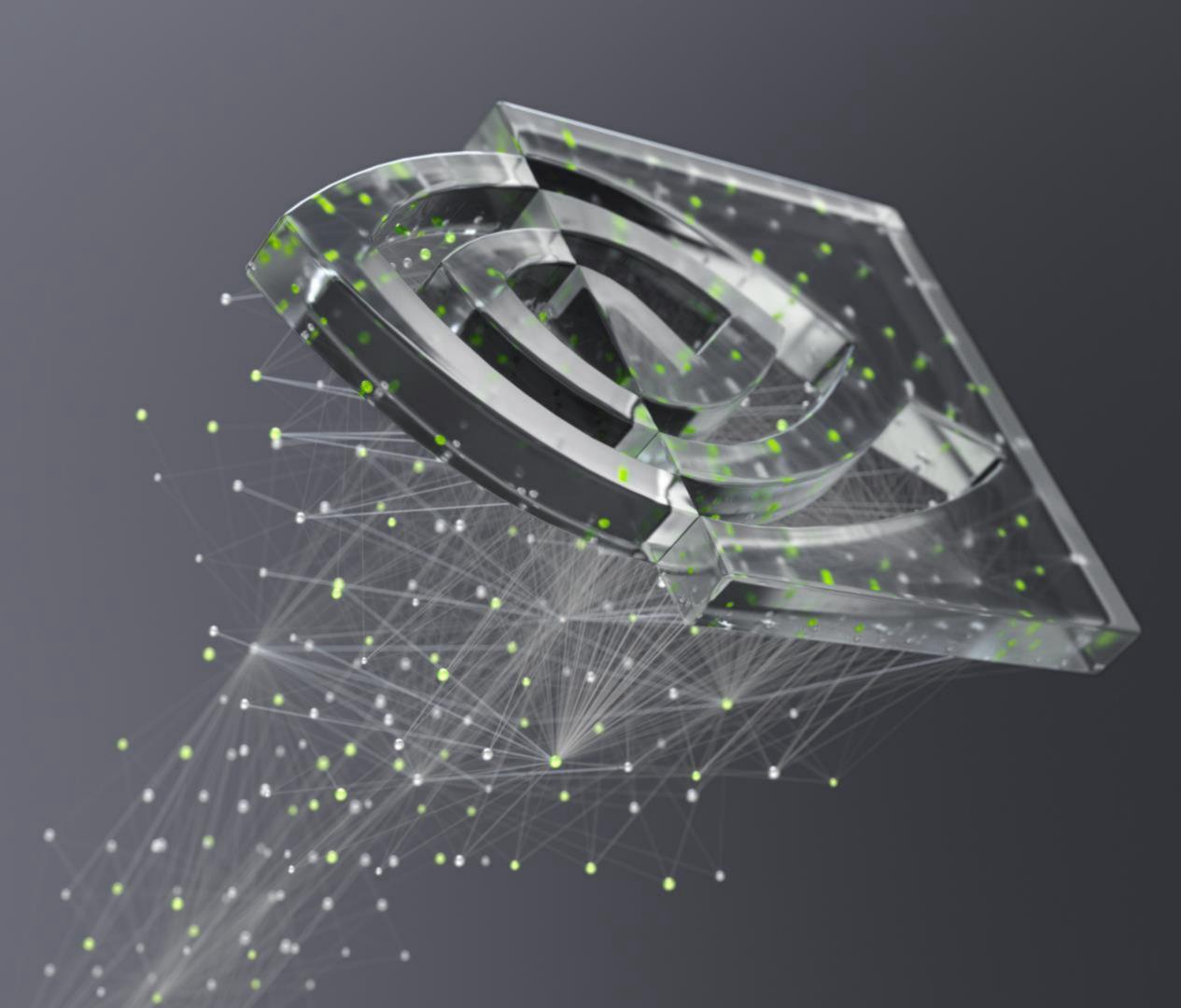
AND BEYOND does the future hold?

Part 1: Machine Learning in NLP Lecture

- What is NLP? • Problem Formulation • Text Representations Dimensionality Reduction • Embeddings

- RNNs
- "Attention is All You Need"
- Lab

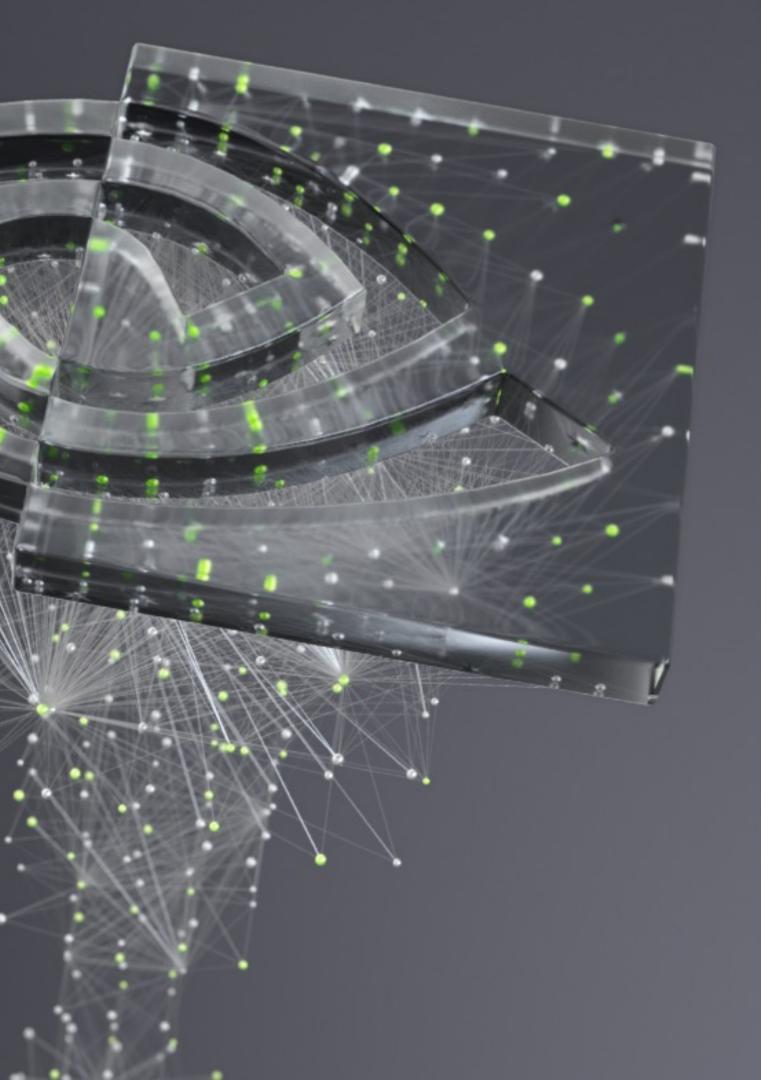
 - Transformer Architecture • BERT Model • Pretraining BERT



DEEP LEARNING INSTITUTE

SELF-SUPERVISION, BERT, AND BEYOND

Building Transformer-Based Natural Language Processing Applications (Part 2)



FULL COURSE AGENDA

Part 1: Machine Learning in NLP

Lecture: NLP background and the role of DNNs leading to the Transformer architecture

Lab: Tutorial-style exploration of a *translation task* using the Transformer architecture

Part 2: Self-Supervision, BERT, and Beyond

Lecture: Discussion of how language models with selfsupervision have moved beyond the basic Transformer to BERT and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo API and exercises to build a *text classification task* and a *named entity recognition task* using BERT-based language models

Part 3: Production Deployment

Lecture: Discussion of production deployment considerations and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example *question answering task* to NVIDIA Triton

Part 2: Self-Supervision, BERT and Beyond Lecture

- BERT

- Explore the Data
- Explore NeMo
- Text Classifier Project

• Lecture (cont'd)

- The Scaling Laws
- Lab (cont'd)

 Why Do DNNs Work Well? • Self-Supervised Learning

Can and should we go even bigger?

• Named Entity Recognizer

Part 2: Self-Supervision, BERT and Beyond

- Lecture

 - BERT

- Explore the Data
- Explore NeMo
- Text Classifier Project

Lecture (cont'd)

- The Scaling Laws
- Lab (cont'd)

• Why Do DNNs Work Well? • Self-Supervised Learning

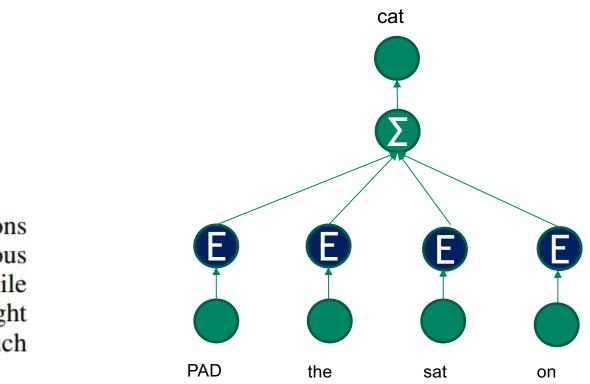
• Can and should we go even bigger?

• Named Entity Recognizer

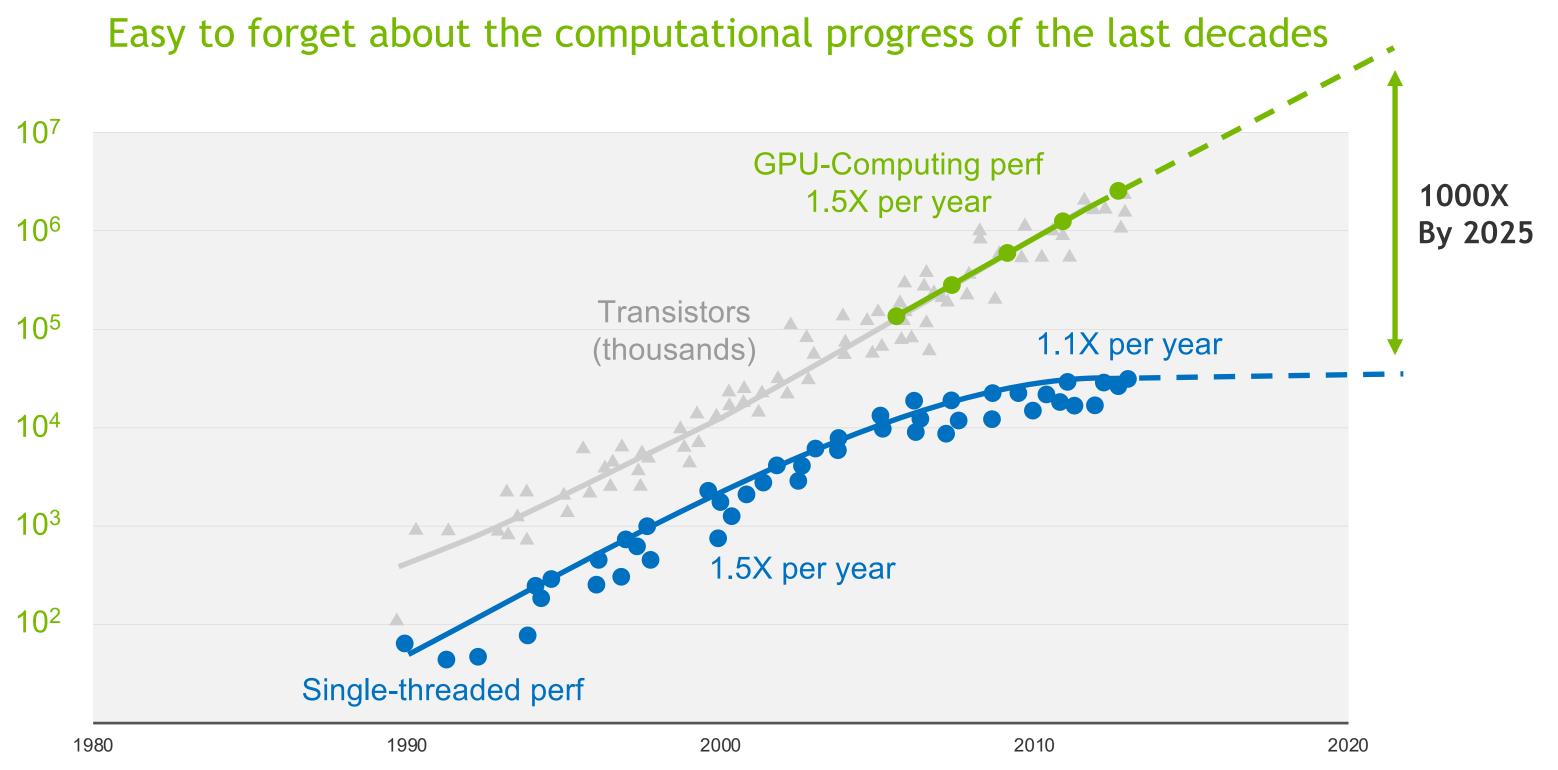
COMPUTE Or lack of thereof

In this section, we propose two new model architectures for learning distributed representations of words that try to minimize computational complexity. The main observation from the previous section was that most of the complexity is caused by the non-linear hidden layer in the model. While this is what makes neural networks so attractive, we decided to explore simpler models that might not be able to represent the data as precisely as neural networks, but can possibly be trained on much more data efficiently.

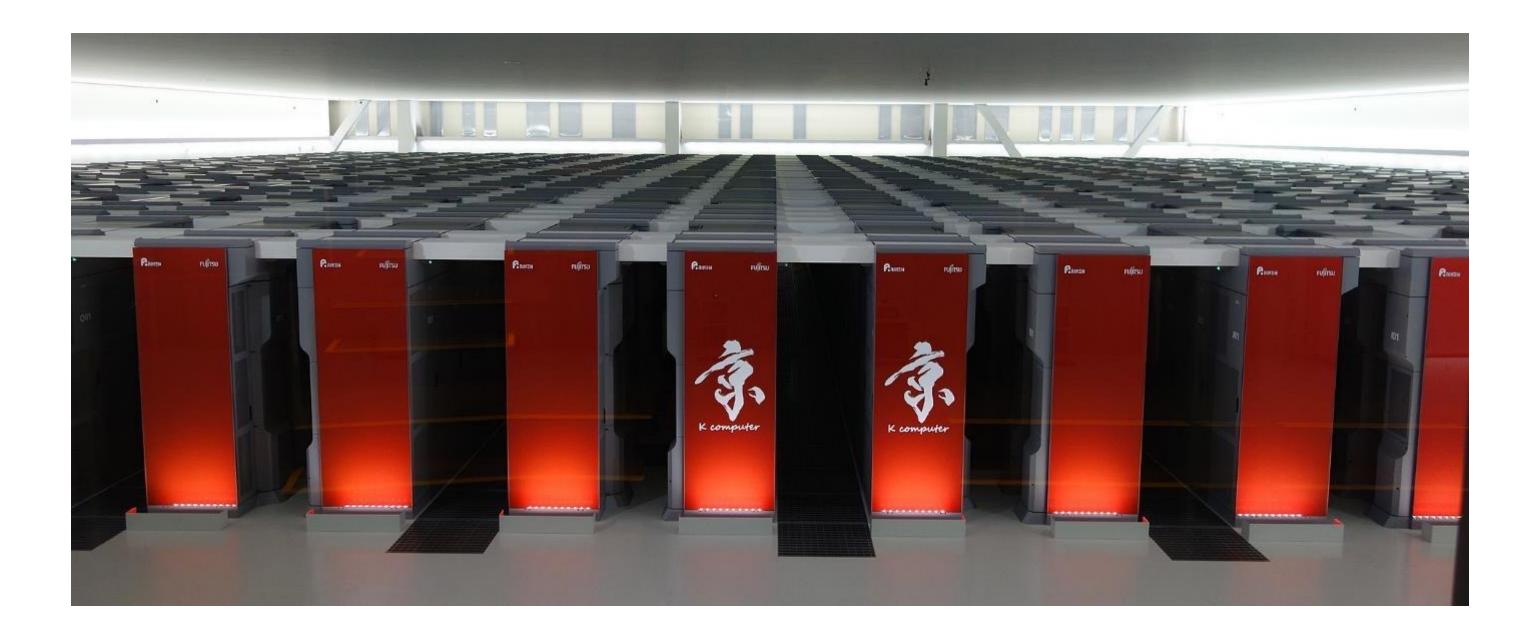
Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." *arXiv preprint arXiv:1301.3781* (2013).



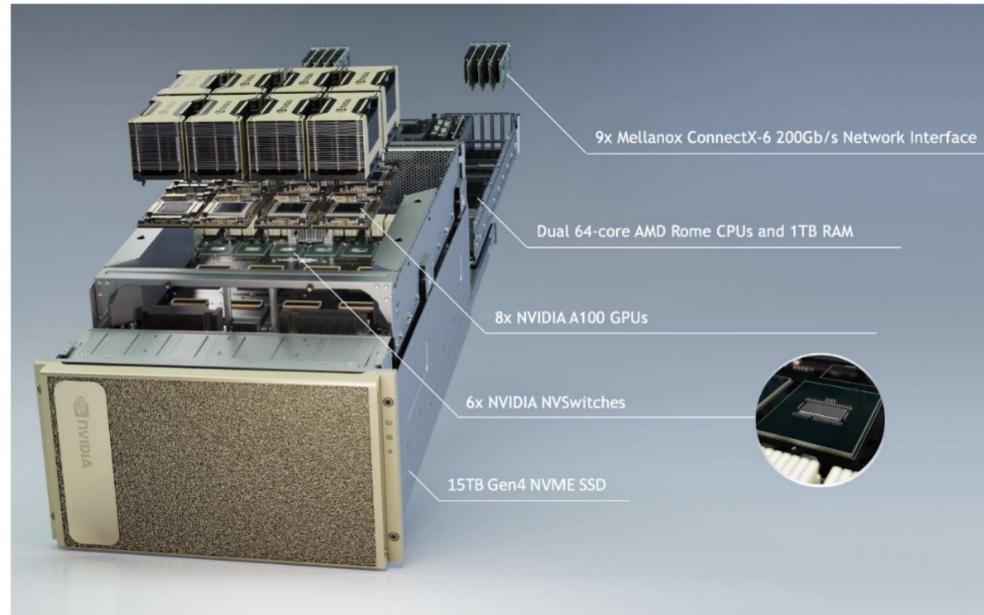
COMPUTE



CONTEXT 8 petaFLOPs in June 2011 (K Computer)



CONTEXT 5 petaFLOPs for Al - today



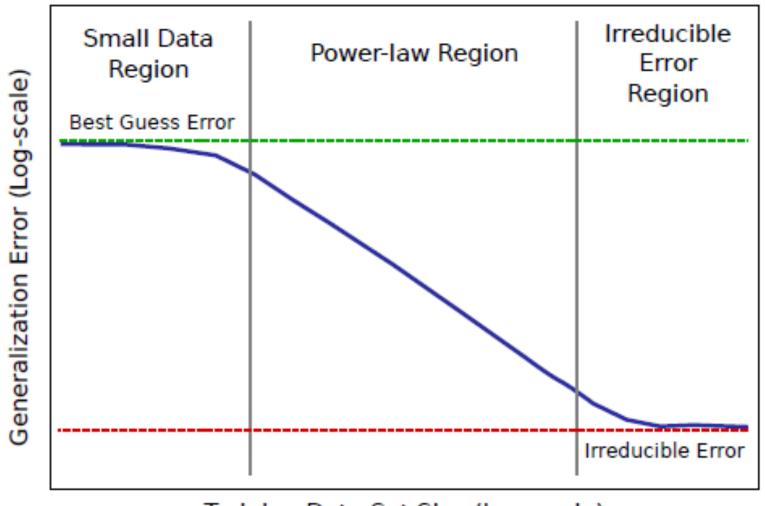
CONTEXT ~100 PFLOPS (FP16) or 48 PFLOPS (TF32) for AI - today

100 EXAFLOPS ~= <u>2 YEARS ON A DUAL CPU</u> SERVER

SCALING LAWS

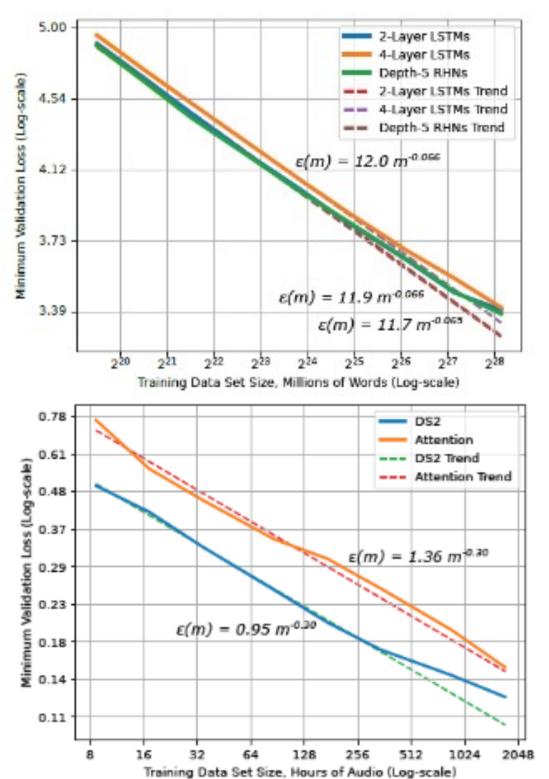
SCALING LAWS

Power Law relationship between the dataset size and accuracy



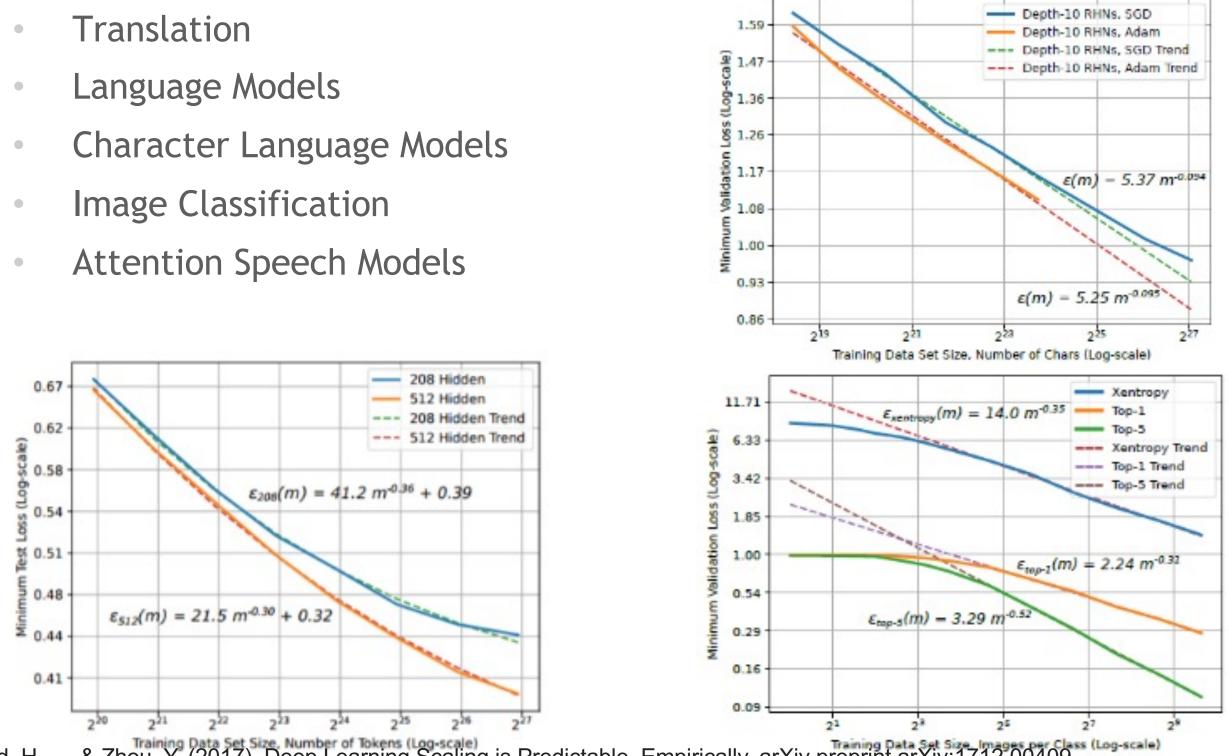
Training Data Set Size (Log-scale)

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409



SCALING LAWS

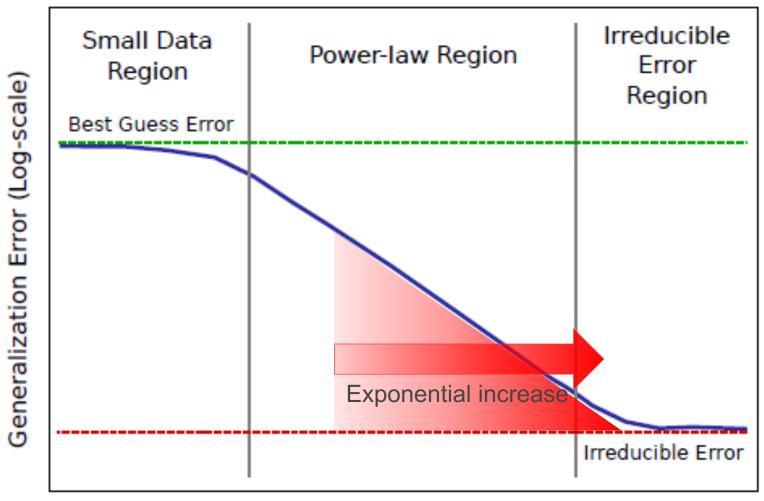
Applicable across all AI tasks



Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409.

THE COST OF LABELING

Limits the utility of deep learning models



Training Data Set Size (Log-scale)

Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409

ING models

Part 2: Self-Supervision, BERT and Beyond Lecture

- BERT

- Explore the Data
- Explore NeMo
- Text Classifier Project

Lecture (cont'd)

- The Scaling Laws
- Lab (cont'd)

 Why Do DNNs Work Well? Self-Supervised Learning

• Can and should we go even bigger?

• Named Entity Recognizer

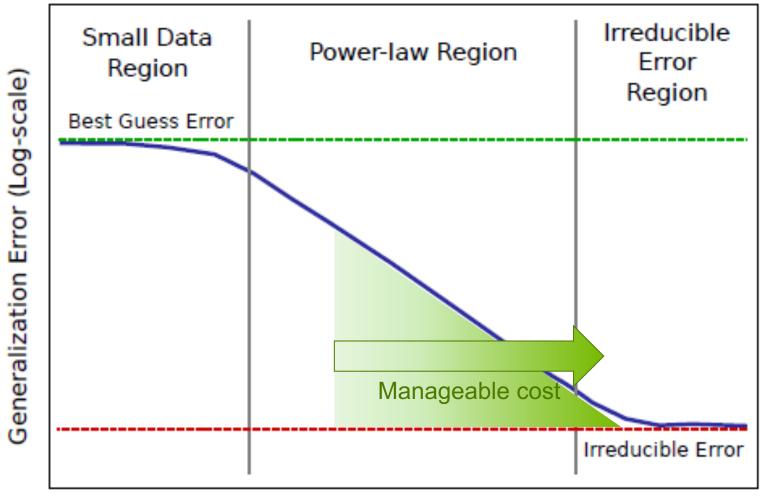
SELF-SUPERVISED LEARNING Example training tasks

- Natural Language Processing:
 - Masked Language Model: We mask a percentage of the input tokens at random (say 15%) and ask the neural network to predict the entire sentence
 - Next Sentence Prediction: We choose either two consecutive sentences from text, or two random sentences from the text. We ask the neural network to establish whether the two sentences occur one after another.
 - We use another simpler neural network to replace random words in the sequence and ask the primary neural network to detect which words were replaced (using a GAN like configuration).
- Computer Vision:
 - Contrastive Learning: Randomly modify (crop and resize, flip, distort color, rotate, cut-out, noise, blur, etc.) and either feed the same image, or two randomly selected images, into the neural network, asking it to say whether it is the same image or not
 - Noisy labels/Self Training: Use labels generated by a weak algorithm (potentially older generation of the target model) to train a target-robust feature extractor

Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. In Advances in neural information processing systems (pp. 3079-3087). Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709. Xie, Q., Hovy, E., Luong, M. T., & Le, Q. V. (2019). Self-training with Noisy Student improves ImageNet classification. arXiv preprint arXiv:1911.04252.

THE COST OF LABELING

Semi-supervised models

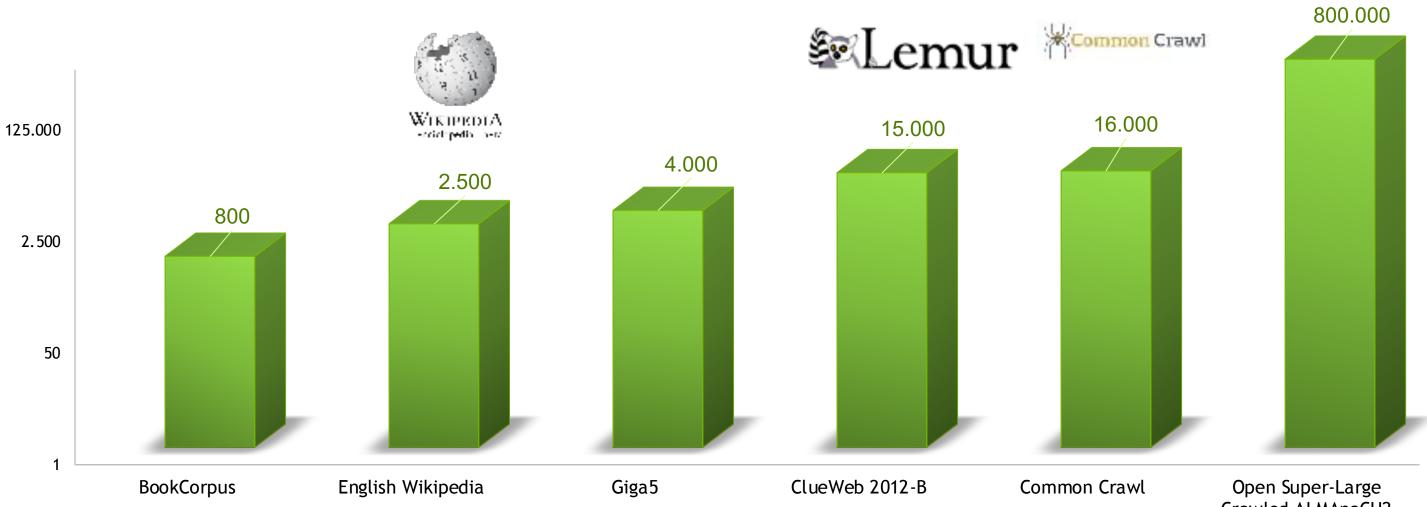


Training Data Set Size (Log-scale)

LEARNING INSTITUTE Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409

SELF-SUPERVISED LEARNING Abundance of unlabeled data

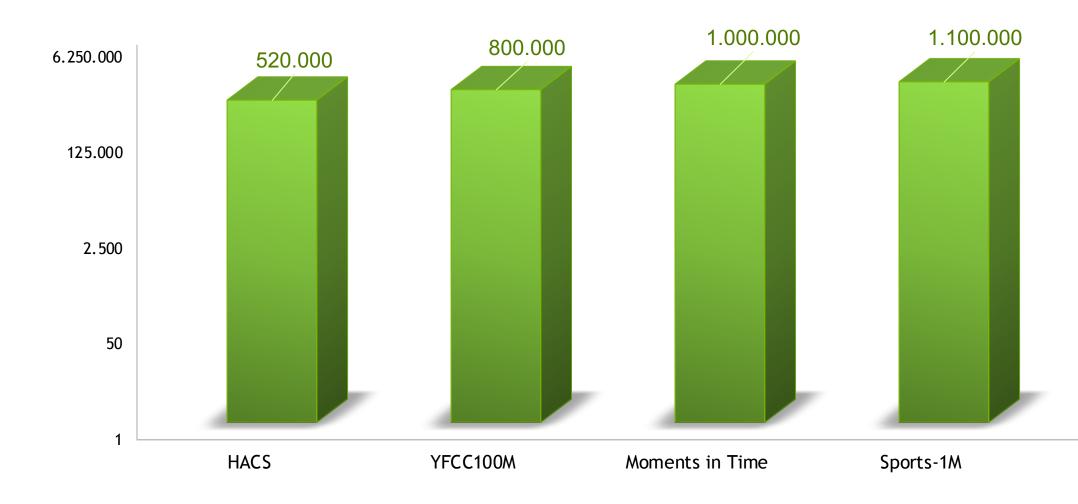
Number of Words (in Millions)



Crawled ALMAnaCH2 corpus

SELF-SUPERVISED LEARNING Abundance of unlabeled data

Number of videos



HowTo100M

YouTube-8M

OLD IDEAS

SELF-SUPERVISED LEARNING

What was missing?

Semi-supervised Sequence Learning

Andrew M. Dai Google Inc. adai@google.com

4 Nov 2015

[cs.LG]

432v1

Quoc V. Le Google Inc. qv1@google.com

Abstract

We present two approaches that use unlabeled data to improve sequence learning with recurrent networks. The first approach is to predict what comes next in a sequence, which is a conventional language model in natural language processing. The second approach is to use a sequence autoencoder, which reads the input sequence into a vector and predicts the input sequence again. These two algorithms can be used as a "pretraining" step for a later supervised sequence learning algorithm. In other words, the parameters obtained from the unsupervised step can be used as a starting point for other supervised training models. In our experiments, we find that long short term memory recurrent networks after being pretrained with the two approaches are more stable and generalize better. With pretraining, we are able to train long short term memory recurrent networks up to a few hundred timesteps, thereby achieving strong performance in many text classification tasks, such as IMDB, DBpedia and 20 Newsgroups.

THE SCALE

GENERATIVE PRETRAINING (GPT) The scale

"Many previous approaches to NLP tasks train relatively small models on a single GPU from scratch. Our approach requires an expensive pre-training step - 1 month on 8 GPUs. Luckily, this only has to be done once and we're releasing our model so others can avoid it. It is also a large model (in comparison to prior work) and consequently uses more compute and memory — we used a 37-layer (12 block) Transformer architecture, and we train on sequences of up to 512 tokens. Most experiments were conducted on 4 and 8 GPU systems. The model does fine-tune to new tasks very quickly which helps mitigate the additional resource requirements."

GENERATIVE PRETRAINING (GPT) The design

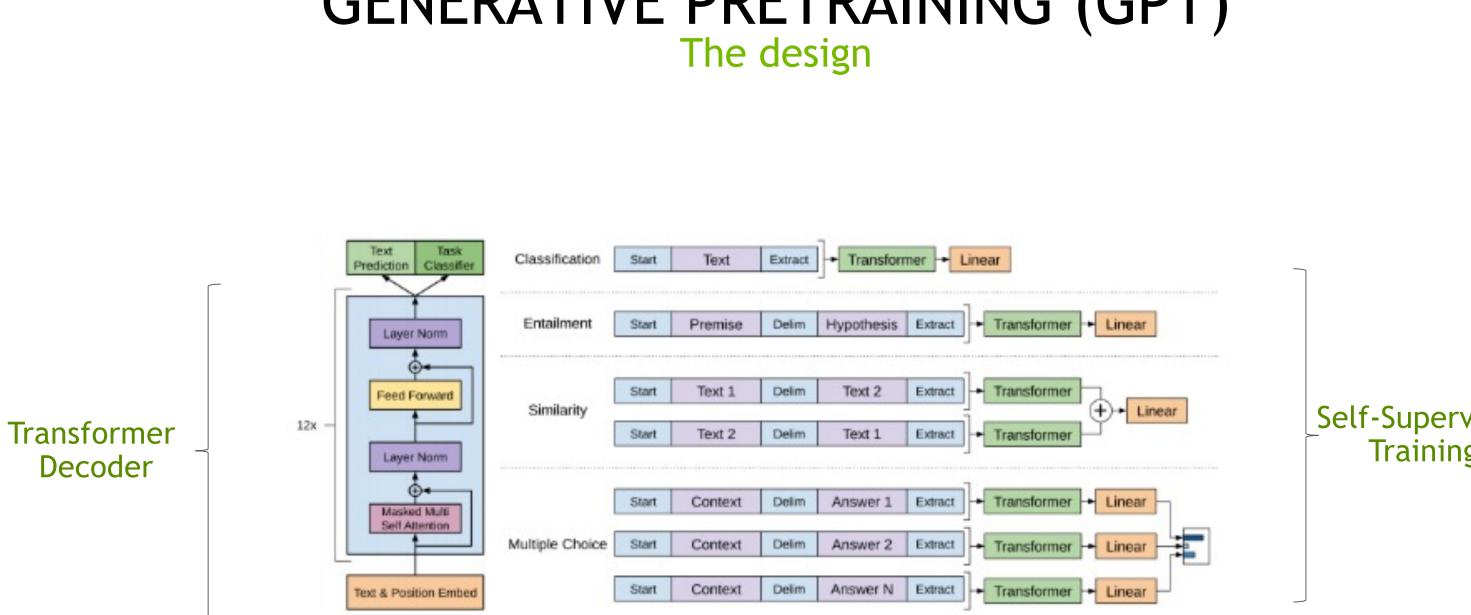


Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input transformations for fine-tuning on different tasks. We convert all structured inputs into token sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

Self-Supervised Training

IT BECAME POSSIBLE TO TRANSFER LEARN!

GENERATIVE PRETRAINING (GPT) The approach

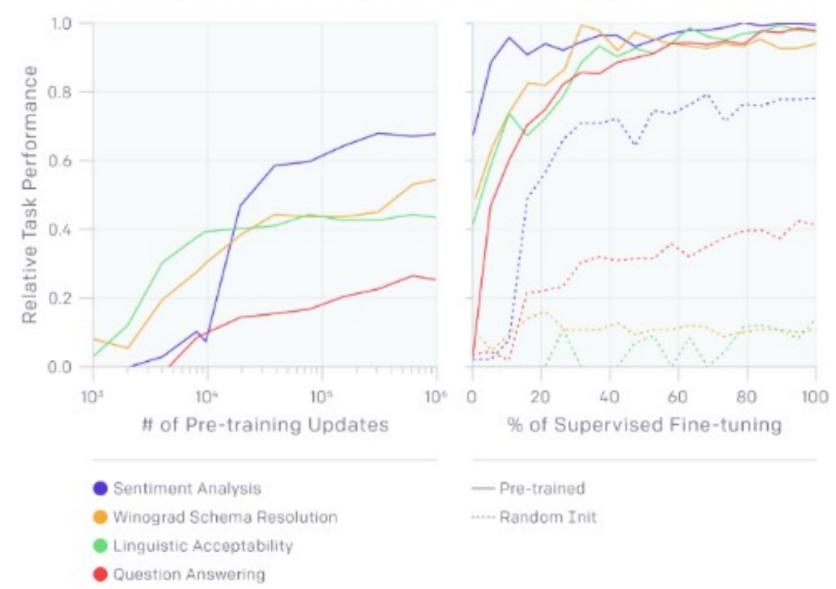
Zero-shot Transfer Can Directly Accelerate Supervised Fine-tuning



Pre-training our model on a large corpus of text significantly improves its performance on challenging natural language processing tasks like Winograd Schema Resolution.

GENERATIVE PRETRAINING (GPT) The implications

Zero-shot Transfer Can Directly Accelerate Supervised Fine-tuning



Pre-training our model on a large corpus of text significantly improves its performance on challenging natural language processing tasks like Winograd Schema Resolution.

AND IT WORKED VERY WELL

GENERATIVE PRETRAINING (GPT) The implications

DATASET	TASK	SOTA
SNLI	Textual Entailment	89.3
MNLI Matched	Textual Entailment	80.6
MNLI Mismatched	Textual Entailment	80.1
SciTail	Textual Entailment	83.3
ONLI	Textual Entailment	82.3
RTE	Textual Entailment	61.7
STS-B	Semantic Similarity	81.0
QQP	Semantic Similarity	66.1
MRPC	Semantic Sim <mark>i</mark> larity	86.0
RACE	Reading Comprehension	53.3
ROCStories	Commonsense Reasoning	77.6
COPA	Commonsense Reasoning	71.2
SST-2	Sentiment Analysis	93.2
CoLA	Linguistic Acceptability	35.D
GLUE	Multi Task Benchmark	68.9

OURS
89.9
82.1
81.4
88.3
88.1
56.0
82.0
70.3
82.3
59.0
86.5
78.6
91.3
45.4
72.8

Part 2: Self-Supervision, BERT and Beyond Lecture

- BERT

- Explore the Data
- Explore NeMo
- Text Classifier Project

• Lecture (cont'd)

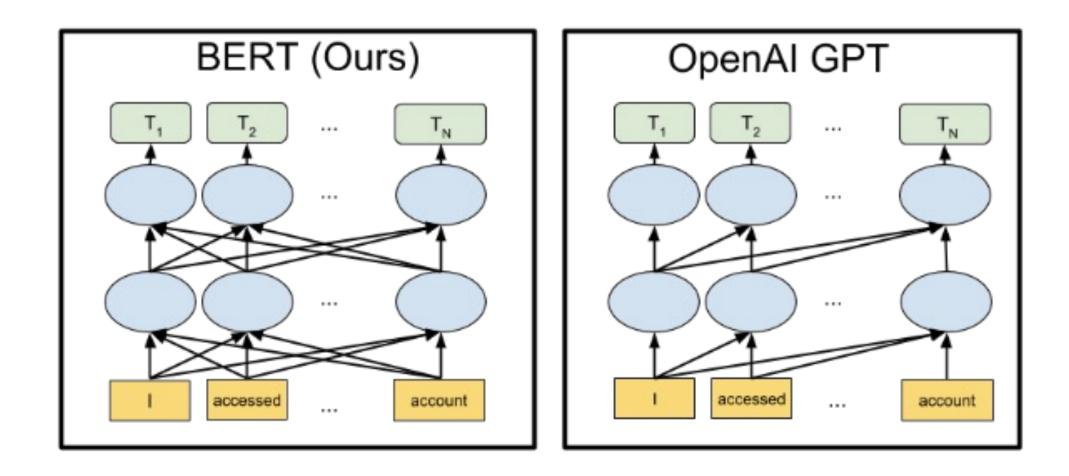
- The Scaling Laws
- Lab (cont'd)

 Why Do DNNs Work Well? • Self-Supervised Learning

Can and should we go even bigger?

• Named Entity Recognizer

BIDIRECTIONAL TRANSFORMERS (BERT) Building on the shoulders of giants



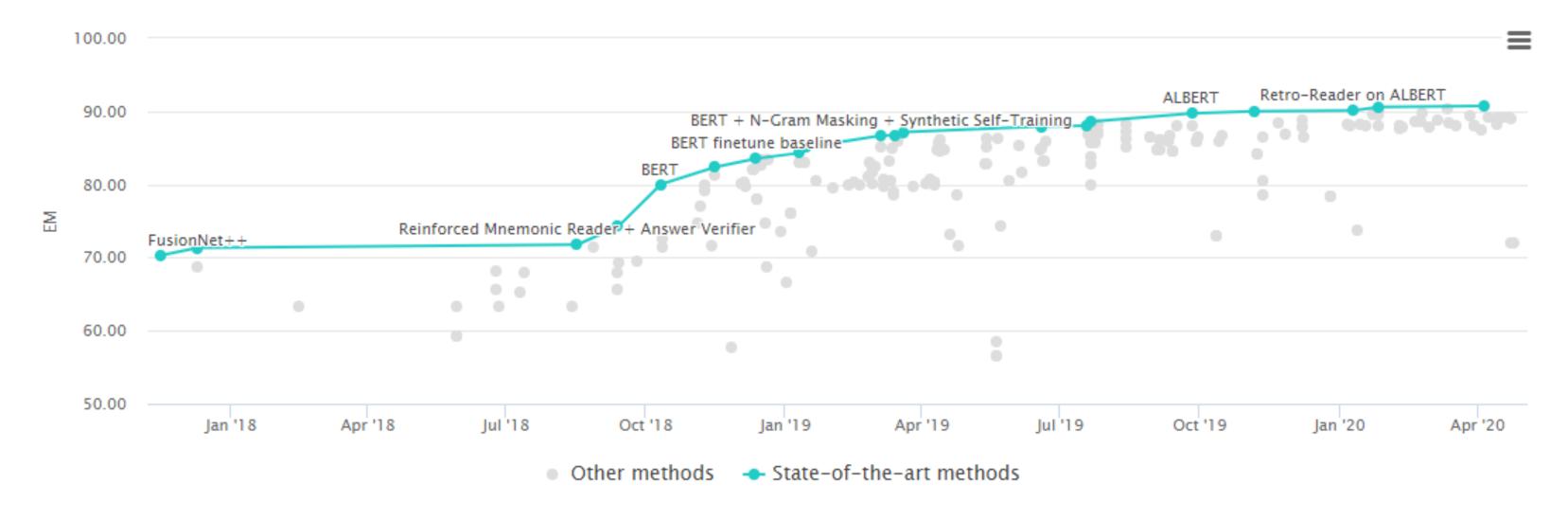
BIDIRECTIONAL TRANSFORMERS (BERT) The "pre" and "post" OpenAl ages

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

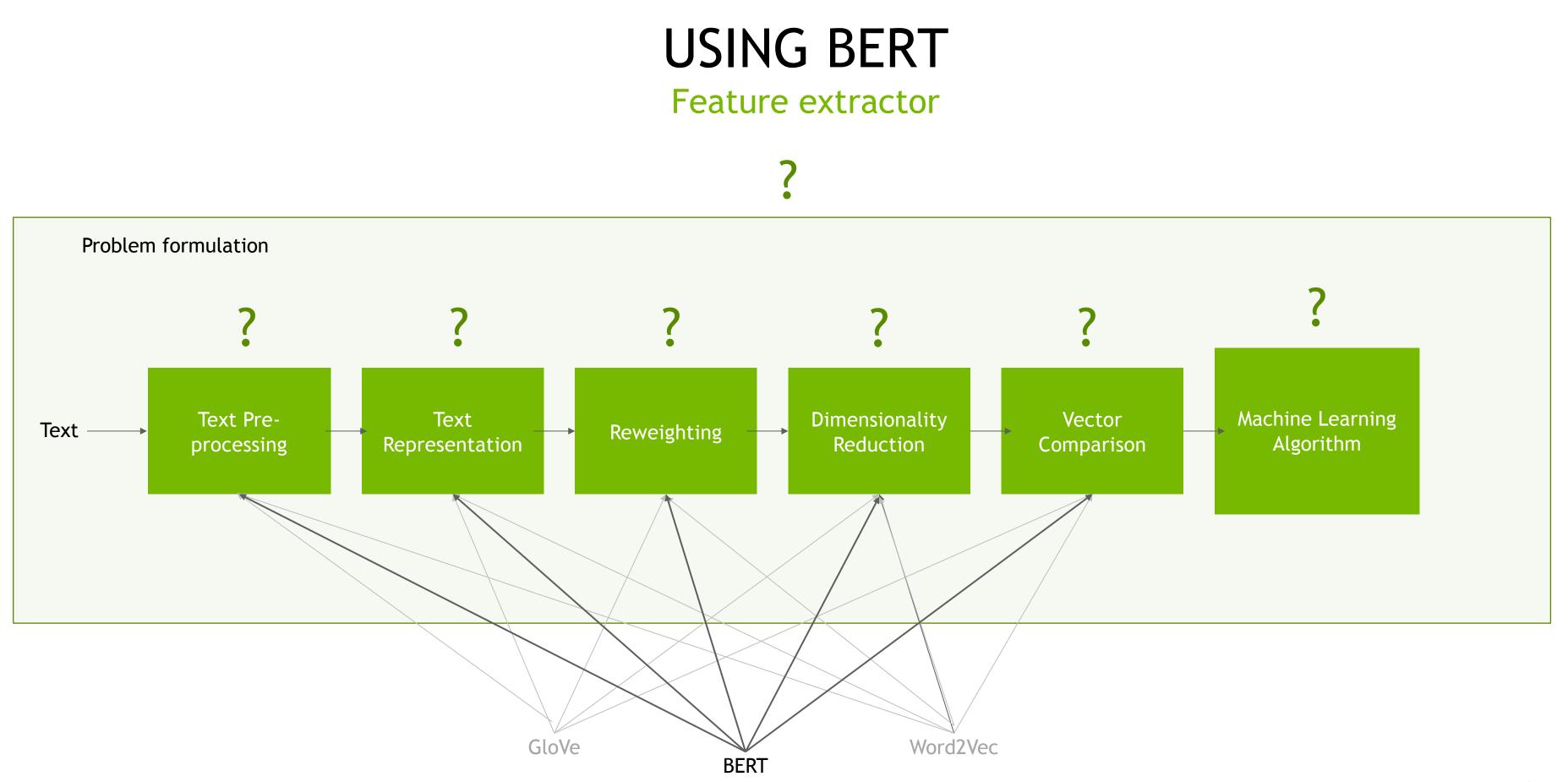
Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set.⁸ BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

SQUAD 2.0 Human performance 91.2

Question Answering on SQuAD2.0



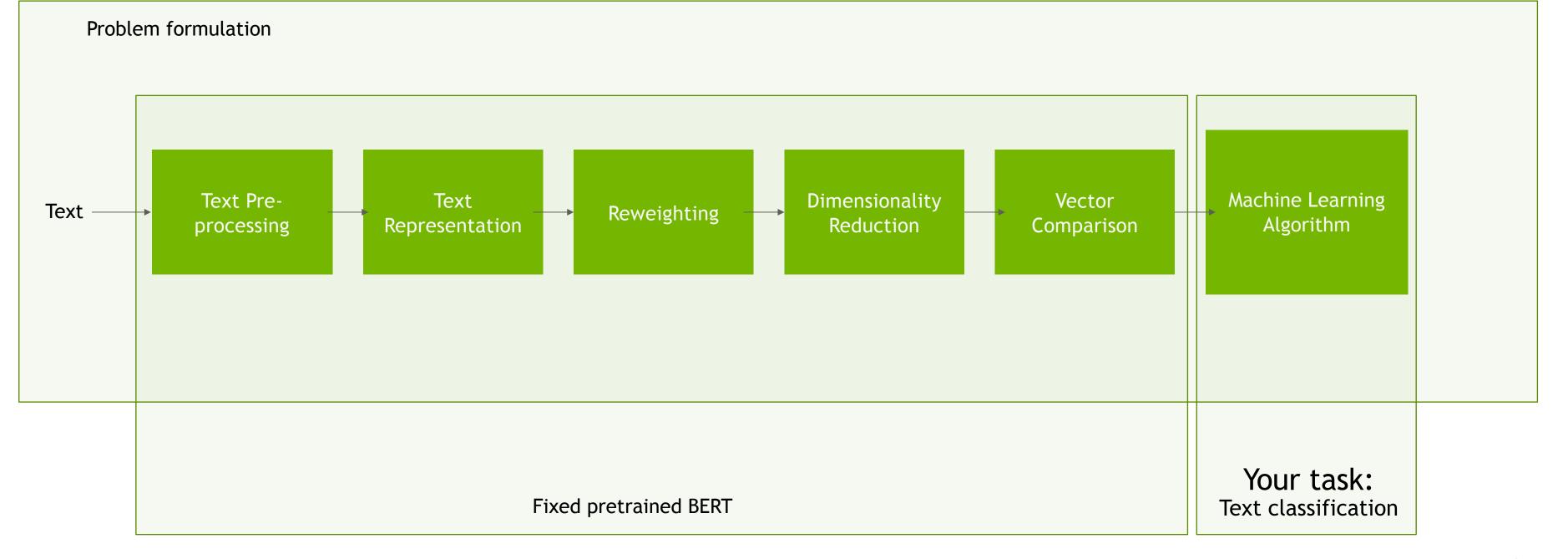
JUST YET ANOTHER UNSUPERVISED REPRESENTATION



LAB OVERVIEW

Notebooks 1, 2, 3

Text classification



Part 2: Self-Supervision, BERT and Beyond • Lecture

- BERT
- Lab
 - Explore the Data
 - Explore NeMo
 - Text Classifier Project

Lecture (cont'd)

- The Scaling Laws
- Lab (cont'd)

• Why Do DNNs Work Well? • Self-Supervised Learning

• Can and should we go even bigger?

• Named Entity Recognizer

Part 2: Self-Supervision, BERT and Beyond Lecture

- BERT
- Lab
 - Explore the Data
 - Explore NeMo
 - Text Classifier Project
- Lecture (cont'd)
 - The Scaling Laws

 - Lab (cont'd

• Why Do DNNs Work Well? • Self-Supervised Learning

• Can and should we go even bigger?

• Named Entity Recognizer

BIDIRECTIONAL TRANSFORMERS (BERT) Base vs Large

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set.⁸ BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

GPT-2 GPT vs GPT-2

- Largely the same but:
 - Larger in every way:
 - More decoder layers: 12->48
 - Larger vocabulary: 50,257
 - Larger context: 512 -> 1024
 - Larger batch size
 - Changes to layer normalization
 - Different initialization scheme

Table 2. Architecture hyperparameters for the 4 model sizes.

Parameters	Layers	dmodel
117M	12	768
345M	24	1024
762M	36	1280
1542M	48	1600

GPT-2 The Impact

Transformer LM - 100M Parameters

Trained on Wikipedia minus "Abraham Lincoln" article.

Abraham Lincoln (February 27, 1724, Salem, Massachusetts - August 29, 1755) was an American Prime Minister who was an early proponent of an anti-witchcraft situation and was President of the Salem government from 1732 to 1743, President of the Massachusetts Supreme Court during that time, and President of the Institute for Religious Education to 1777, President of the Massachusetts Supreme Court, as well as a member of the Board of Missionaries of the Episcopal Church, The Reverend John Schuyler, Mercer Bishop, and Father New York State. He received his education at Paterson College and graduated from Paterson College and the Trenton College.

He wrote his autobiography in Mantua, Massachusetts, for which he was the supreme liberal. He later became one of Massachusetts's greatest religious leaders, choosing blacks many of whom became leaders of the Puritans. He received three honorary degrees from the universities of Boston and Virginia;

Transformer LM - 5B Parameters

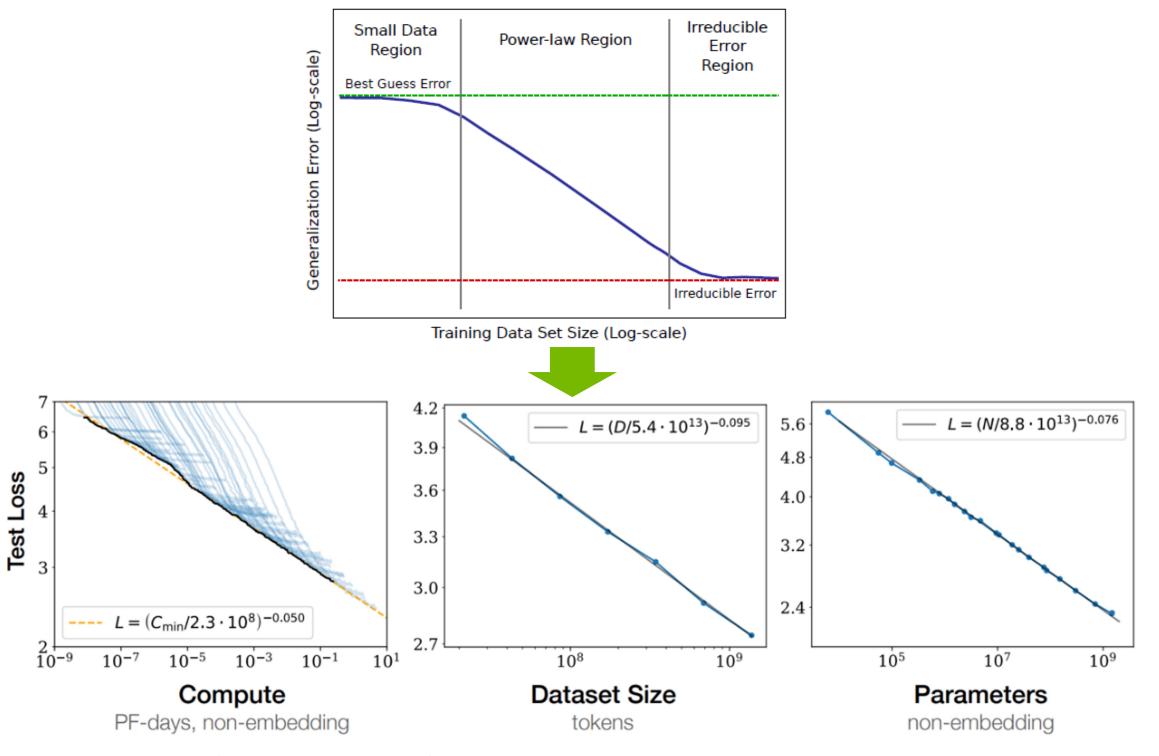
Trained on Wikipedia minus "Abraham Lincoln" article.

Abraham Lincoln (March 1, 1809 - March 15, 1865) was an American lawyer, jurist, and politician. He served as the 19th President of the United States, from March 1861 until his assassination in April 1865.

Born in Newark, New Jersey, Lincoln attended Knox College of New York, studied law, and was admitted to the bar Missouri Territory in 1826. He relocated to Illinois, and was elected to the Illinois House of Representatives in 1827, 1822, 1823, and 1826. He was elected Speaker of the Illinois House in 1825, served as Attorney General of the Illinois Territory in 1829, and was elected to the Illinois Senate in 1831. Lincoln was elected to the United States House of Representatives as a Democrat in 1833, and he was elected as a representative in the United States House of Representatives, serving two terms from 1839 to 1843. He was elected as a Whig in 1842, but he only served one term in Congress, and returned to the House of Representatives, serving

MEASURABLE IMPROVEMENT

THE SCALING LAWS OF NEURAL LANGUAGE MODELS Continuous improvement



Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409. 2017 Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin Mann, Alec Radford, Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei, Sam McCandlish. Scaling Laws for Autoregressive Generative Modeling. 2020

Part 2: Self-Supervision, BERT and Beyond • Lecture

- BERT
- Lab
 - Explore the Data
 - Explore NeMo
 - Text Classifier Project
- Lecture (cont'd)
 - The Scaling Laws
- Lab (cont'd

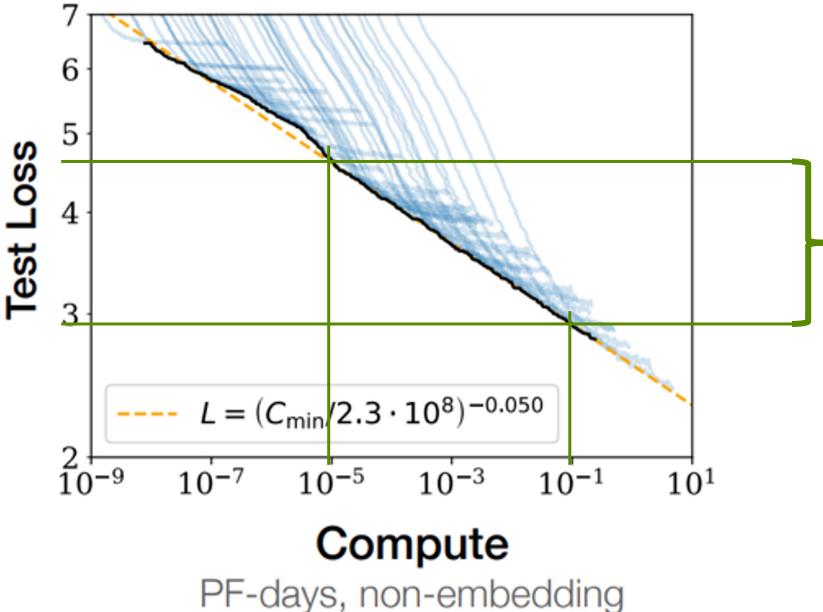
• Why Do DNNs Work Well? • Self-Supervised Learning

Can and should we go even bigger?

• Named Entity Recognizer

SHOULD WE BUILD LARGER MODELS?

ARE LARGE LANGUAGE MODELS WORTH IT? The cost of incremental improvement



Are we building those models only for the small incremental improvement in their performance?

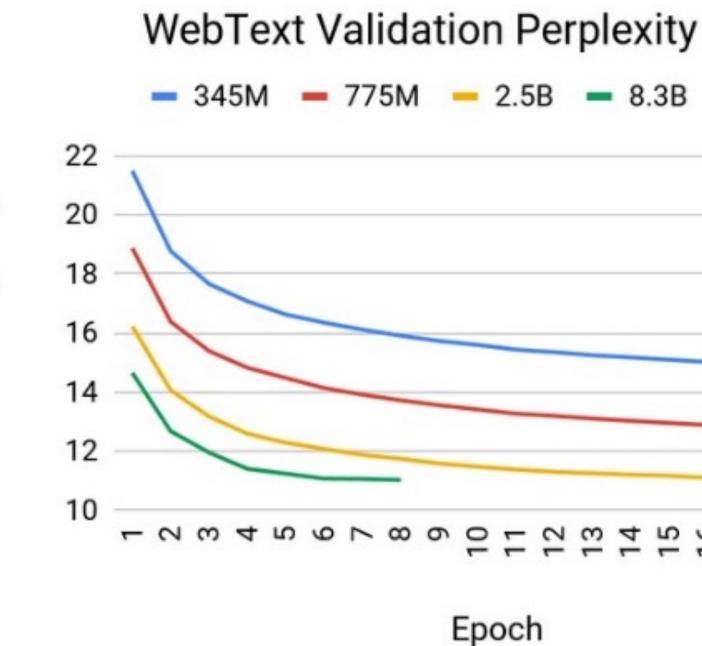
Is it worth all of the engineering and computational investment?

IS THIS REALLY THE ONLY THING WE HAVE ACHIEVED?

IT IS MUCH MORE THAN JUST INCREMENTAL **INCREASE IN ACCURACY!**

1. SAMPLE EFFICIENCY

NOT ABOUT INCREMENTAL IMPROVEMENT Sample efficiency



Validation Perplexity

20

LARGER MODELS ARE CHEAPER TO TRAIN Optimal allocation of computational budget

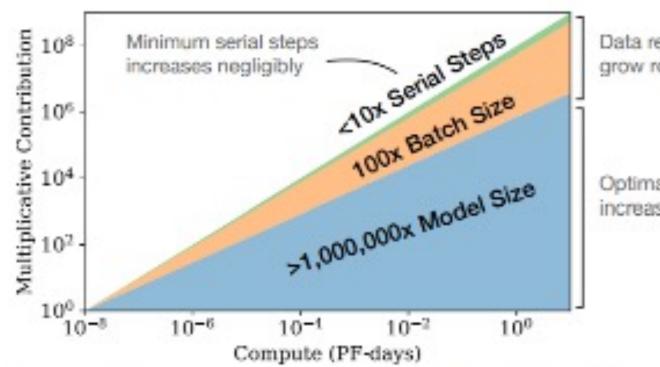


Figure 3 As more compute becomes available, we can choose how much to allocate towards training larger models, using larger batches, and training for more steps. We illustrate this for a billion-fold increase in compute. For optimally compute-efficient training, most of the increase should go towards increased model size. A relatively small increase in data is needed to avoid reuse. Of the increase in data, most can be used to increase parallelism through larger batch sizes, with only a very small increase in serial training time required.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

Data requirements grow relatively slowly

Optimal model size increases very quickly

LARGER MODELS ARE CHEAPER TO TRAIN For every dataset there exists an optimal model size minimizing compute

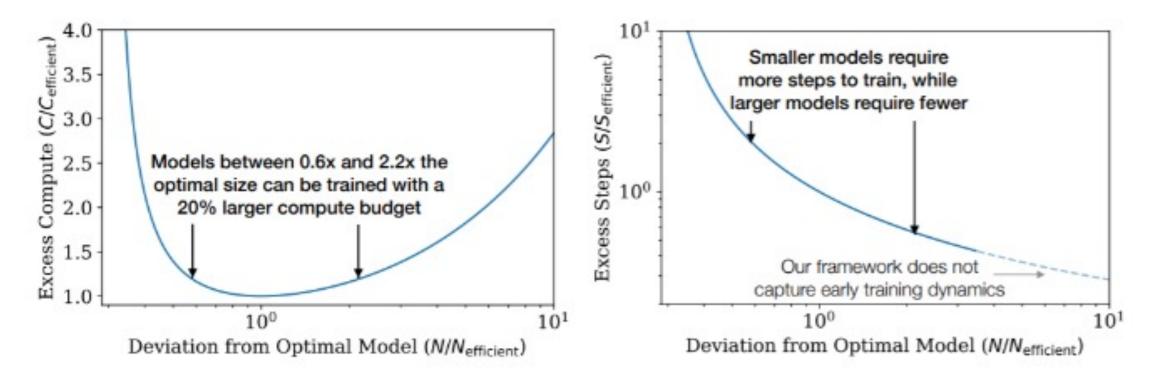
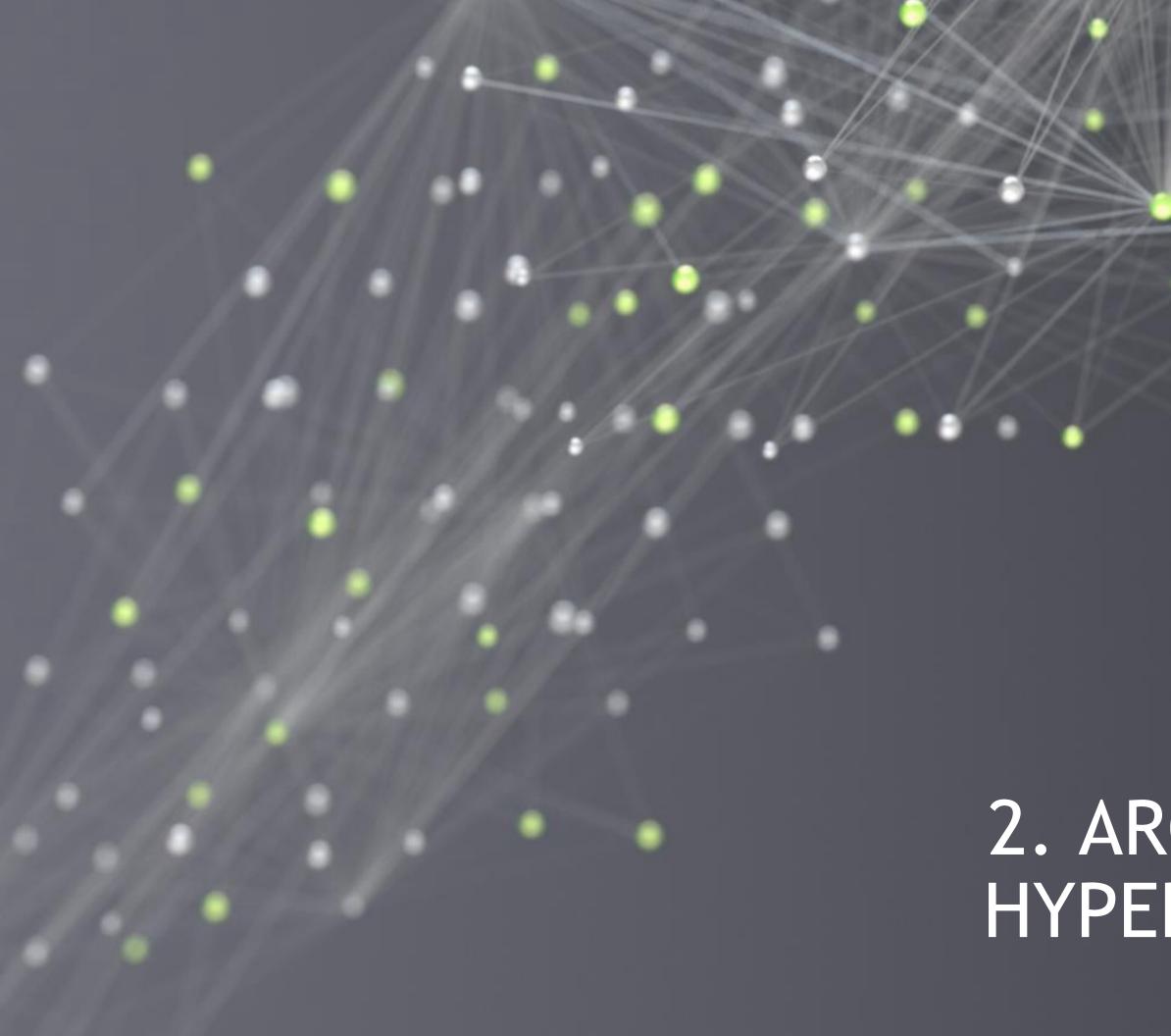


Figure 12 Left: Given a fixed compute budget, a particular model size is optimal, though somewhat larger or smaller models can be trained with minimal additional compute. Right: Models larger than the computeefficient size require fewer steps to train, allowing for potentially faster training if sufficient additional parallelism is possible. Note that this equation should not be trusted for very large models, as it is only valid in the power-law region of the learning curve, after initial transient effects.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.



2. ARCHITECTURAL HYPERPARAMETERS

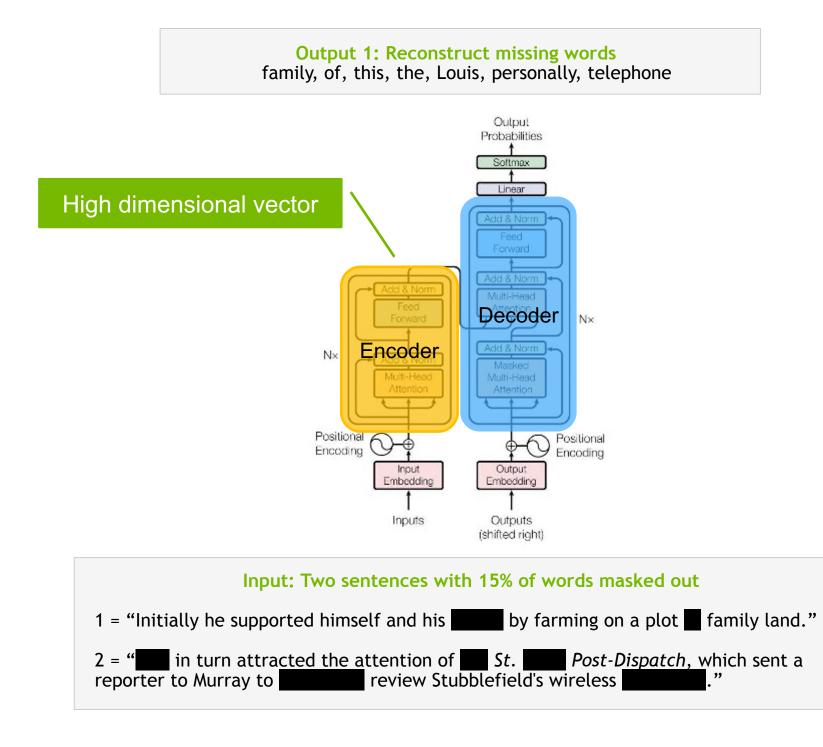
LARGE MODELS ARE CHEAPER TO DESIGN Impact of architectural hyperparameters

"... more importantly, we find that the precise architectural hyperparameters are unimportant compared to the overall scale of the language model."

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

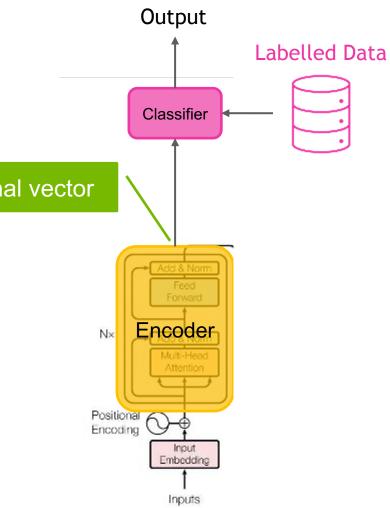
NLP APPROACH (CIRCA 2019)

Step 1: Pre-training a Transformer



High dimensional vector

Step 2. Fine tune for a specific task



3. GENERALIZATION

YES THEY CREATE INCREMENTAL IMPROVEMENT IN ACCURACY Larger models generalize better

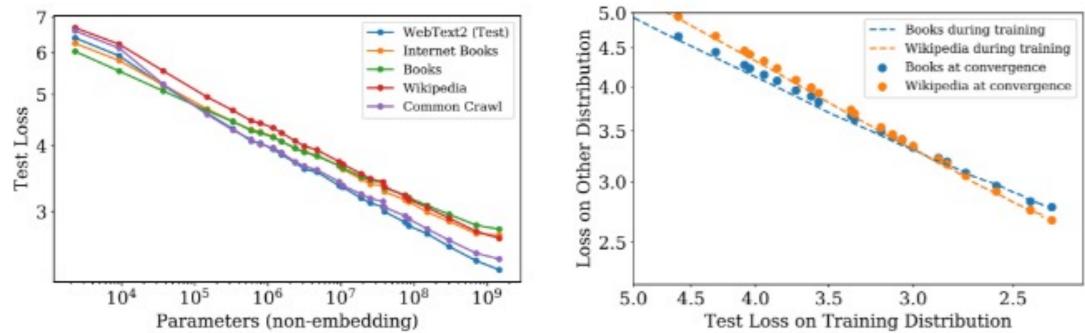
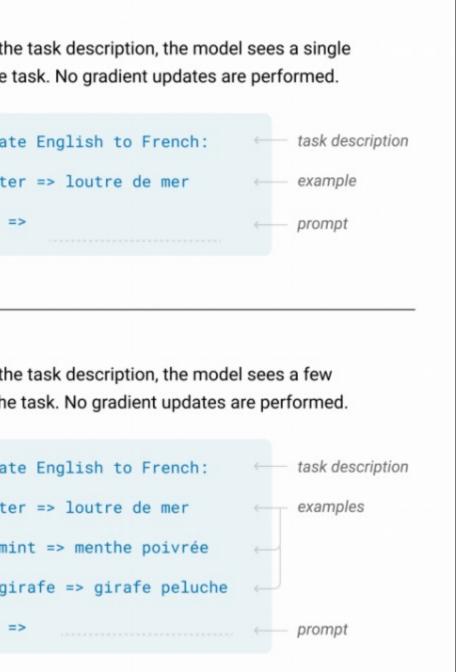


Figure 8 Left: Generalization performance to other data distributions improves smoothly with model size, with only a small and very slowly growing offset from the WebText2 training distribution. Right: Generalization performance depends only on training distribution performance, and not on the phase of training. We compare generalization of converged models (points) to that of a single large model (dashed curves) as it trains.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.

Zero/Few Shot Learners

	One-shot
	In addition to the task de example of the task. No
Zero-shot The model predicts the answer given only a natural language discription of the task. No gradient updates are performed.	1 Translate Engl 2 sea otter => lo 3 cheese =>
1 Translate English to French: ← task description 2 cheese => ← prompt	Few-shot In addition to the task de examples of the task. No
	<pre>1 Translate Engl: 2 sea otter => lo 3 peppermint => n 4 plush girafe => 5 cheese =></pre>



Zero/Few Shot Learners

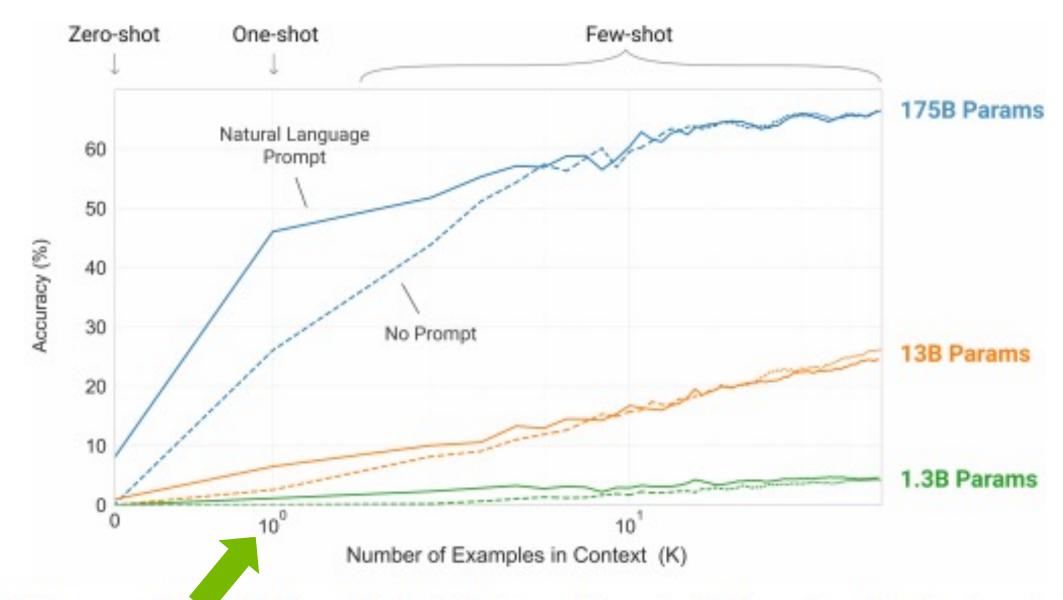
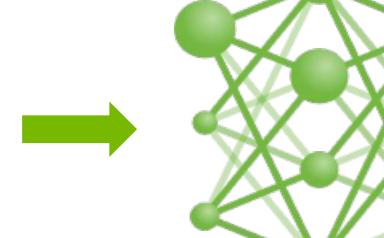


Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning performance on a simple task requiring the model to remove random symbols from a word, both with and without a natural language task description (see Sec. 3.9.2). The steeper "in-context learning curves" for large models demonstrate improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range of tasks.

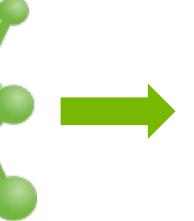
Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-Im: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053 Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.

Zero/Few Shot Learners

Q: Would you say this movie review is positive or negative? "I loved that movie"



Prompt



- positive
- great
- awsome ...

Prompt Engineering

Туре	Task	Input ([X])	Template	Answer([Y])
	Sentiment	I love this movie.	[X] The movie is [Y]	great fantastic
Text CLS	Topics	He prompted the LM.	[X] The text is about [Y]	sports science
	Intention	What is taxi fare to Denver?	[X] The question is about [Y]	quantity city
Text-span CLS	Aspect Sentiment	Poor service but good food.	[X] What about service? [Y]	Bad Terrible
Text-pair CLS	NLI	[X1]: An old man with [X2]: A man walks	Hypothesis: [X1], Premise: [X2], Answer: [Y]	Contradiction Entailment
Tagging	NER	[X1]: Mike went to Paris. [X2]: Paris	[X1] [X2] is a [Y]	Yes No
Text Generation	Summarization	Las Vegas police	[X] TL;DR: [Y]	The victim A woman
	Translation	Je vous aime.	French [X] English: [Y]	l love you. l fancy you.

Zhengbao Jiang et al. "How Can We Know What Language Models Know?".2020.

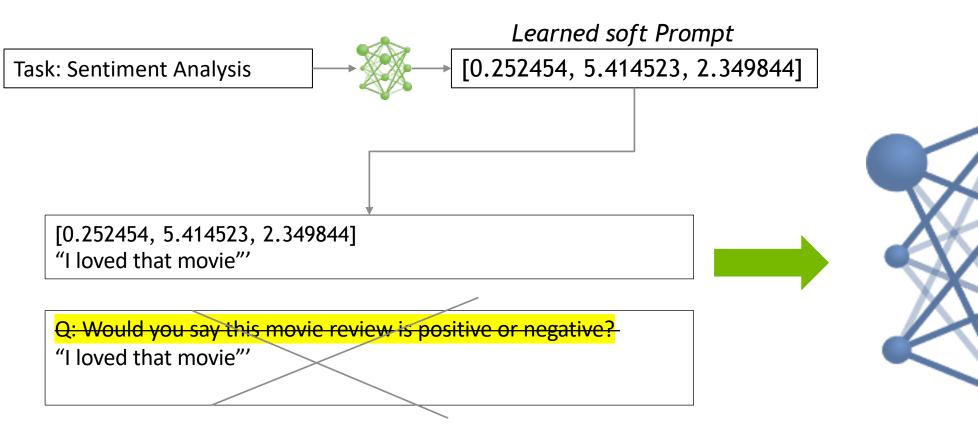
Prompts						
	manual	DirectX i	s devel	oped by	yman	
	mined	y _{mine} rele	eased t	he Dire	ectX	
	paraphrased	DirectX	is crea	ted by	ypara	
	Top 5 pred	lictions and lo	g prob	abilities		
Yman Ymine Ypara						
1		Microsoft	-1.77		•	-2.23
2	Microsoft -2.21	They	-2.43	Intel		-2.30
3	IBM -2.76	It	-2.80	defau	lt ·	-2.96
4	Google -3.40	Sega	-3.01	Apple		-3.44
5	Nokia -3.58	Sony	-3.19	Googl	e .	-3.45

Figure 1: Top-5 predictions and their log probabilities using different prompts (manual, mined, and paraphrased) to query BERT. Correct answer is underlined.

ID	Modifications	Acc. Gain
P413	x plays in \rightarrow at y position	+23.2
P495	x was created \rightarrow made in y	+10.8
P495	$x \text{ was} \rightarrow \text{is created in } y$	+10.0
P361	x is a part of y	+2.7
P413	x plays in y position	+2.2

Table 6: Small modifications (update, insert, and delete) in paraphrase lead to large accuracy gain (%).

DOWNSTREAM TASKS Prompt Learning on a Small Training Dataset



Prompt Learning

Positive

Prompt Tuning / P-Tuning

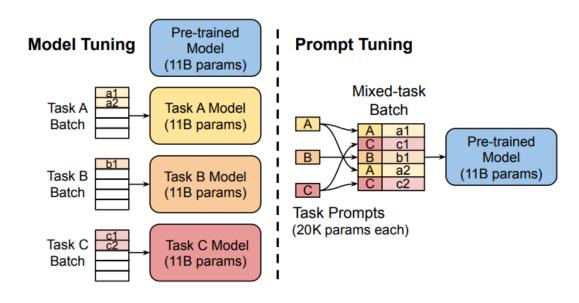


Figure 2: Model tuning requires making a taskspecific copy of the entire pre-trained model for each downstream task and inference must be performed in separate batches. Prompt tuning only requires storing a small task-specific prompt for each task, and enables mixed-task inference using the original pretrained model. With a T5 "XXL" model, each copy of the tuned model requires 11 billion parameters. By contrast, our tuned prompts would only require 20,480 parameters per task—a reduction of over five orders of *magnitude*—assuming a prompt length of 5 tokens.

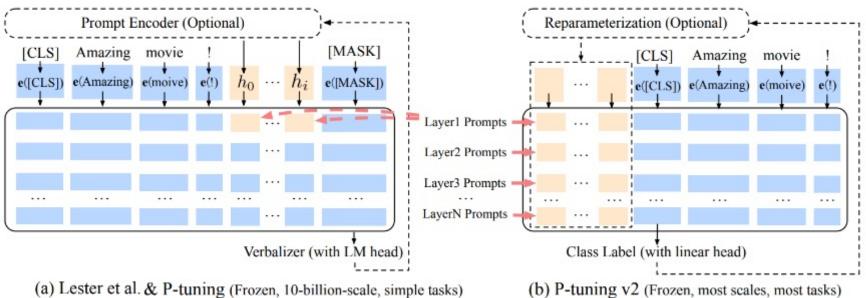


Figure 2: From Lester et al. (2021) & P-tuning to P-tuning v2. Orange tokens (include h_0, h_i) refer to prompt embeddings we add; blue tokens are embeddings stored or computed by frozen pre-trained language models. Compared to Lester et al. (2021), P-tuning v2 adds trainable continuous prompts to inputs of every transformer layer independently (as prefix-tuning (Li and Liang, 2021) does). Additionally, P-tuning v2 removes verbalizers with LM head and returns to the traditional class labels with ordinary linear head to allow its task-universality.

Brian Lester, Rami Al-Rfou, Noah Constant The Power of Scale for Parameter-Efficient Prompt Tuning. 2021. https://arxiv.org/abs/2104.08691 Xiao Liu et al. "P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks. 2021. https://arxiv.org/abs/2110.07602

DOWNSTREAM TASKS Customize Models using Parameter-efficient tuning | Adapters

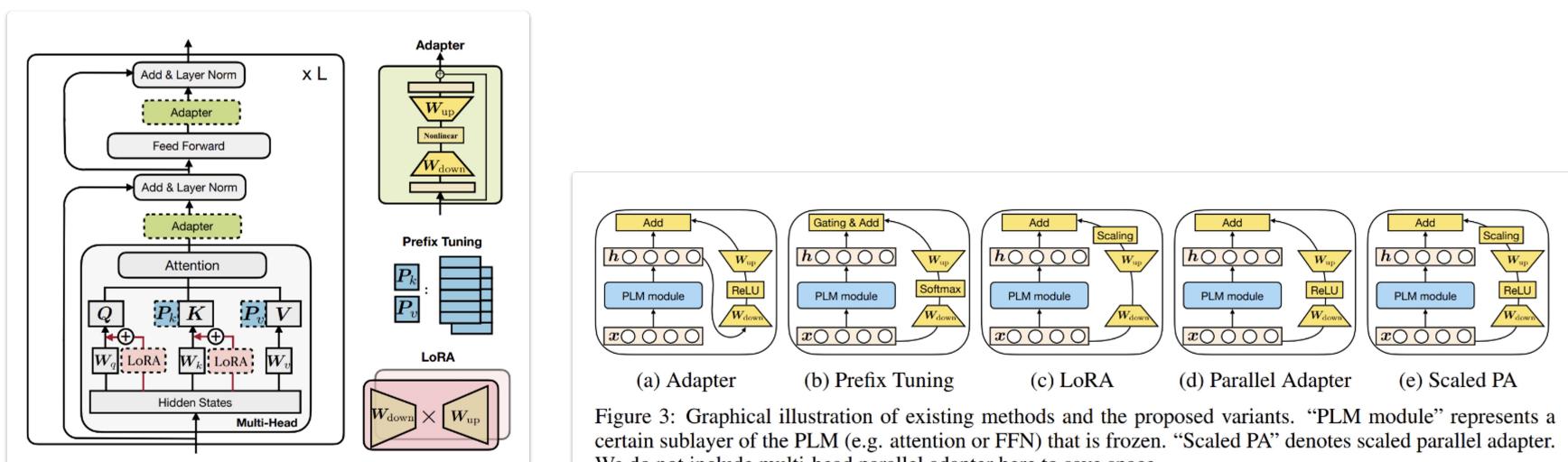


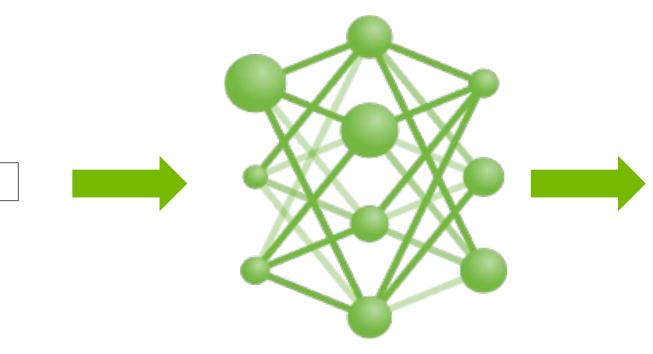
Figure 1: Illustration of the transformer architecture and several state-of-the-art parameter-efficient tuning methods. We use blocks with dashed borderlines to represent the added modules by those methods.

We do not include multi-head parallel adapter here to save space.

INSTRUCTED LLM

INSTRUCTIONS FINETUNING

Dataset of Instructions (Queries and Answers)



"Q: Who is the president of USA?

Joseph Robinette Biden Jr. is an American politician who is the 46th and current president of the United States. A member of the Democratic Party, he previously served as the 47th vice president from 2009 to 2017 under President Barack Obama, and represented Delaware in the United States Senate from ..."

INSTRUCTIONS FINETUNING

Published as a conference paper at ICLR 2022

FINETUNED LANGUAGE MODELS ARE ZERO-SHOT LEARNERS

Jason Wei*, Maarten Bosma*, Vine Brian Lester, Nan Du, Andrew M.

Google Research

This paper explores a simple r of language models. We show on a collection of datasets des shot performance on unseen t

We take a 137B parameter pr over 60 NLP datasets verbali evaluate this instruction-tuned FLAN substantially improves surpasses zero-shot 175B GP1 outperforms few-shot GPT-3 | OpenbookQA, and StoryCloz datasets, model scale, and nat instruction tuning.

Romal Thoppilan Daniel De Freitas * Jamie Hall Noam Shazeer Apoory Kulshreshtha Heng-Tze Cheng Alicia Jin Taylor Bos Leslie Baker Yu Du YaGuang Li Hongrae Lee Huaixiu Steven Zheng Maxim Krikun Amin Ghafouri Marcelo Menegali Yanping Huang Dmitry Lepikhin Adam Roberts James Oin Dehao Chen Yuanzhong Xu Zhifeng Chen Maarten Bosma Vincent Zhao Chung-Ching Chang Will Rusch Yangi Zhou Igor Krivokon Marc Pickett Laichee Man Kathleen Meier-Hellsterr Pranesh Sriniyasa Meredith Ringel Morris Tulsee Doshi Renelito Delos Santo Toju Duke Johnny Sorakei Ben Zevenbergen Kristen Olson Vinodkumar Prabhakara Mark Diaz Ben Hutchinson Alejandra Molina Erin Hoffman-Iohr Josh Lee Lora Aroyo Ravi Rajakumar Alena Butrvna Matthew Lamn Viktoriya Kuzmina Joe Fenton Aaron Cohen Rachel Bernstein Marian Croak Ed Chi Ray Kurzweil Claire Cui Blaise Aguera-Arcas **Ouoc** Le

LaMDA: Language Models for Dialog Applications

Google

Abstract

We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of Transformerbased neural language models specialized for dialog, which have up to 137B parameters and are pre-trained on 1.56T words of public dialog data and web text. While model scaling alone can improve quality, it shows less improvements on safety and factual grounding. We demonstrate that fine-tuning with annotated data and enabling the model to consult external knowledge sources can lead to significant improvements towards the two key challenges of safety and factual grounding. The first challenge, safety, involves ensuring that the model's responses are consistent with a set of human values, such as preventing harmful suggestions and unfair bias. We quantify safety using a metric based on an illustrative set of human values, and we find that filtering candidate responses using a LaMDA classifier fine-tuned with a small amount of crowdworker-annotated data offers a promising approach to improving model safety. The second challenge, factual grounding, involves enabling the model to consult external knowledge sources, such as an information retrieval system, a language translator, and a calculator. We quantify factuality using a groundedness metric, and we find that our approach enables the model to generate responses grounded in known sources, rather than responses that merely sound plausible. Finally, we explore the use of LaMDA in the domains of education and content recommendations, and analyze their helpfulness and role consistency.

InstructGPT [OpenAl]

Long Ouyang*

Pamela Mishki

John Schulma

Amano

Training language models to follow instructions with human feedback

*	Jeff Wu* Xu	Jiang* Diogo	Almeida	a* Carro	11 L. W	ainwright*
in*	Chong Zhang	sandhini Ag	arwal	Katarina S	lama	Alex Ray
an	Jacob Hilton	Fraser Keltor	n Lu	ke Miller	Made	lie Simens
da	Askell†	Peter Welinder		Paul Ch	ristian) *†
	Jan Leike*		Rya	an Lowe*		
		OpenAI				

Abstract

Making language models bigger does not inherently make them better at following a user's intent. For example, large language models can generate outputs that are untruthful, toxic, or simply not helpful to the user. In other words, these models are not aligned with their users. In this paper, we show an avenue for aligning language models with user intent on a wide range of tasks by fine-tuning with human feedback. Starting with a set of labeler-written prompts and prompts submitted through the OpenAI API, we collect a dataset of labeler demonstrations of the desired model behavior, which we use to fine-tune GPT-3 using supervised learning. We then collect a dataset of rankings of model outputs, which we use to further fine-tune this supervised model using reinforcement learning from human feedback. We call the resulting models InstructGPT. In human evaluations on our prompt distribution, outputs from the 1.3B parameter InstructGPT model are preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters. Moreover, InstructGPT models show improvements in truthfulness and reductions in toxic output generation while having minimal performance regressions on public NLP datasets. Even though InstructGPT still makes simple mistakes, our results show that fine-tuning with human feedback is a promising direction for aligning language models with human intent.

INSTRUCTIONS FINETUNING

Published as a conference paper at ICLR 2022

FINETUNED LANGUAGE MODELS ARE ZERO-SHOT LEARNERS

Jason Wei*, Maarten Bosma*, Vind Brian Lester, Nan Du, Andrew M.

Google Research

This paper explores a simple r of language models. We show on a collection of datasets des shot performance on unseen t

We take a 137B parameter pr over 60 NLP datasets verbali evaluate this instruction-tuned FLAN substantially improves surpasses zero-shot 175B GP1 outperforms few-shot GPT-3 | OpenbookQA, and StoryCloz datasets, model scale, and nat instruction tuning.

Romal Thoppilan Daniel De Freitas * Jamie Hall Noam Shazeer Apoory Kulshreshtha Heng-Tze Cheng Alicia Jin Taylor Bos Leslie Baker Yu Du YaGuang Li Hongrae Lee Huaixiu Steven Zheng Maxim Krikun Amin Ghafouri Marcelo Menegali Yanping Huang Dmitry Lepikhin Zhifeng Chen Adam Roberts James Oin Dehao Chen Yuanzhong Xu Maarten Bosma Vincent Zhao Chung-Ching Chang Will Rusch Yangi Zhou Igor Krivokon Marc Pickett Laichee Man Kathleen Meier-Hellsterr Pranesh Srinivasar Meredith Ringel Morris Renelito Delos Santo Tulsee Doshi Toju Duke Johnny Sorakei Ben Zevenbergen Kristen Olson Vinodkumar Prabhakara Mark Diaz Ben Hutchinson Alejandra Molina Erin Hoffman- John Josh Lee Lora Aroyo Ravi Rajakumar Alena Butryna Aaron Cohen Matthew Lamn Viktoriya Kuzmina Joe Fenton Rachel Bernstein Marian Croak Ed Chi Ray Kurzweil Blaise Aguera-Arcas Claire Cui **Ouoc Le**

LaMDA: Language Models for Dialog Applications

Google

Abstract

We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of Transformerbased neural language models specialized for dialog, which have up to 137B parameters and are pre-trained on 1.56T words of public dialog data and web text. While model scaling alone can improve quality, it shows less improvements on safety and factual grounding. We demonstrate that fine-tuning with annotated data and enabling the model to consult external knowledge sources can lead to significant improvements towards the two key challenges of safety and factual grounding. The first challenge, safety, involves ensuring that the model's responses are consistent with a set of human values, such as preventing harmful suggestions and unfair bias. We quantify safety using a metric based on an illustrative set of human values, and we find that filtering candidate responses using a LaMDA classifier fine-tuned with a small amount of crowdworker-annotated data offers a promising approach to improving model safety. The second challenge, factual grounding, involves enabling the model to consult external knowledge sources, such as an information retrieval system, a language translator, and a calculator. We quantify factuality using a groundedness metric, and we find that our approach enables the model to generate responses grounded in known sources, rather than responses that merely sound plausible. Finally, we explore the use of LaMDA in the domains of education and content recommendations, and analyze their helpfulness and role consistency.

InstructGPT [OpenA

Long Ouyang*

Pamela Mishkin*

John Schulman

language models with human intent.

LaMDA [Google]

Training language models to follow instructions with human feedback

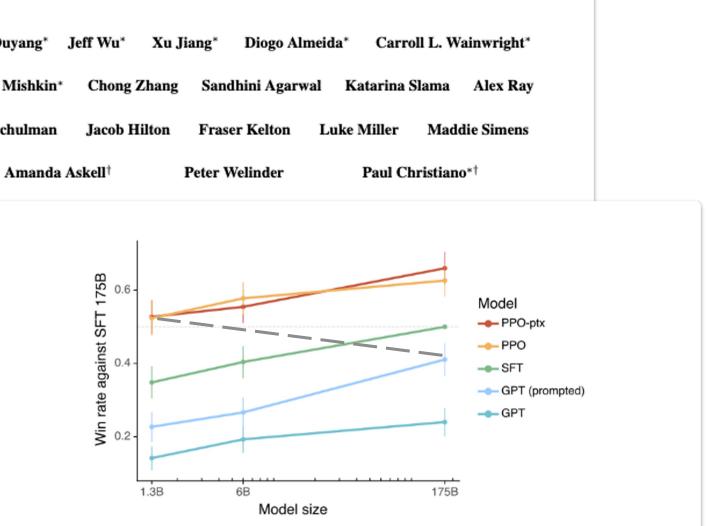
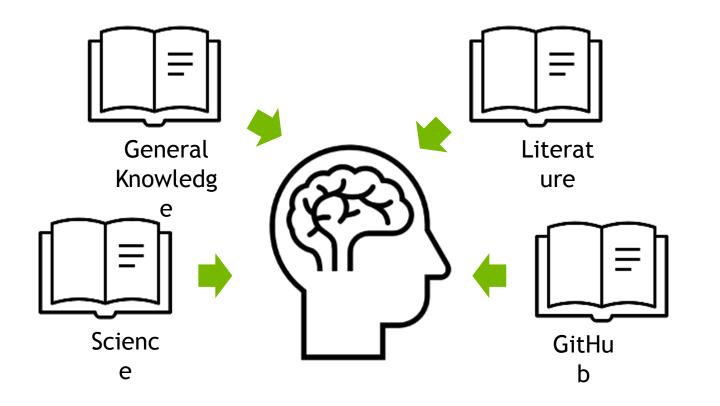


Figure 1: Human evaluations of various models on our API prompt distribution, evaluated by how often outputs from each model were preferred to those from the 175B SFT model. Our InstructGPT models (PPO-ptx) as well as its variant trained without pretraining mix (PPO) significantly outperform the GPT-3 baselines (GPT, GPT prompted); outputs from our 1.3B PPO-ptx model are preferred to those from the 175B GPT-3. Error bars throughout the paper are 95% confidence intervals.

CHANGE IN THE NLP PARADIGM

NEW NLP APPROACH (CIRCA 2021)

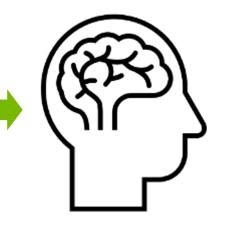
Step 1: Train a <u>Very Deep/HUGE</u> model



'Q: Would you say this movie review is positive or negative? "I loved that movie"

Huge means Billions of parameters

Step 2. Ask questions



TOWARDS GENERAL INTELLIGENCE

Old way

\star	Needs Labelled data	\star	Does not
	 Cost of data collection/labelling 	*	Single ge
	 Legal/Privacy concerns around using data 	*	More gen
\star	1 model per task results in		higher le
	 Increased model development/tuning cost 	*	Computa
	 Increased operational costs 		
	 Increased money spent on sourcing data 		
\star	Relatively Limited generalization		
▲	Computationally chapper ("300 Million parameters)		

★ Computationally cheaper (~300 Million parameters)

Leveraging more compute to get a general model without significant data/labelling cost

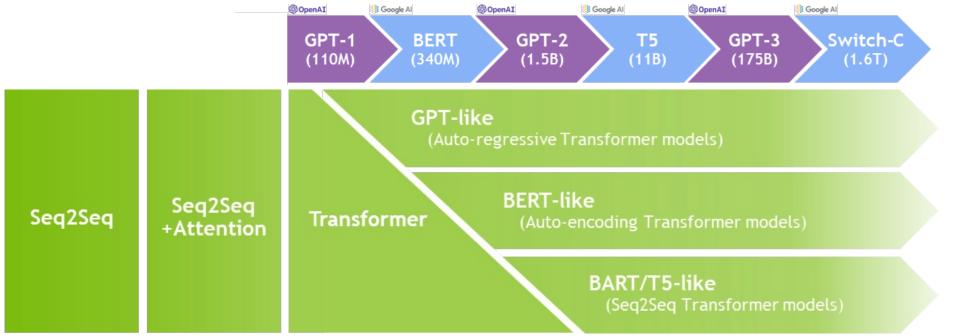
New way

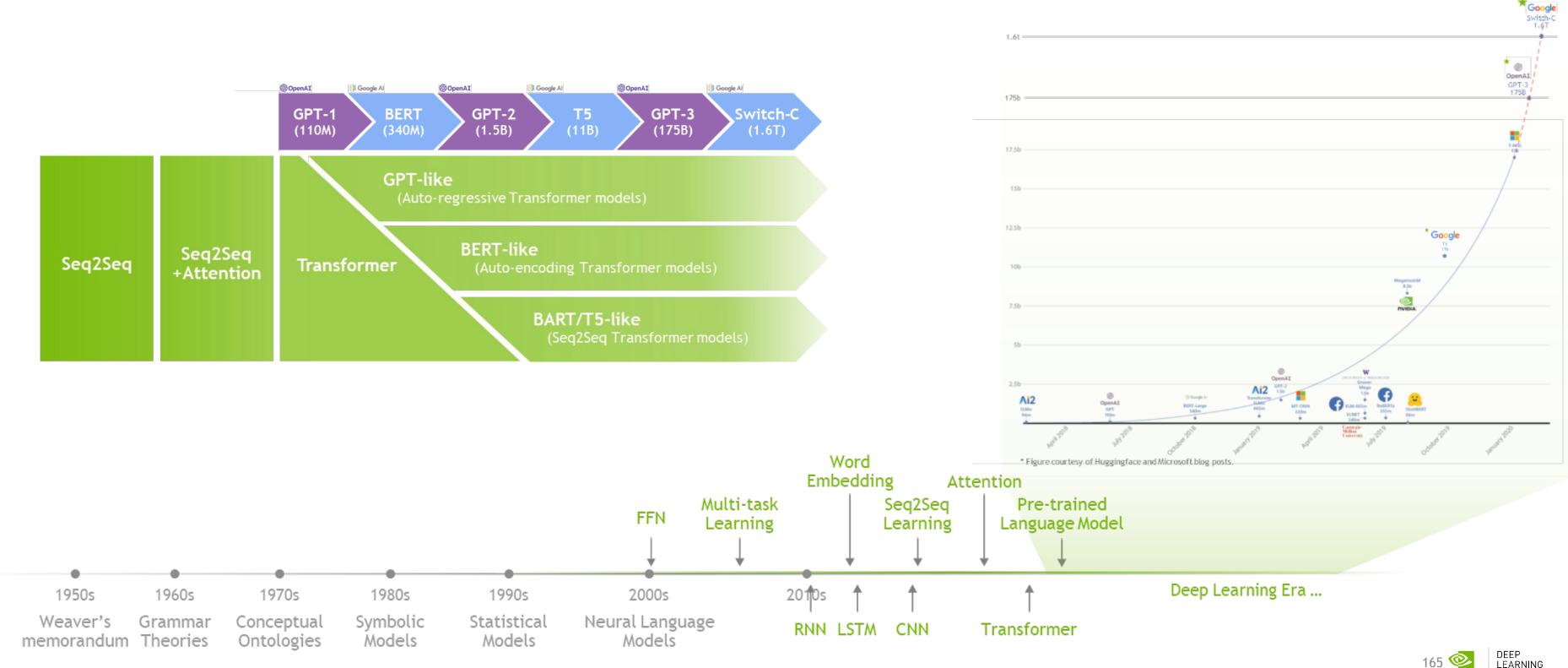
need labelled data

eneric model can do more than one tasks neralized: in addition to language also learns evel concepts, styles, etc.

ationally Expensive (~500 Billion parameters)

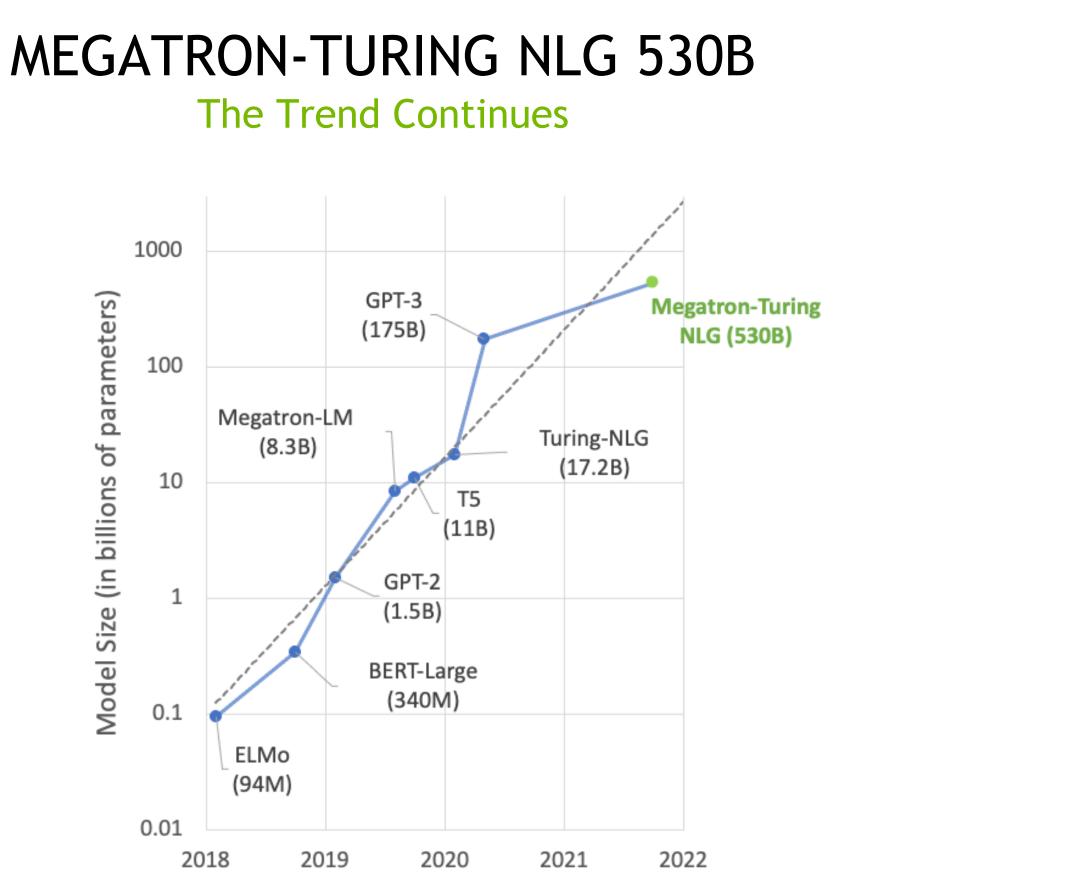
HISTORY OF LANGUAGE MODELS Language Model became more complex and larger





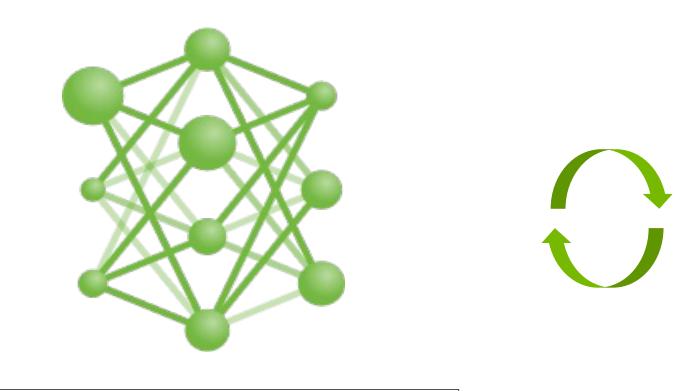
NVIDIA

INSTITUTE



LLM FOR SEARCH

EXTERNAL KNOWLEDGE SOURCE



Instructed LLM

Knowledge source

EXTERNAL KNOWLEDGE SOURCE

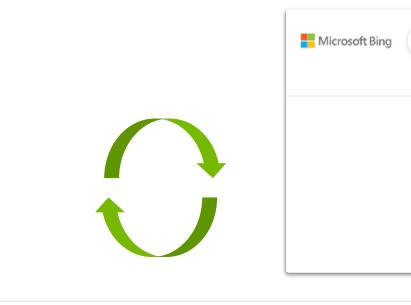
Searching through the web

A Can you formulate a search querry that will help me find the above mentioned information?

Certainly! Here's a search query that could help you find more information about synthesizing dimethyl carbonate (DMC) from raw materials:

"synthesis of dimethyl carbonate from methanol and phosgene"

This query includes the relevant keywords for the process (synthesis, dimethyl carbonate, methanol, phosgene) and can help you find articles, research papers, or other sources that discuss the topic in more detail. You may also want to refine your search with additional keywords related to the catalyst, reaction conditions, and purification techniques, depending on the level of detail you're looking for. As always, be sure to evaluate the sources you find for accuracy and reliability.



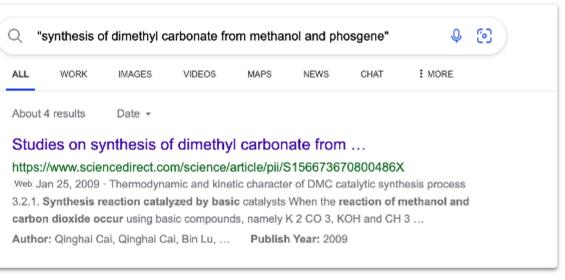
Given the following text: "The reaction thermodynamics of dimethyl carbonate (DMC) synthesis from CH3OH and CO2 was investigated by estimating Δ rH and Δ rG of the reaction at different temperatures and pressure. The result shows that the reaction do not spontaneously occur under finite conditions in view of thermodynamics. Thus, in or to seek a new method or a novel idea for the DMC synthesis, the thermodynamics of I synthesis catalyzed by basic catalysts, K2CO3, KOH and CH3OK, was discussed in details. A general conclusion was obtained that the subroutine nesting of a coupling reaction is an effective avenue to increase the yield of DMC synthesis from CO2 and CH3OH."

How do you increae the yield of DMC?

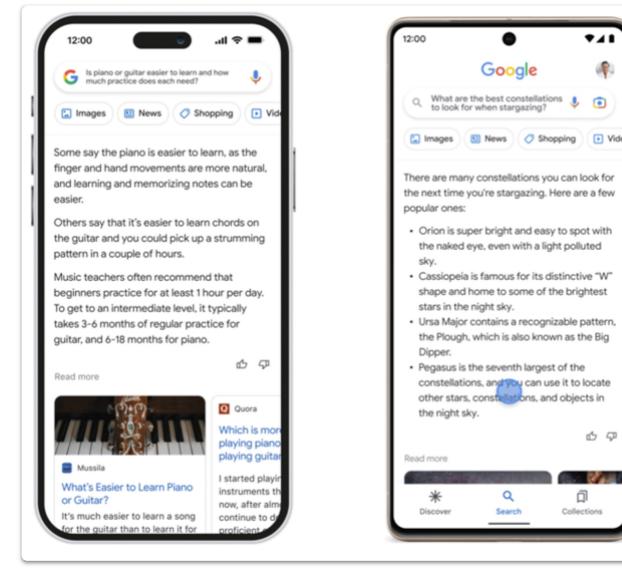
According to the given text, the most effective way to increase the yield of dimethyl carbonate (DMC) synthesis from CO2 and CH3OH is through the use of a subroutine nesting of a coupling reaction, which was found to be an effective avenue for improvin the reaction yield. Additionally, the text suggests that the thermodynamics of DMC synthesis catalyzed by basic catalysts, such as K2CO3, KOH, and CH3OK, were also discussed in detail, so it's possible that other catalysts or reaction conditions could be used to optimize the reaction yield as well. However, the text does not provide specific details on how the coupling reaction method works, so further research would be need to explore this approach in more detail.

Α

67

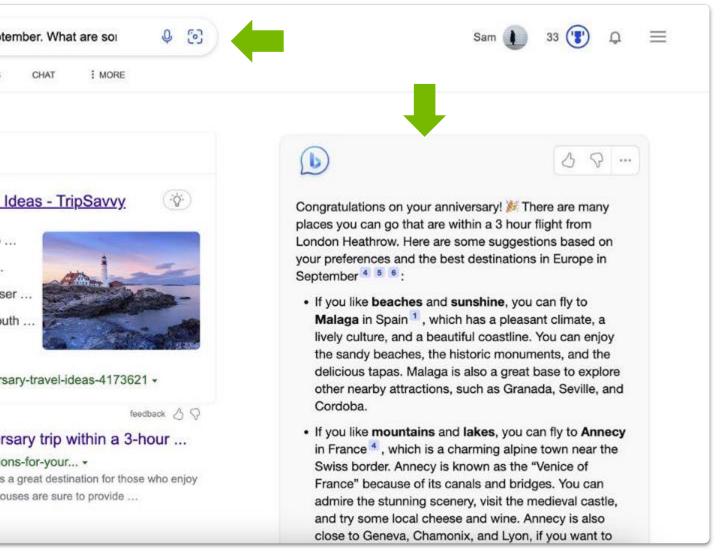


EXTERNAL KNOWLEDGE SOURCE **Examples of Search Engine Powered by LLM**



Hicrosoft Bing	Q 18	am planning a	a trip for our	anniversary	y in Sep
	ALL	SHOPPING	IMAGES	VIDEOS	MAPS
	About 8	36,800,000 resi	ults Date	9 *	
	Q trip	osavvy.com	Jun 26, 2019		
	The E	Best Septe	mber Ann	iversary	Travel
	1. Mak	e Your Way to	o Maine. Wi	nter comes	early to
	2. Sper	nd Septembe	r in San Jua	in. San Juai	n has
	3. Bool	k a Trip to Pra	ague. Coole	r weather a	nd spars
	4. Cho	ose Buenos A	Aires. Known	n as the Par	ris of So
	See fu	II list on trips	avvy.com		
	https://	/www.tripsav	/y.com/best-	september	anniver
	10 ro	mantic des	stinations	for your a	annive
		/starctmag.co Feb 2023 · Ams			
		ture, and histor			
	Peop	le also a	sk		

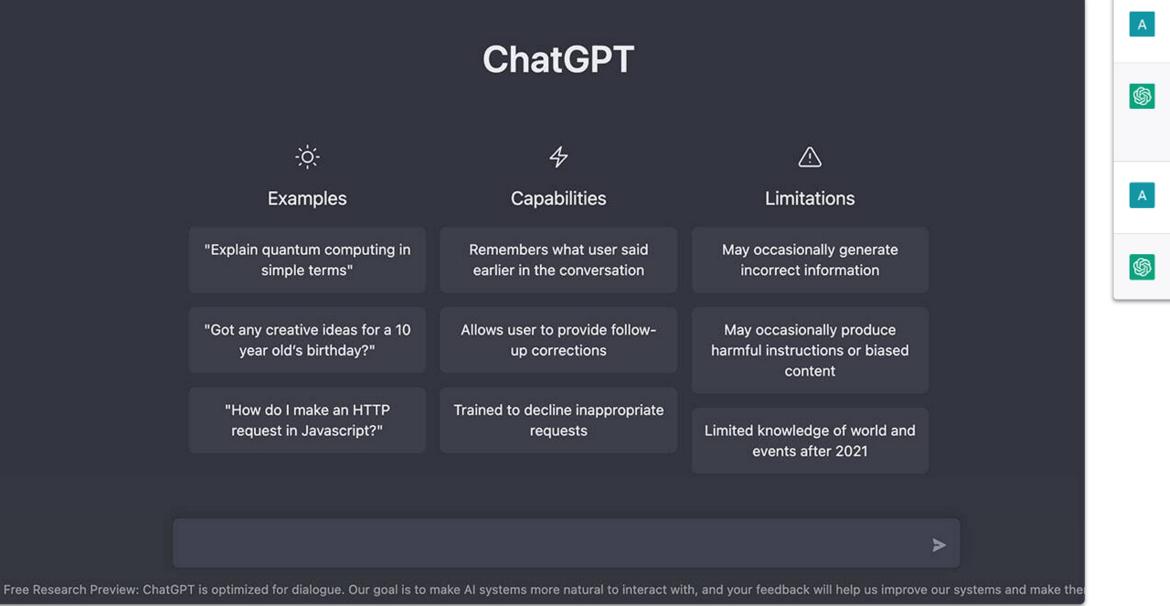
NORA - No One Right Answer [Google]



New Bing Search Engine [Microsoft]

LLM FOR CHATBOTS

CHATBOTS POWERED BY INSTRUCTED LLM ChatGPT is a sibling model to InstructGPT



Who is the president of the United States?					
As of my knowledge cutoff of September 2021, the President of the United States was Joe \square Biden.	, .				
Could you tell me where was he born?					
Certainly! Joe Biden was born in Scranton, Pennsylvania, United States.	, .				
A Could you tell me about his early career?					
 Yes, I'd be happy to give you a brief overview of Joe Biden's early career. After graduating from law school in 1968, Biden worked as an attorney in Wilmington, Delaware, before being elected to the New Castle County Council in 1970. In 1972, at the age of 29, he was elected to the United States Senate, becoming one of the youngest senators in American history. During his time in the Senate, Biden served on several committees, including the Foreign Relations Committee and the Judiciary Committee, and became known for his work on issues related to crime, drugs, and foreign policy. In 2008, he was elected Vice President of the United States under President Barack Obama, serving two terms in that role before being elected President in 2020. 					

CHATBOTS POWERED BY INSTRUCTED LLM

Bing Chat powered by Next generation GPT | Bard powered by LaMDA

© OpenAI	Next-generation large language model More powerful than ChatGPT Customized for search	Prometheus Model	Introducing Bard, an experimental conversational AI service powered by LaMDA
 flight from London Heathrow. Here a destinations in Europe in September If you like beaches and sunshine lively culture, and a beautiful coa and the delicious tapas. Malaga Granada, Seville, and Cordoba. If you like mountains and lakes, y near the Swiss border. Annecy is You can admire the stunning sce Annecy is also close to Geneva, 0 If you like art and history, you can Renaissance and a UNESCO Wor architectural masterpieces, such 	3 hour flight from London Heathrow?	n Is.	 Bure, here are some of the pros and cons of buying an electric car: Prose Electric cars produce zero emissions when driving, which is better than a gas powered car for the environment. Gas cars produce emissions that contribute to climate change. They are generally cheaper to operate. They don't require oil changes or tune-ups, and they have fewer moving parts, so there's less that can go wrong. In some places, electric cars are eligible for tax credits. Electric cars are becoming more popular, so there's a growing network of charging stations. Electric cars have a more limited driving range, depending on the size of battery. Charging an electric car is usually higher than the initial cost of an equivalent gasoline car. The initial cost of an electric car is usually higher than the initial cost of an equivalent gasoline car. The wide y are not as readily available as gasoline cars. There are fewer models available as dealerships.
Ask me anything		Feedback	What's on your mind? Bard may give inaccurate or inappropriate information. Your feedback makes Bard more helpful and safe.

TECHNICALLY, CAN WE BUILD LARGER MODELS?

GOING BIGGER The challenge

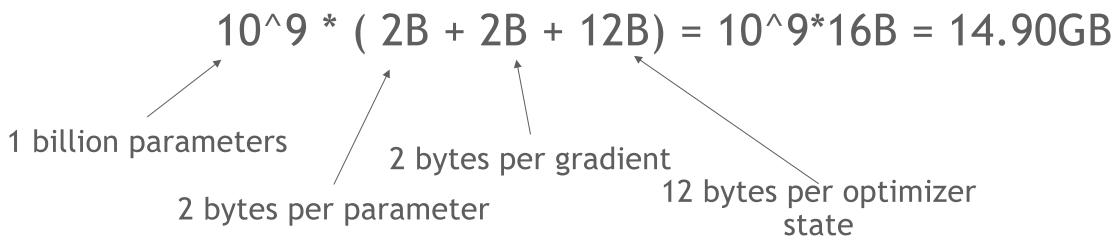
- If we only consider Parameters, Gradients, and Optimizer states and ignore activations
- If we use FP16 data representation (so two bytes)
- If we use Adam as an optimizer (storing twelve bytes per parameter in mixed precision mode)
- If we consider a model with <u>one billion</u> parameters

= 14.90GB

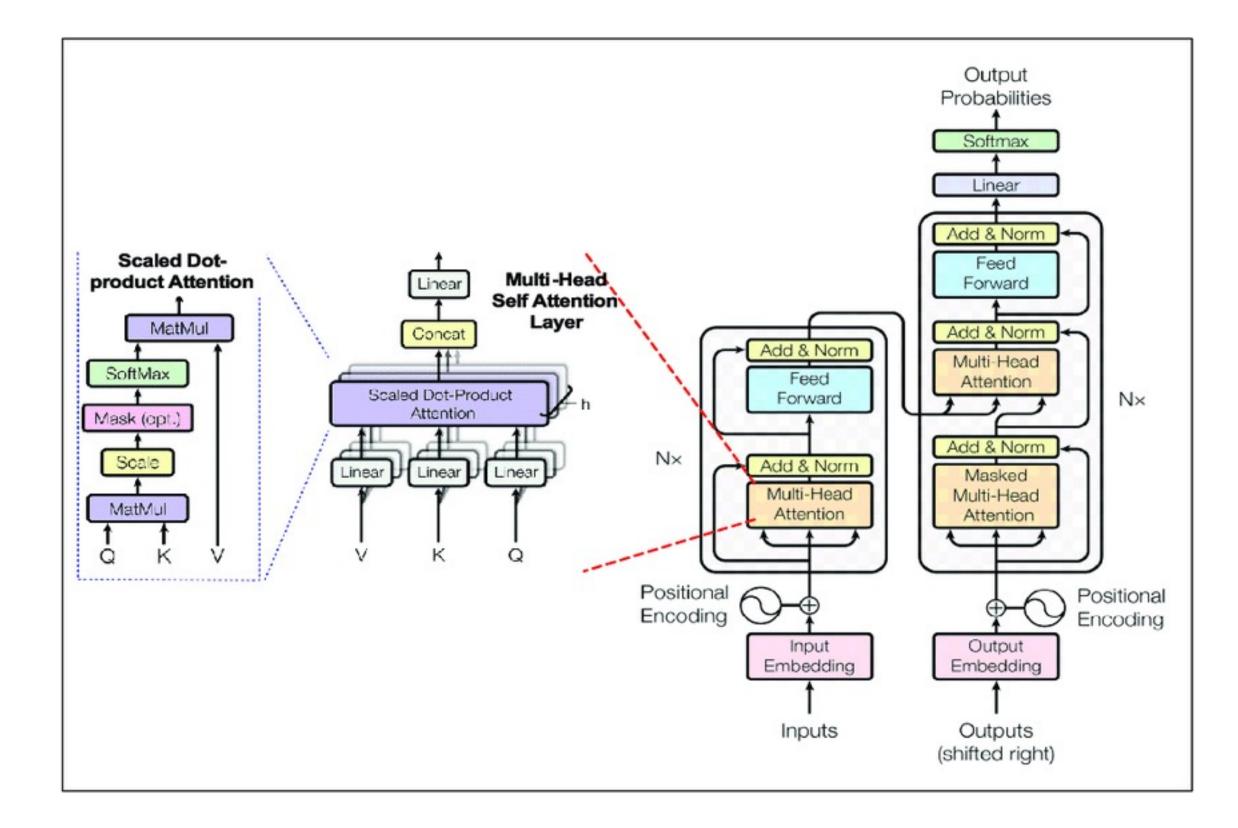
mizer

GOING BIGGER The challenge

- What about activations?
- What about 2 or 3 billion parameter models?

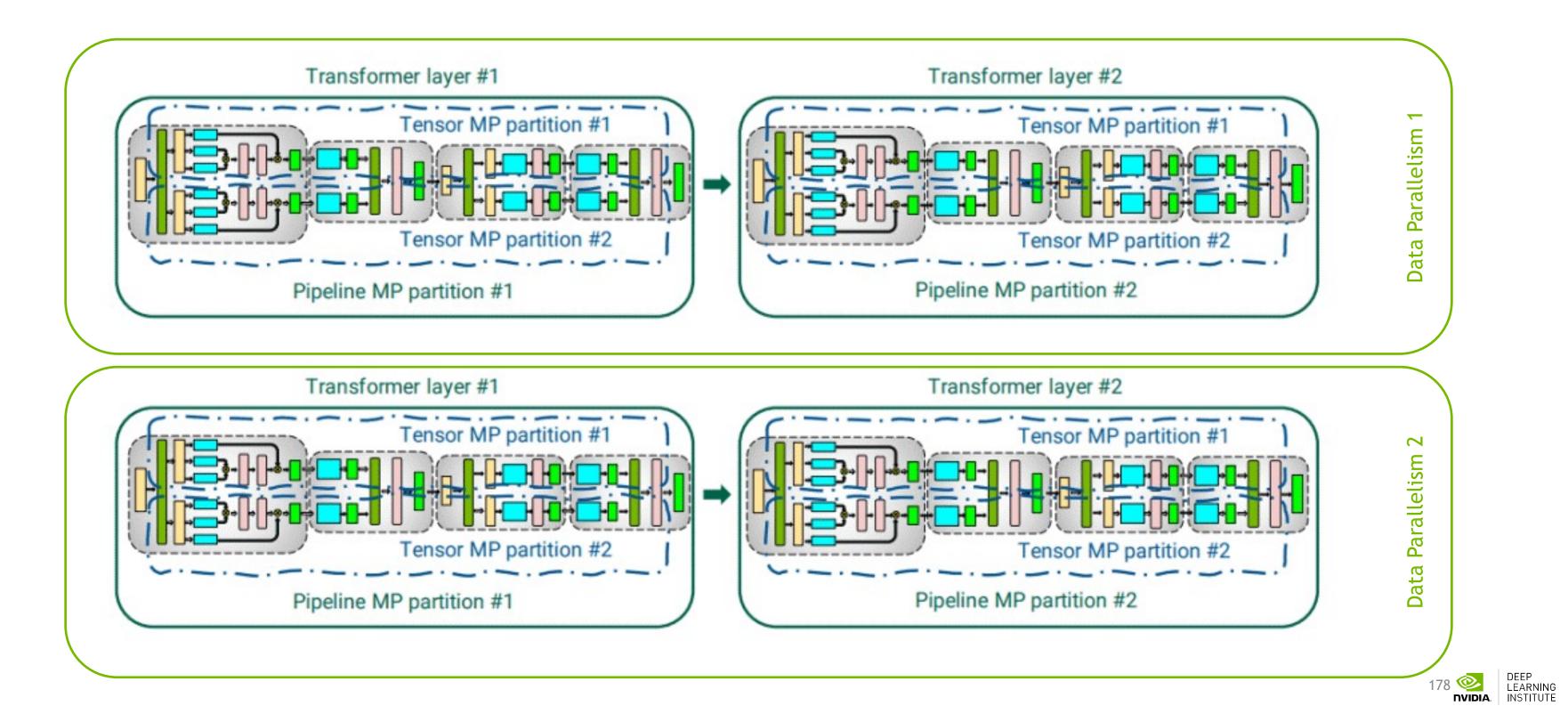


TRANSFORMER MODELS



MODEL IMPLEMENTATION

Data, Pipeline and Tensor Parallelism



ON elism

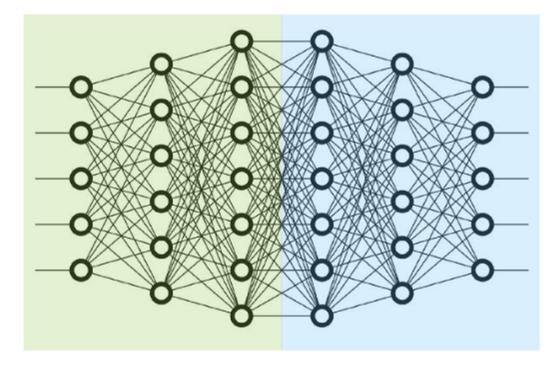
MODEL PARALLELISM

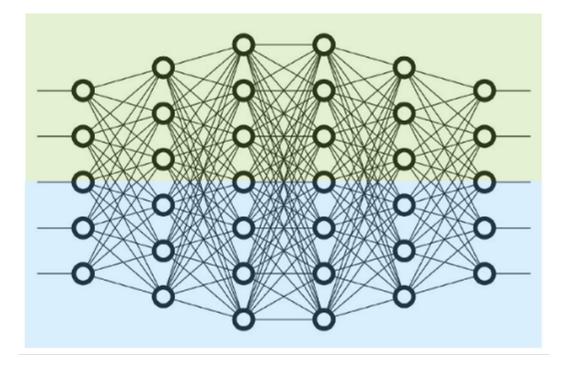
• Pipeline (Inter-Layer) Parallelism

- Split sets of layers across multiple devices
- Layer 0,1,2 and layer 3,4,5 are on difference devices

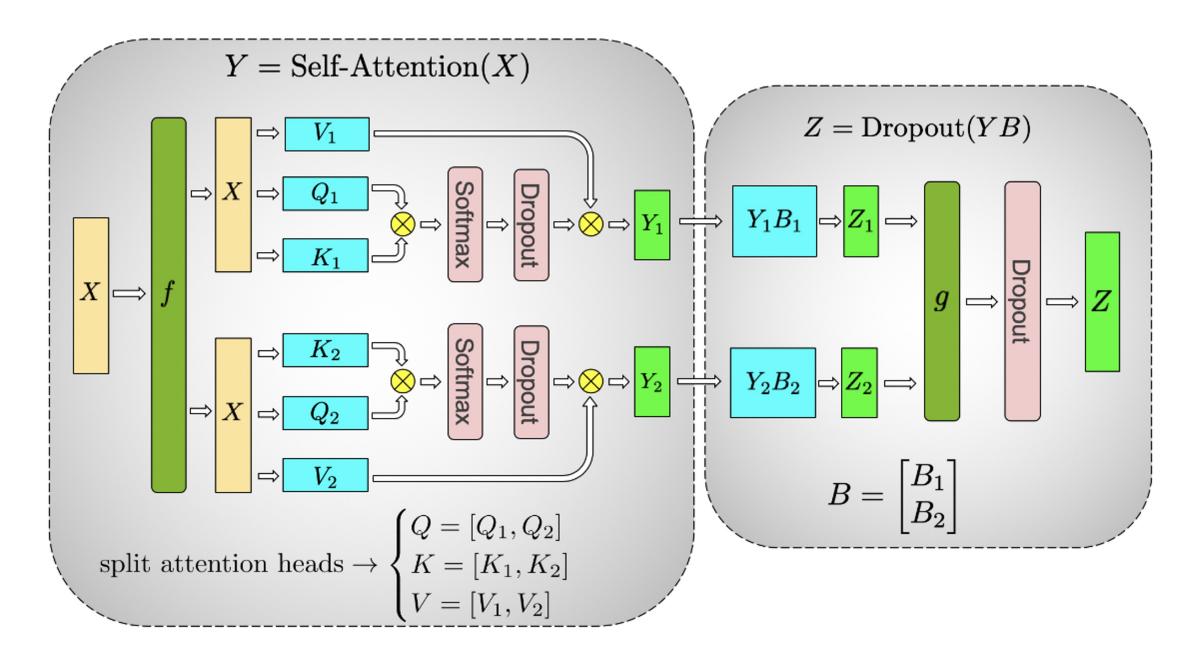
• Tensor (Intra-Layer) Parallelism

- Split individual layers across multiple devices
- Both devices compute difference parts of Layer 0,1,2,3,4,5



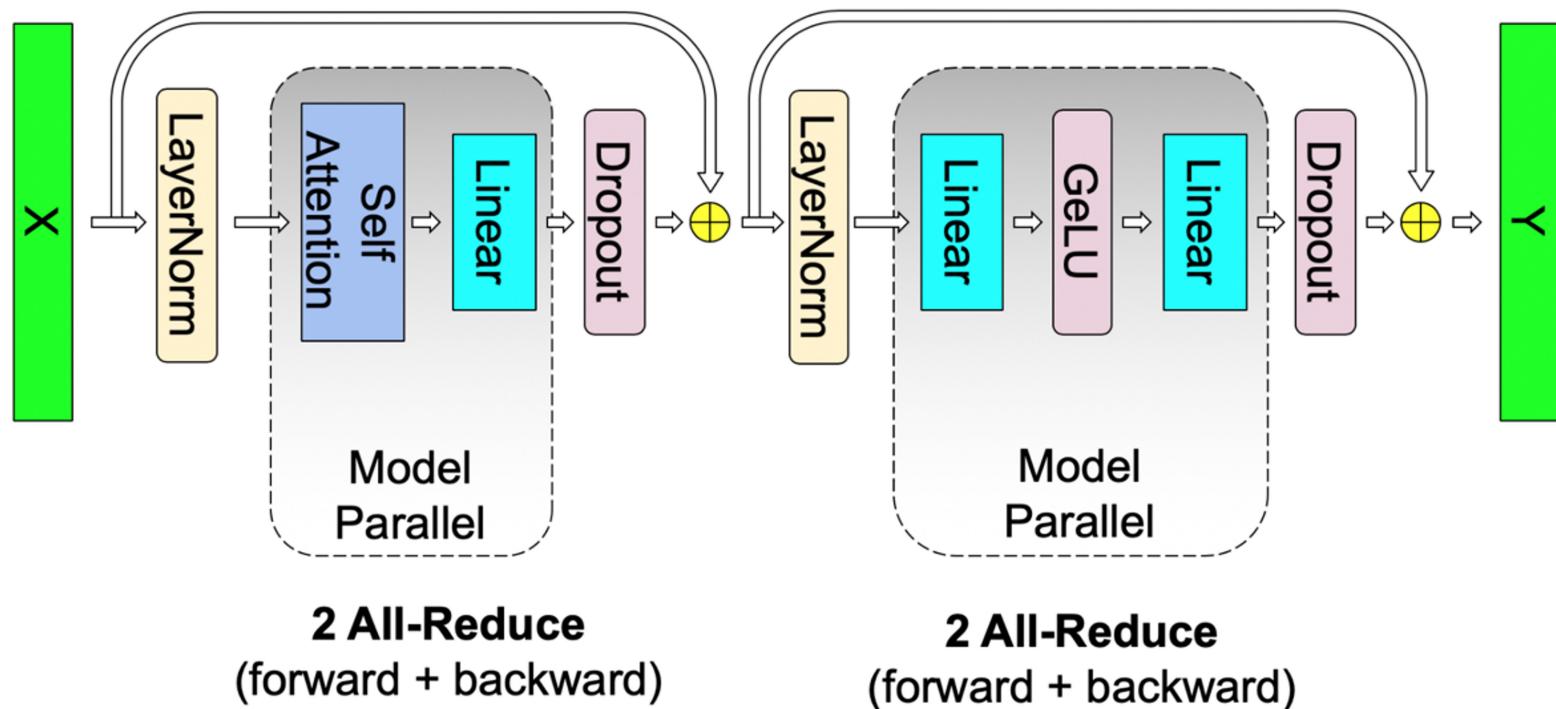


SELF-ATTENTION



f and g are conjugate, f is identity operator in the forward pass and all-reduce in the backward pass while g is all-reduce in forward and identity in backward.

PARALLEL TRANSFORMER LAYER



COMPARING TENSOR AND PIPELINE PARALLELISM

Tensor Parallelism

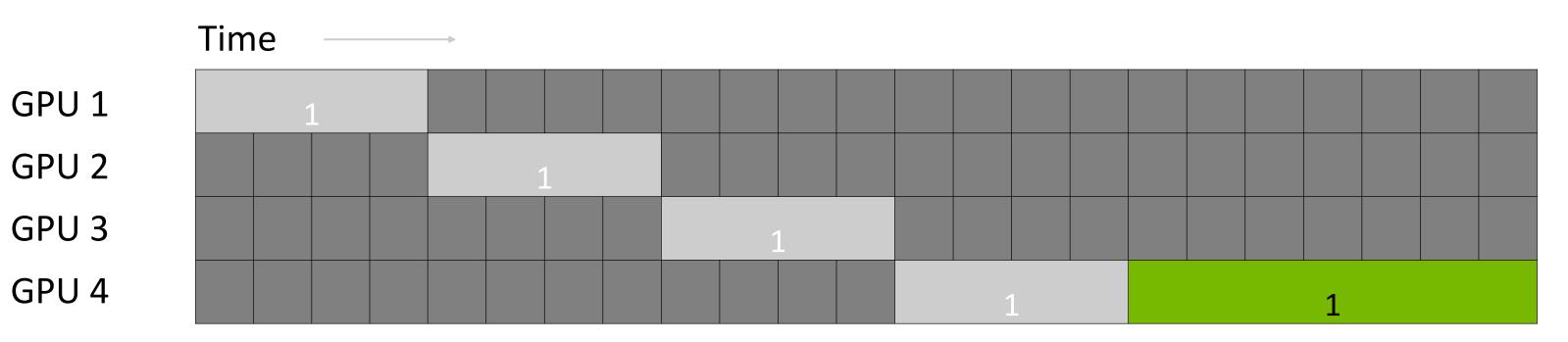
Communication expensive

Good performance across batch sizes

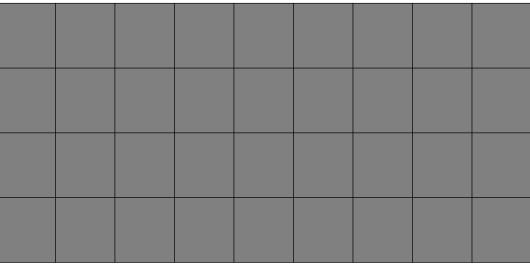
Pipeline Parallelism

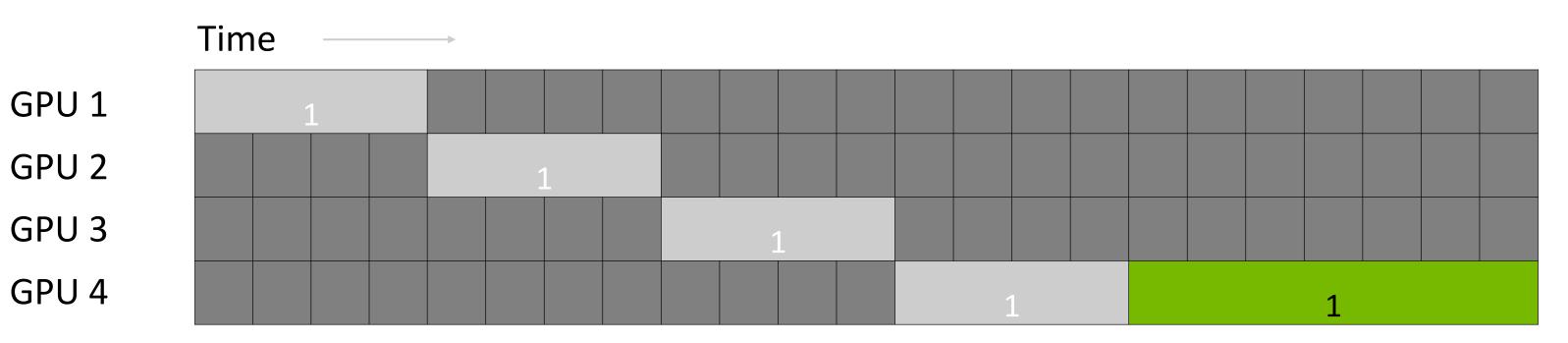
Communication cheap

Good performance at larger batch sizes (pipeline stall amortized)



	Tim	е								C	mu	ויק	JEI	
GPU 1	1a									1	a			
GPU 2		1a						1	а					
GPU 3			1a				1a							
GPU 4				1a	1	.a								





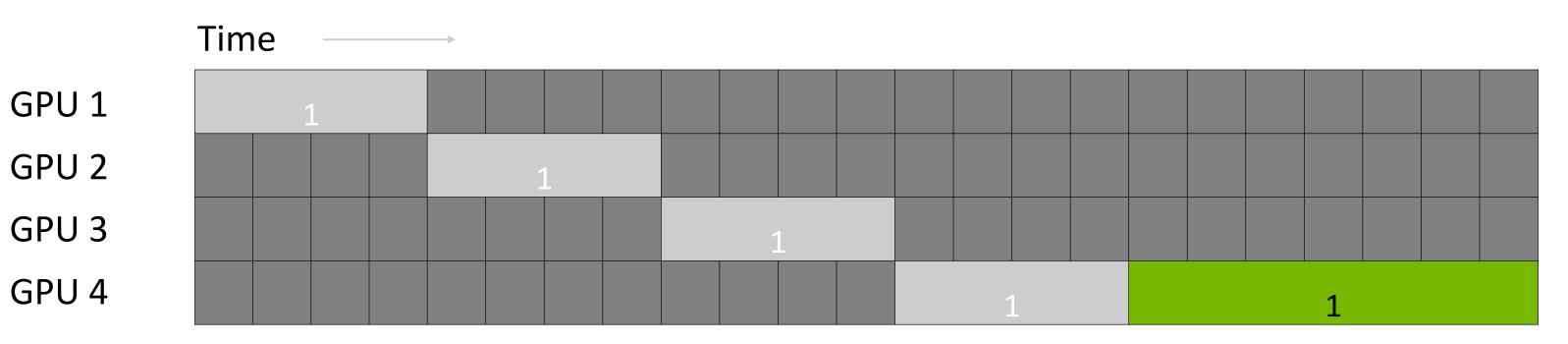
	Tim	е																		
1	1 a	1b								1	a		1b							
2		1a	1b					1	а		1b									
3			1a	1b		1	a		1	b										
4				1a	1a	1b	1	b												

GPU

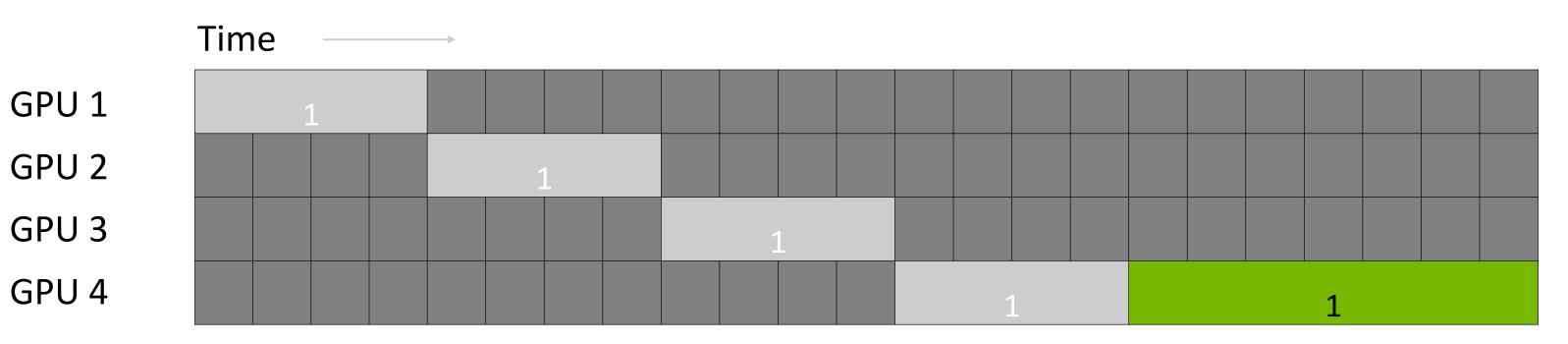
GPU

GPU

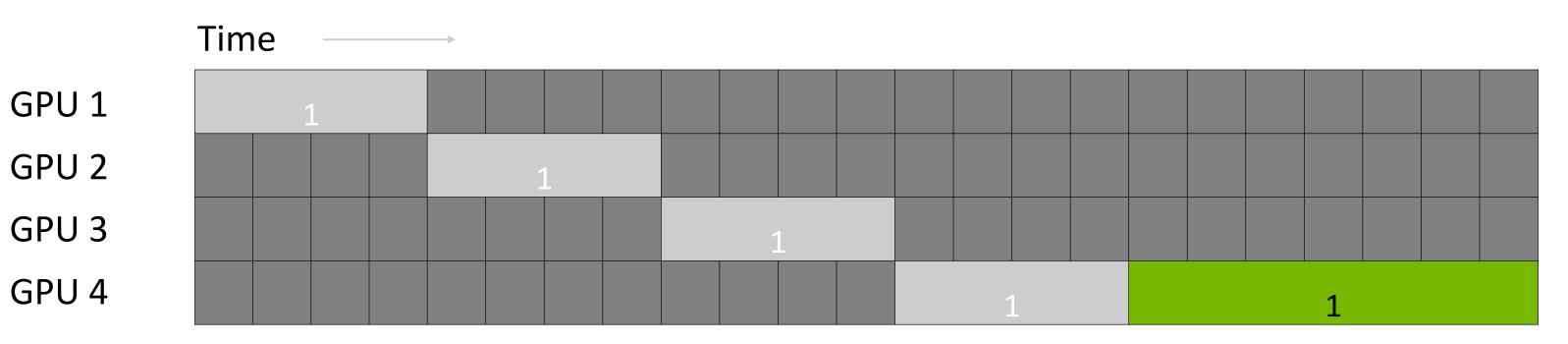
GPU



	Time							a								
GPU 1	1a 1b	1c						1;	a	1	.b		1c			
GPU 2	1 a	1b	1c			1	a		1b		1	С				
GPU 3		1a	1b	1c	1a		1b)		1c						
GPU 4			1a	1a	1b	1b	1c	1	с							

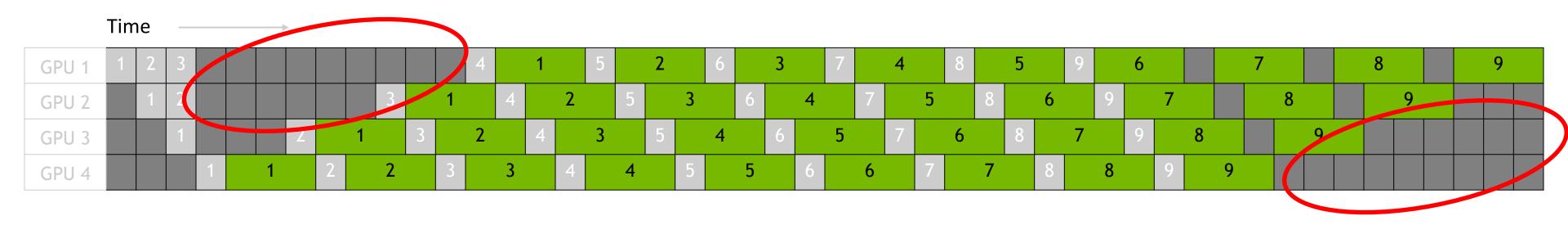


	Tim	е																			
GPU 1	1a	1b	1c	1d						1	.a		1b			1c		1	d		
GPU 2		1a	1b	1c	1d				1a		1	b		1c		1	d				
GPU 3			1a	1b	1c	1d	1a	1	1	.b		1	c		1d						
GPU 4				1a	1	а	1b	1b	1c	1	.C	1d	1d								

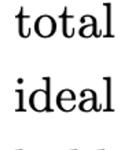


	Time											and pipeline execution										
GPU 1	1a 1	b	1c	1d							1	а		1	.b		1c		1	d	2a	2b
GPU 2	1:	a	1b	1c	1d				1	a		1	b		1	с	1	Ld				2a
GPU 3			1a	1b	1c	1d	1a	1		1k	C		1	d		1d						
GPU 4				1a	1	а	1b	1	b	1c	1	С	1d	1	.d							

PIPELINE BUBBLES



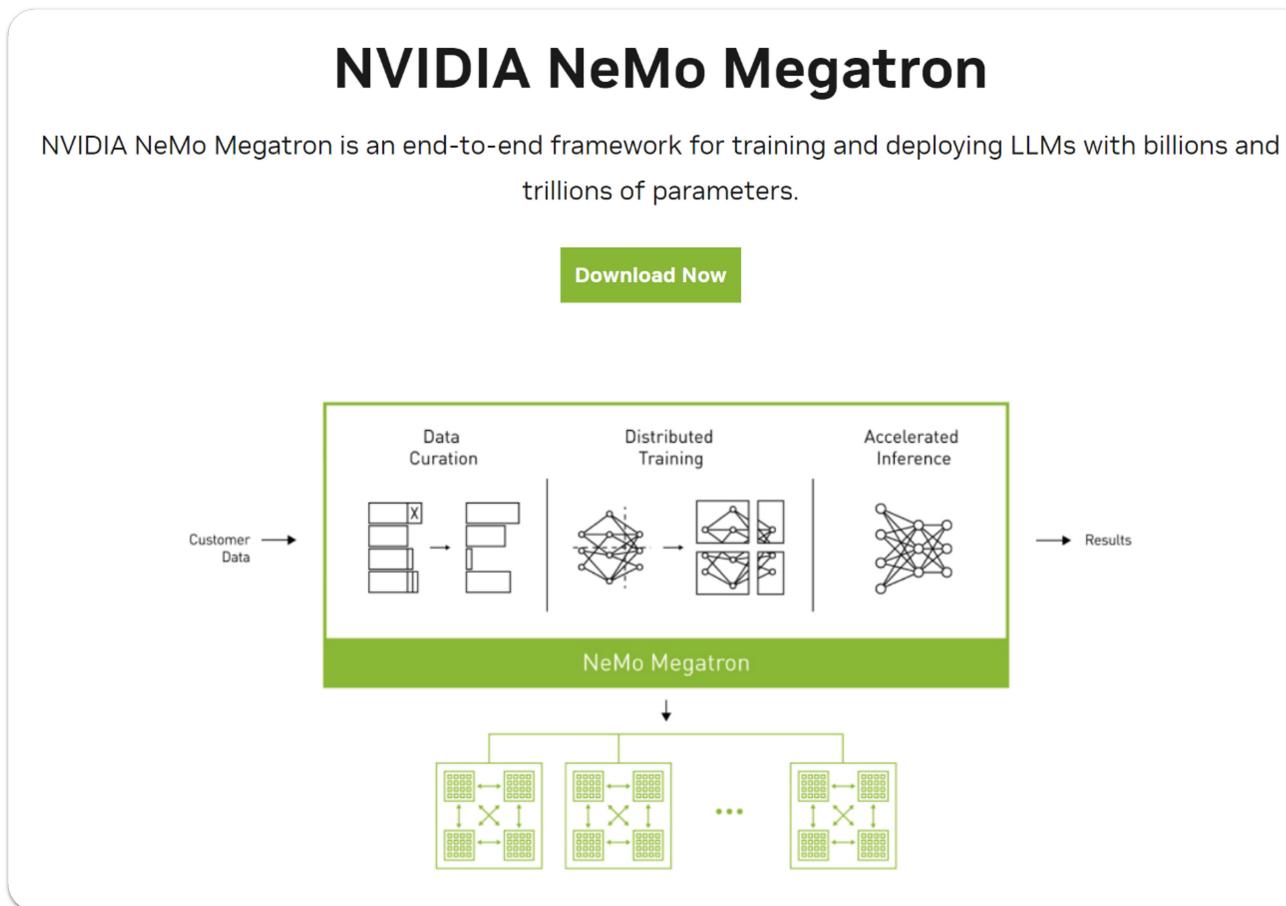
- p: number of pipeline stages m: number of micro batches
- t_f : forward step time
- t_b : backward step time



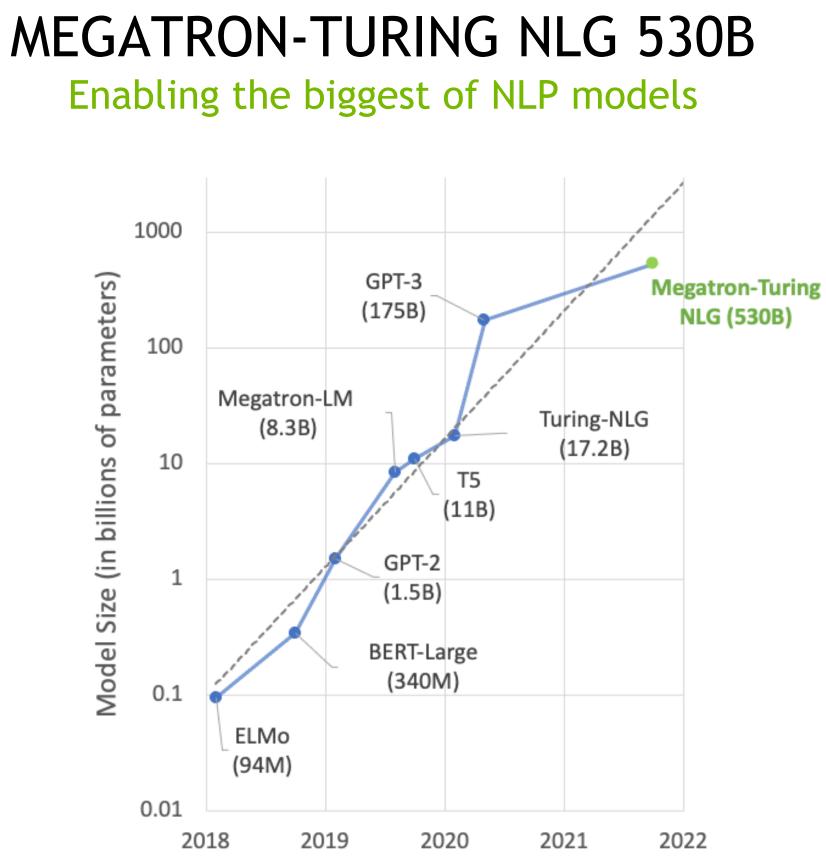
bubble time overhead =

total time = $(m + p - 1) \times (t_f + t_b)$ ideal time = $m \times (t_f + t_b)$ bubble time = $(p-1) \times (t_f + t_b)$

bubble time $\underline{p-1}$ ideal time m



https://developer.nvidia.com/nemo/megatron



https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

Part 2: Self-Supervision, BERT and Beyond • Lecture

- Why DNNs?
- Self-Supervision
- BERT
- Lab
 - Explore the Data
 - Explore NeMo
 - Text Classifier Project
- Lecture (cont'd)
 - The Scaling Laws
- Lab (cont'd)

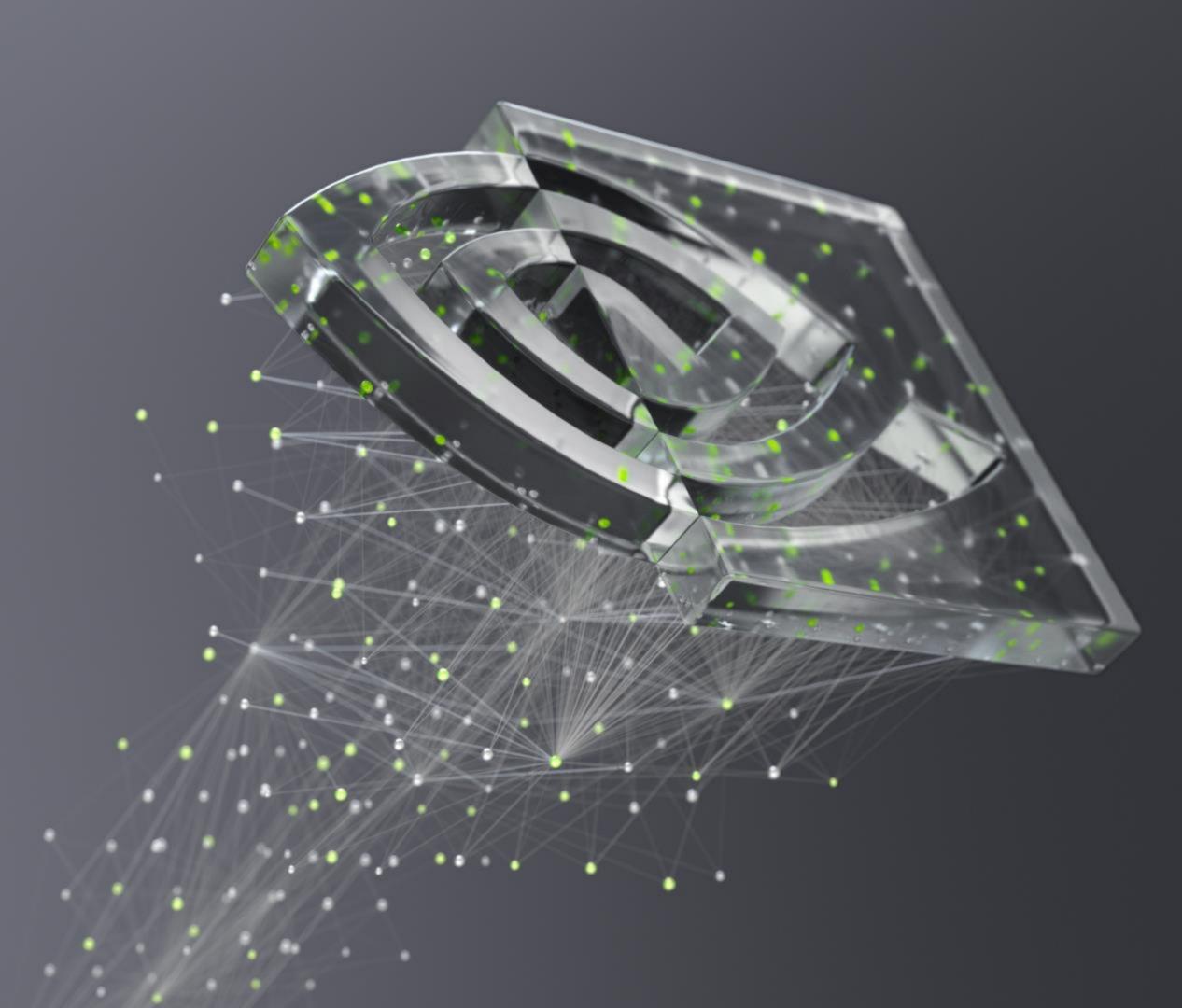
• Can and should we go even bigger?

• Named Entity Recognizer

IN THE NEXT CLASS...

NEXT CLASS Overview

- 1. Discuss how to design your model for efficient inference
- 2. Discuss how to optimise your model for efficient execution
- 3. Discuss how to efficiently host a largely Conversational AI application

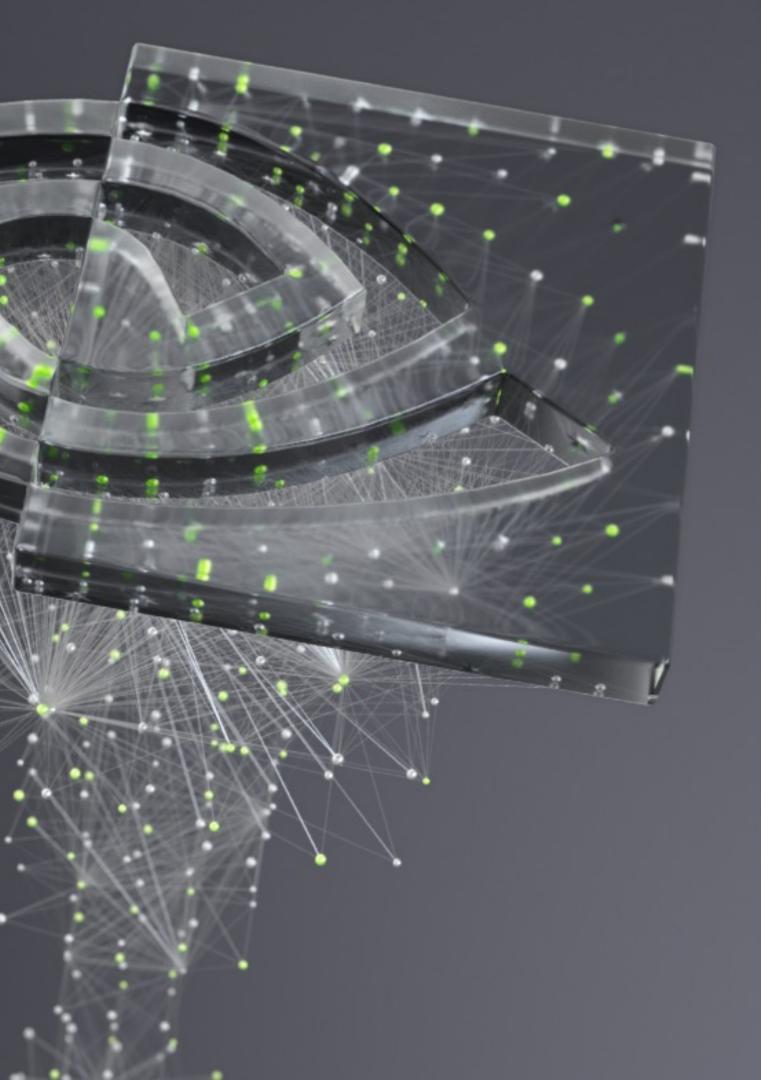


DEEP LEARNING INSTITUTE

DEEP LEARNING INSTITUTE

PRODUCTION DEPLOYMENT

Building Transformer-Based Natural Language Processing Applications (Part 3)



FULL COURSE AGENDA

Part 1: Machine Learning in NLP

Lecture: NLP background and the role of DNNs leading to the Transformer architecture

Lab: Tutorial-style exploration of a *translation task* using the Transformer architecture

Part 2: Self-Supervision, BERT, and Beyond

Lecture: Discussion of how language models with selfsupervision have moved beyond the basic Transformer to BERT and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo API and exercises to build a *text classification task* and a *named entity recognition task* using BERT-based language models

Part 3: Production Deployment

Lecture: Discussion of production deployment considerations and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example *question answering task* to NVIDIA Triton

Part 3: Production Deployment

- Lecture
 - Model Selection

 - Product Quantization

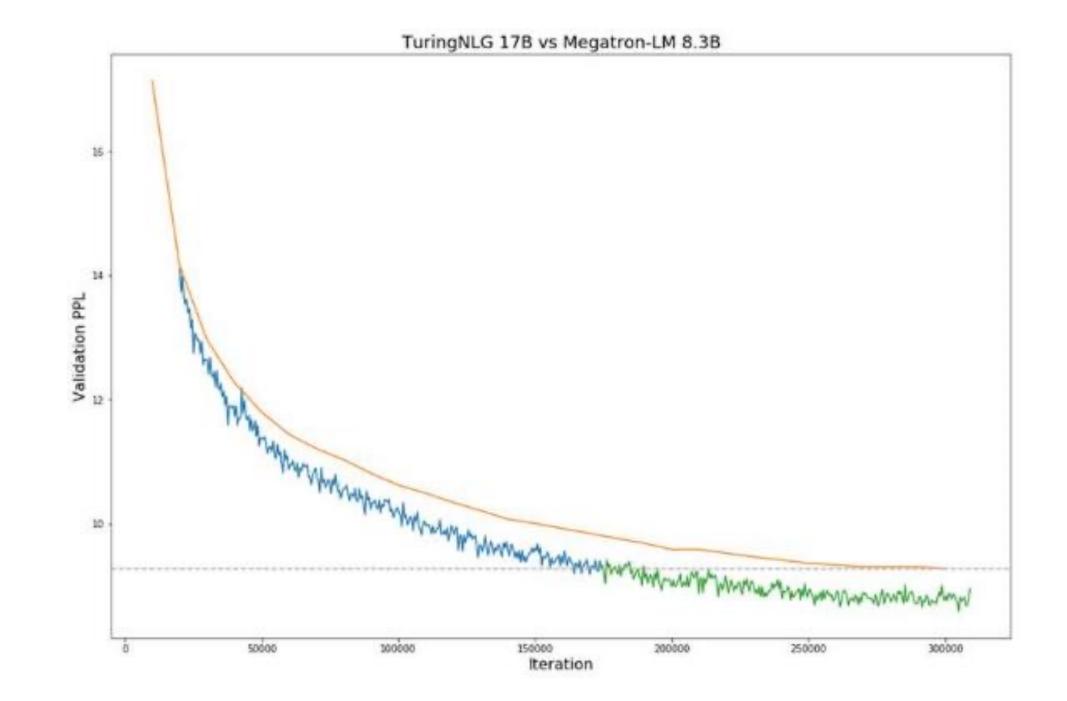
 - Model Serving

- Exporting the Model
- Hosting the Model
- Server Performance
- Using the Model

 Post-Training Optimization Knowledge Distillation • Model Code Efficiency • Building the Application

YOUR NETWORK IS TRAINED

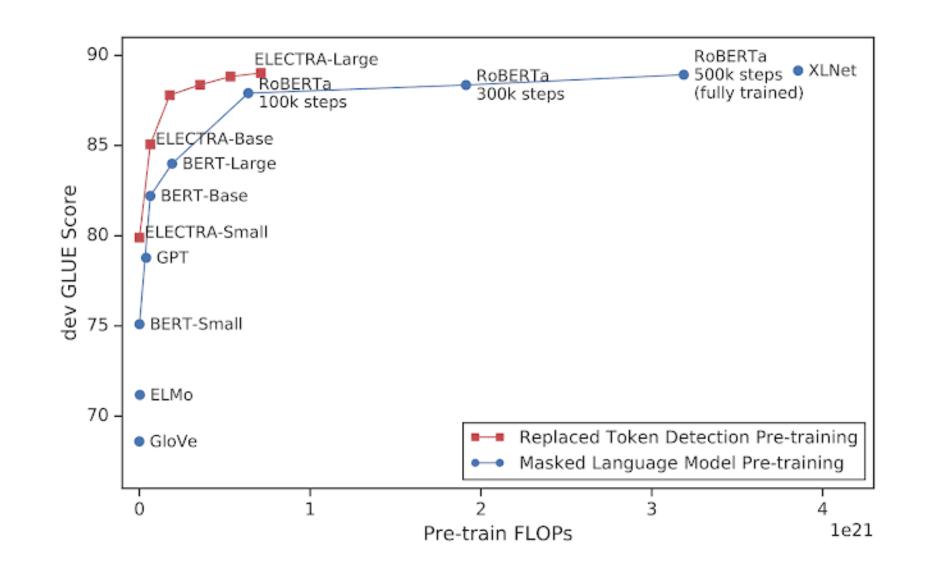
YOUR NETWORK IS TRAINED Now what?



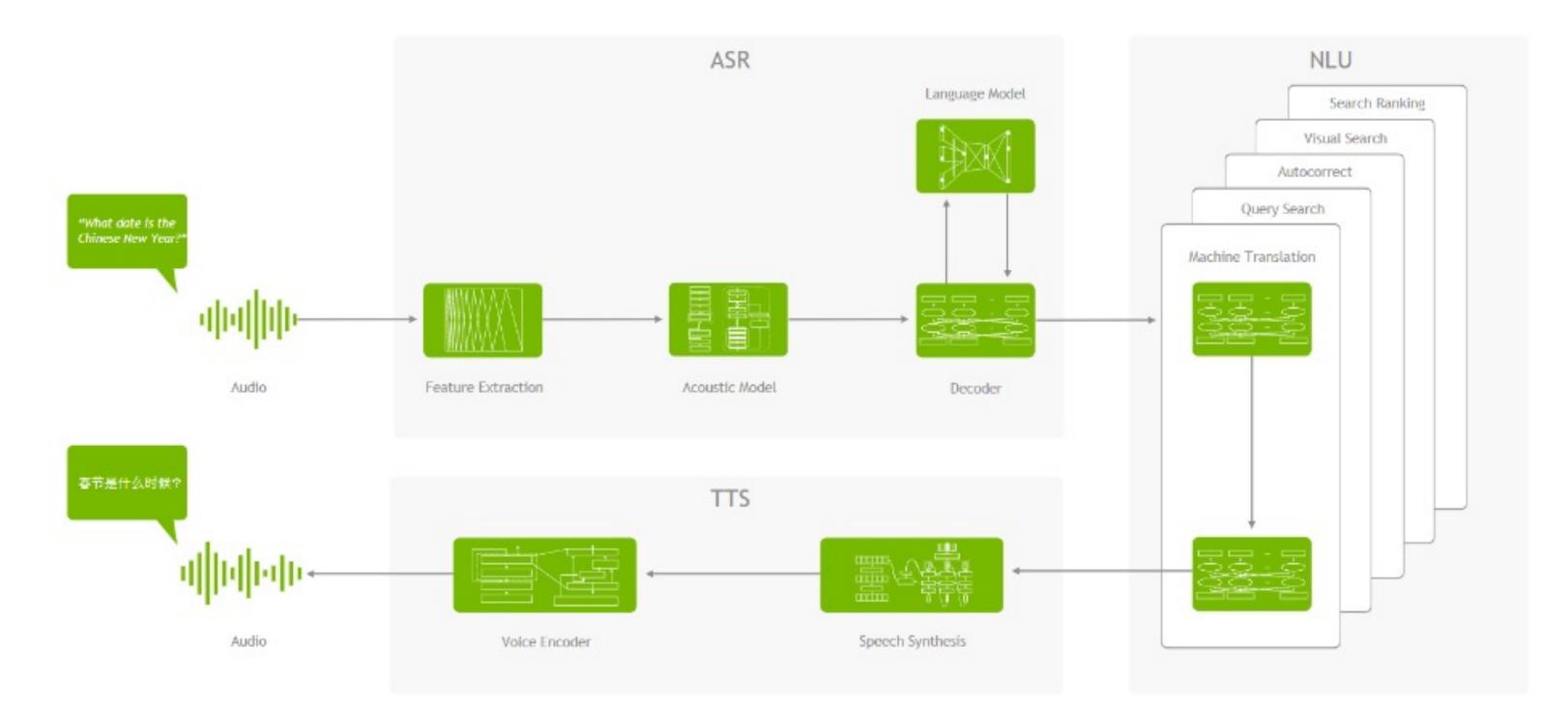
MEETING REQUIREMENTS OF YOUR BUSINESS

NLP MODELS ARE LARGE

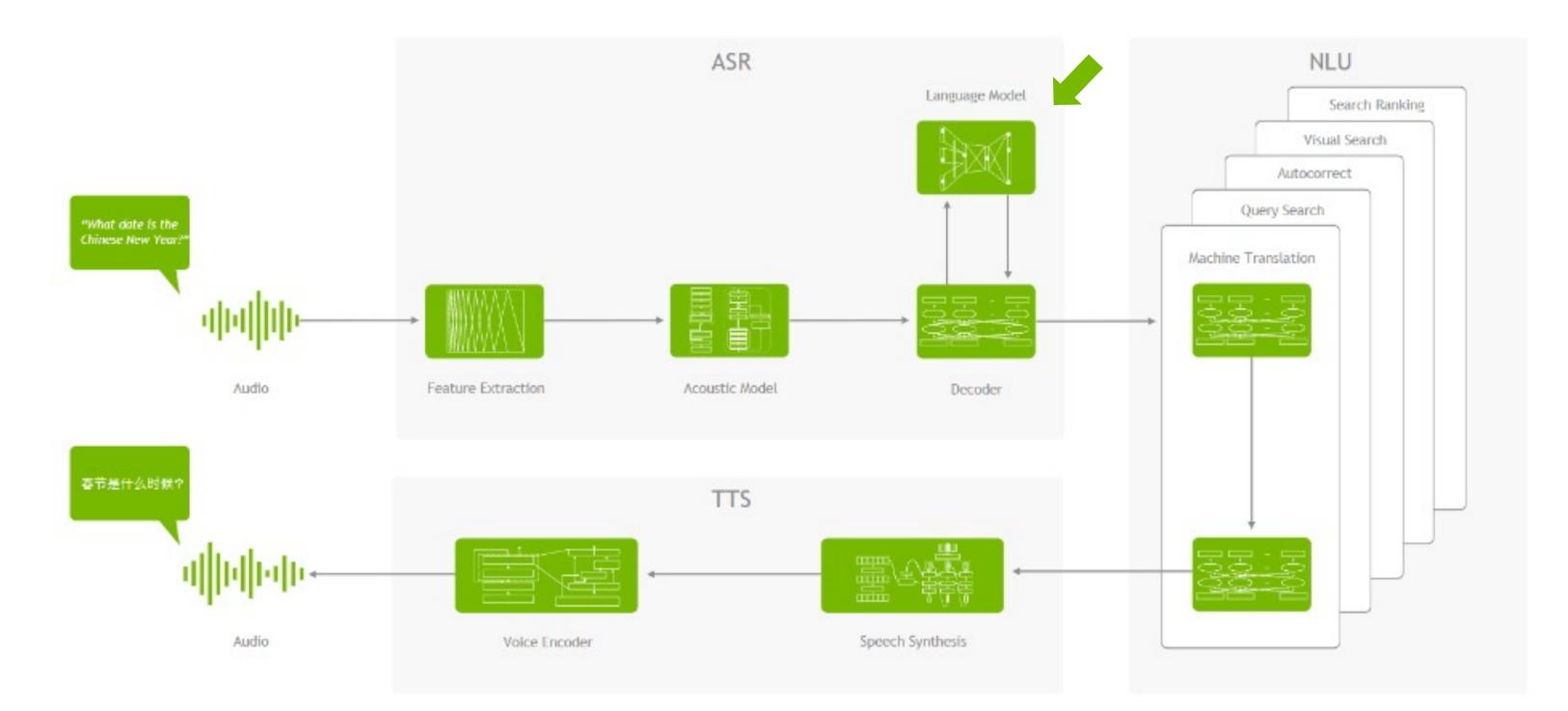
The Inference cost is high



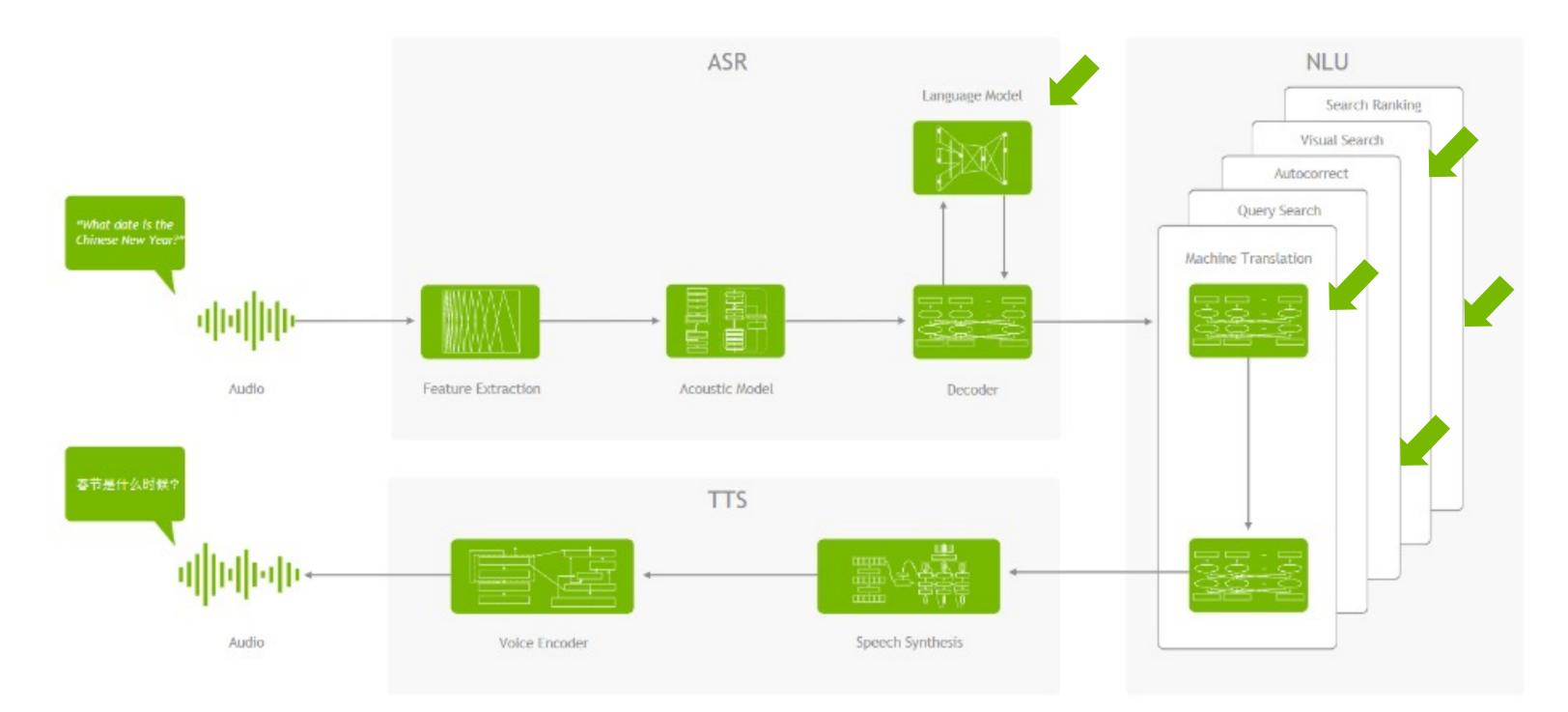
THEY DO NOT LIVE IN ISOLATION Example of a conversational AI application



THEY DO NOT LIVE IN ISOLATION Real Time Applications Need to Deliver Latency <300 ms



THEY DO NOT LIVE IN ISOLATION Real Time Applications Need to Deliver Latency <300 ms

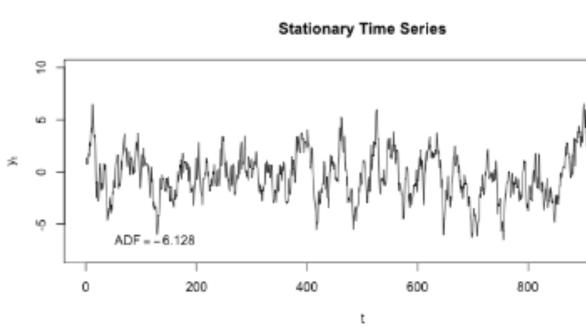


THEY DO NOT LIVE IN ISOLATION Application bandwidth = Cost

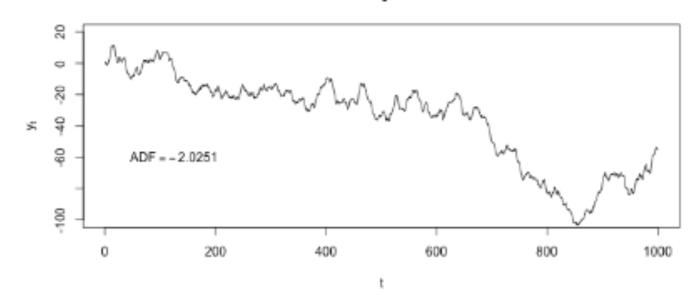
		Batch size	Inference on	Throughput (Query per second)	Latency (milliseconds)
	Original 3-layer BERT	1	Azure Standard F16s_v2 (CPU)	6	157
CPU	ONNX Model	1	Azure Standard F16s_v2 (CPU) with ONNX Runtime	111	9
	Original 3-layer BERT	4	Azure NV6 GPU VM	200	20
GPU	ONNX Model	4	Azure NV6 GPU VM with ONNX Runtime	500	8
	ONNX Model	64	Azure NC6S_v3 GPU VM with ONNX Runtime + System Optimization (Tensor Core with mixed precision, Same Accuracy)	10667	6

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu/

AND THEY NEED TO EVOLVE OVER TIME A lot of processes are not stationary



Non-stationary Time Series



THERE'S MORE TO AN APPLICATION THAN JUST THE MODEL Nonfunctional requirements

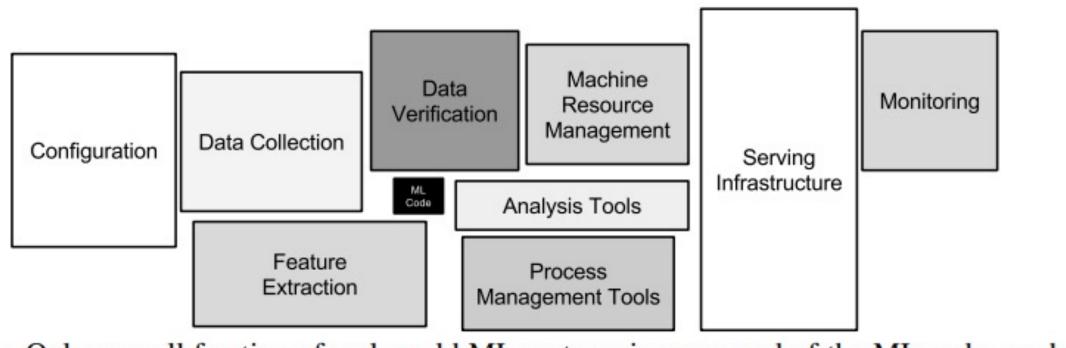


Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden technical debt in machine learning systems. In Advances in neural information processing systems (pp. 2503-2511).

THERE'S MORE TO AN APPLICATION THAN JUST THE MODEL Nonfunctional requirements

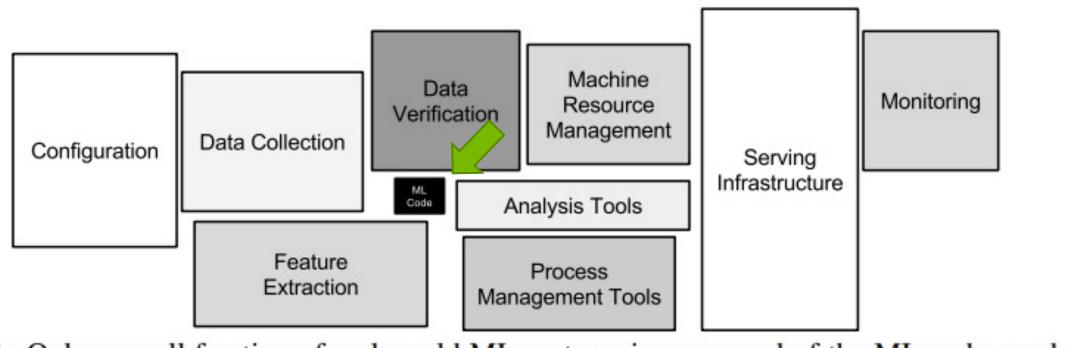


Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown by the small black box in the middle. The required surrounding infrastructure is vast and complex.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden technical debt in machine learning systems. In Advances in neural information processing systems (pp. 2503-2511).

Part 3: Production Deployment

- Lecture
 - Model Selection

 - Product Quantization

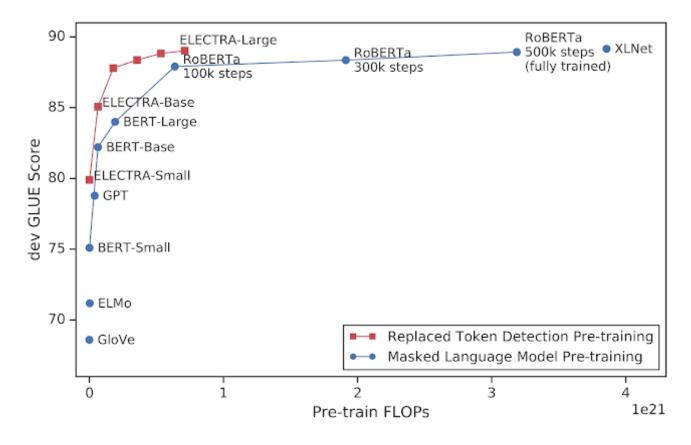
 - Model Serving

- Exporting the Model
- Hosting the Model
- Server Performance
- Using the Model

 Post-Training Optimization Knowledge Distillation • Model Code Efficiency • Building the Application

MODEL SELECTION Not all models are created equally

NLP



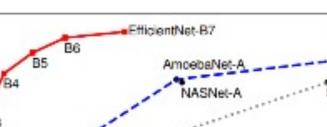
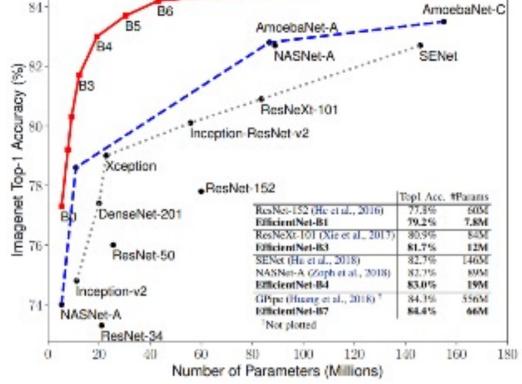
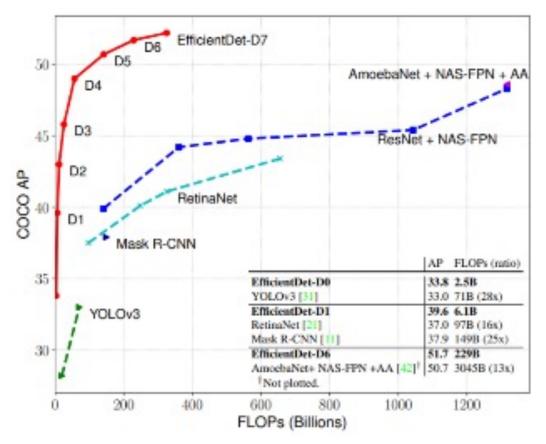


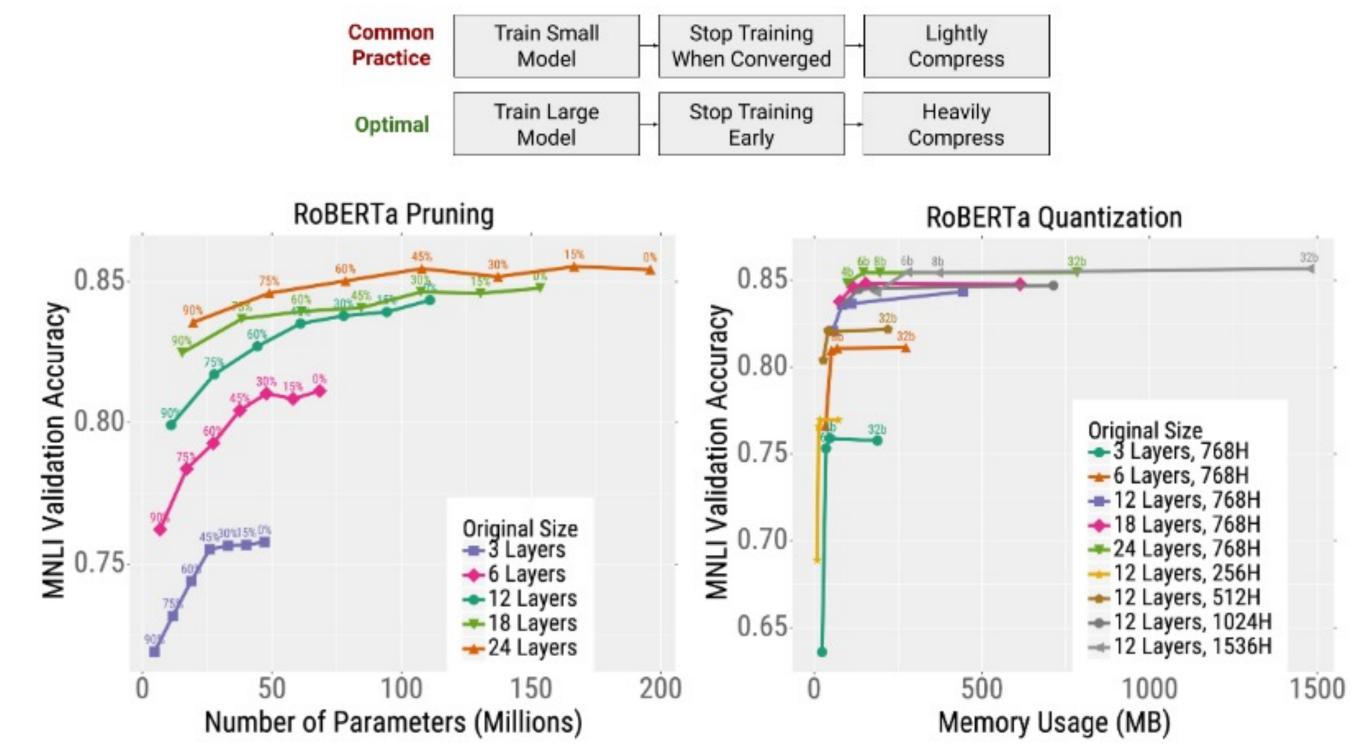
Image Classification



Object detection



MODEL SELECTION Not all models respond in the same way to knowledge distillation, pruning and quantization



https://bair.berkeley.edu/blog/2020/03/05/compress/

Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., & Gonzalez, J. E. (2020). Train large, then compress: Rethinking model size for efficient training and inference of transformers. arXiv preprint arXiv:2002.11794.

MODEL SELECTION And very large models are and will continue to be prevalent in NLP

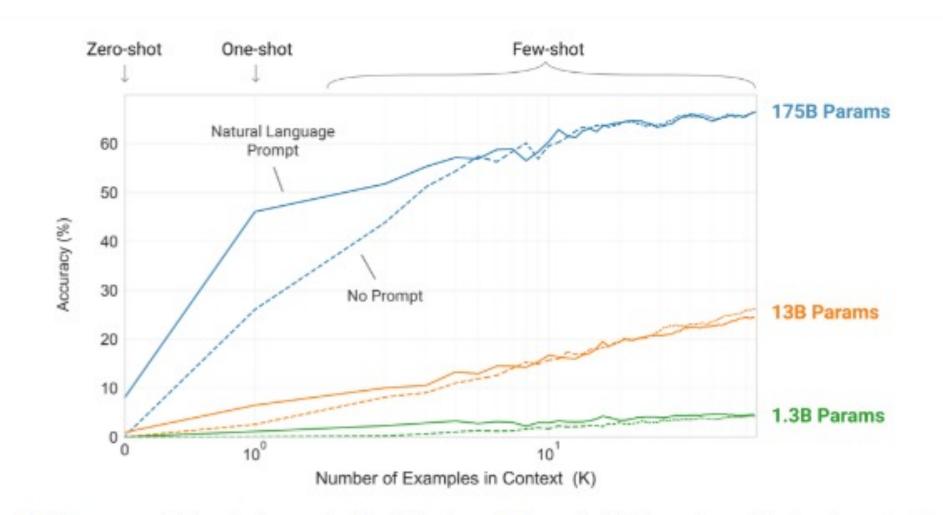
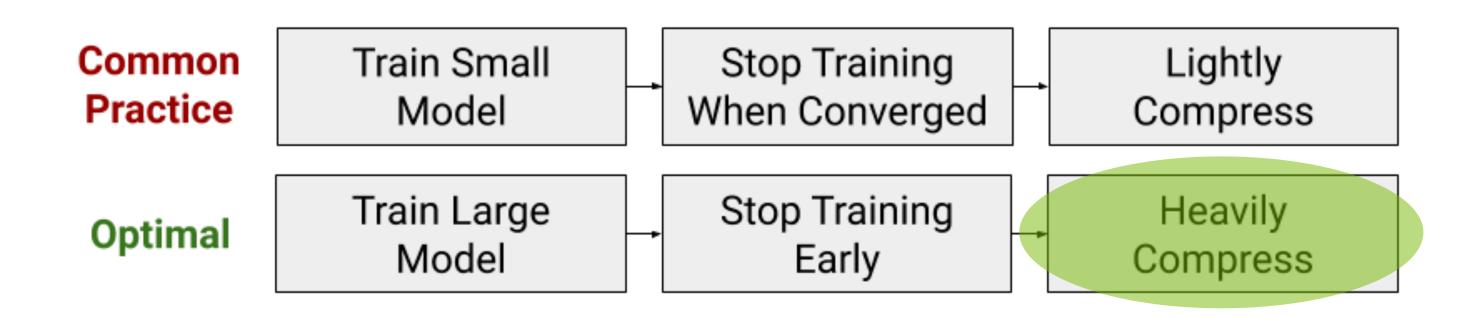


Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning performance on a simple task requiring the model to remove random symbols from a word, both with and without a natural language task description (see Sec. 3.9.2). The steeper "in-context learning curves" for large models demonstrate improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range of tasks.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165.

DIRECT IMPLICATIONS

INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION E.g. Train Large then compress

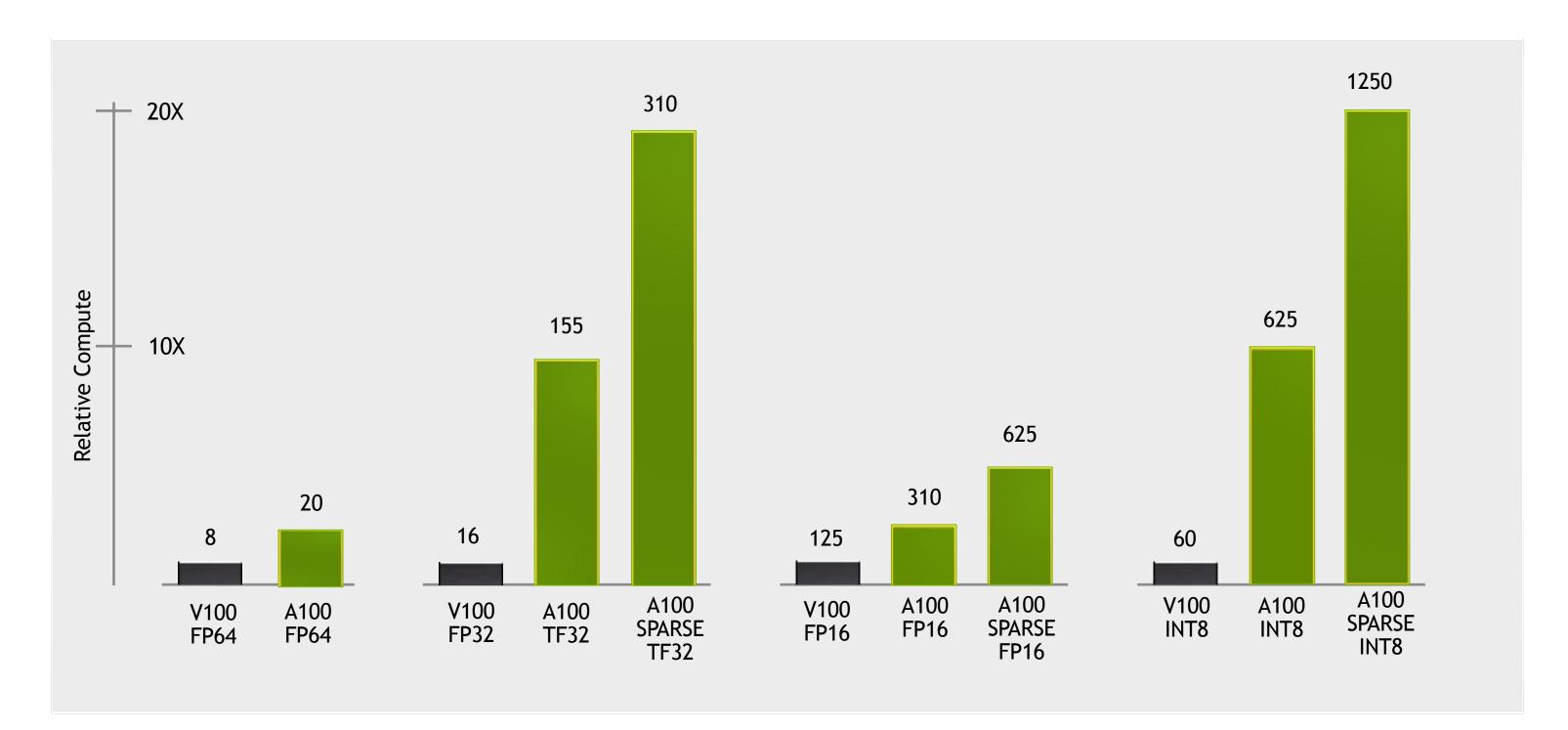


https://bair.berkeley.edu/blog/2020/03/05/compress/

Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., & Gonzalez, J. E. (2020). Train large, then compress: Rethinking model size for efficient training and inference of transformers. arXiv preprint arXiv:2002.11794.

LEARNING INSTITUTE

INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION Hardware acceleration for reduced precision arithmetic and sparsity



Part 3: Production Deployment

- Lecture
 - Model Selection

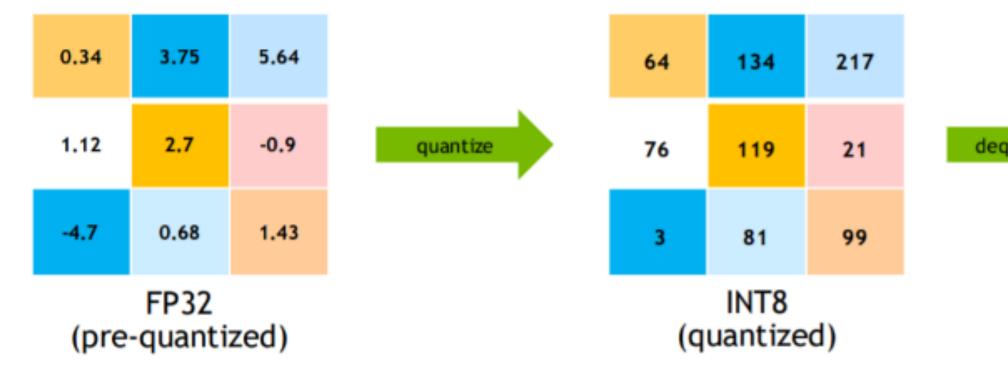
 - Product Quantization

 - Model Serving

- Exporting the Model
- Hosting the Model
- Server Performance
- Using the Model ullet

 Post-Training Optimization Knowledge Distillation • Model Code Efficiency • Building the Application

QUANTIZATION The idea



	0.41	3.62	5.29
quantize	1.3	2.8	-0.92
	-4.5	0.71	1.39
		FP32	

FP32 (dequantized)

QUANTIZATION The rationale

Input Datatype	Accumulation Datatype	Math Throughput	Bandwidth Reduction
FP32	FP32	1x	1x
FP16	FP16	<mark>8</mark> x	2x
INT8	INT32	16x	4x
INT4	INT32	32x	8x
INT1	INT32	128x	32x

QUANTIZATION The rationale



QUANTIZATION

The results (speedup and throughput)

	Batch size 1		Batch size 8			Batch size 128			
	FP32	FP16	Int8	FP32	FP16	Int8	FP32	FP16	Int8
MobileNet v1	1	1.91	2.49	1	3.03	5.50	1	3.03	6.21
MobileNet v2	1	1.50	1.90	1	2.34	3.98	1	2.33	4.58
ResNet50 (v1.5)	1	2.07	3.52	1	4.09	7.25	1	4.27	7.95
VGG-16	1	2.63	2.71	1	4.14	6.44	1	3.88	8.00
VGG-19	1	2.88	3.09	1	4.25	6.95	1	4.01	8.30
Inception v3	1	2.38	3.95	1	3.76	6.36	1	3.91	6.65
Inception v4	1	2.99	4.42	1	4.44	7.05	1	4.59	7.20
ResNext101	1	2.49	3.55	1	3.58	6.26	1	3.85	7.39

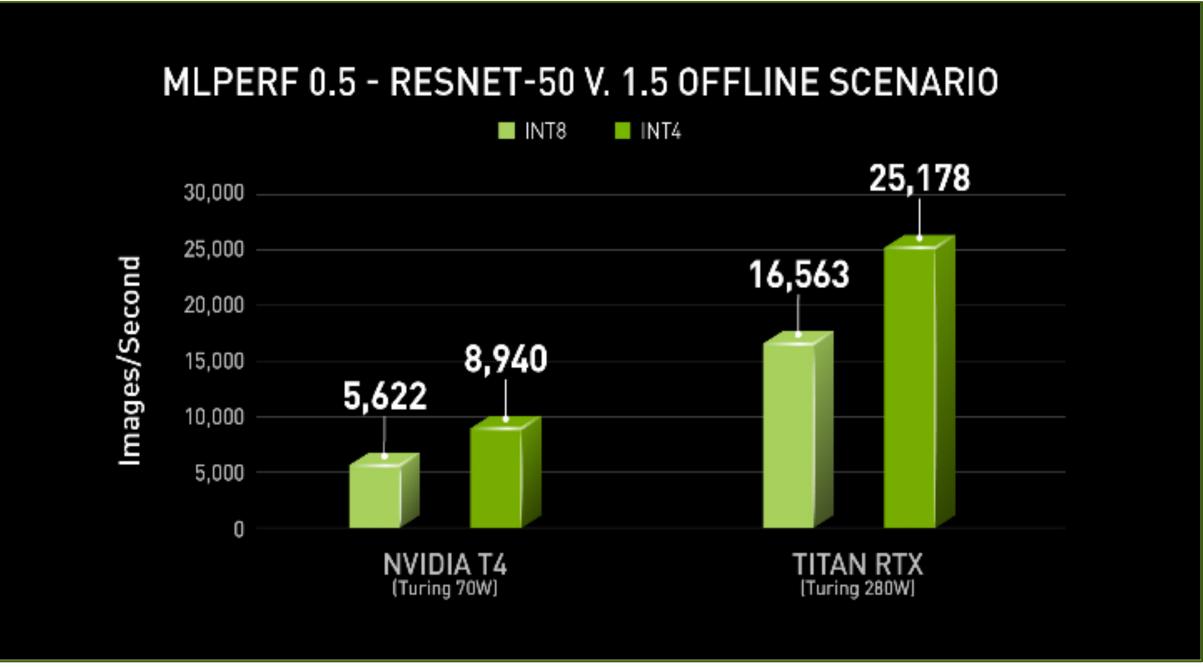
Image/s	Batch size 1		Batch size 8				
	FP32	FP16	Int8	FP32	FP16	Int8	
MobileNet v1	1509	2889	3762	2455	7430	13493	
MobileNet v2	1082	1618	2060	2267	5307	9016	
ResNet50 (v1.5)	298	617	1051	500	2045	3625	
VGG-16	153	403	415	197	816	1269	
VGG-19	124	358	384	158	673	1101	
Inception v3	156	371	616	350	1318	2228	
Inception v4	76	226	335	173	768	1219	
ResNext101	84	208	297	200	716	1253	

TensorRT optimized models executed on Tesla T4, input size 224x224 for all apart from the Inception networks for which the input size was 299x299

Batch size 128

FP32	FP16	Int8
2718	8247	16885
2761	6431	12652
580	2475	4609
236	915	1889
187	749	1552
385	1507	2560
186	853	1339
233	899	1724

QUANTIZATION Beyond INT8



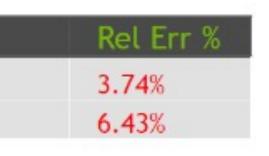
INT4 quantization for resnet50 "Int4 Precision for Al Inference"

IMPACT ON ACCURACY In a wide range of cases minimal

	5000		Int8	Rel Err	сосо				
Model	FP32	Int8 (max)	(entropy)	(entropy)	Model	Backbone	FP32	INT8	Rel Err
MobileNet v1	71.01								
MobileNet v2	74.08	73.96	73.85	0.31%	SSD-300	MobileNet v1	26	25.8	0.77%
NASNet (large)	82.72	82.09	82.66	0.07%	SSD-300	MobileNet v2	27.4	26.8	
NASNet (mobile)	73.97	12.95	73.4	0.77%	Faster RCNN	ResNet-101	33.7	33.4	0.89%
ResNet50 (v1.5)	76.51	76.11	76.28	0.30%	All results COCO mAP	on COCO 2017 validation	, higher is bet	ter	
ResNet50 (v2)	76.37	75.73	76.22	0.20%					
ResNet152 (v1.5)	78.22	5.29	77.95	0.35%	Pascal VOC				
ResNet152 (v2)	78.45	78.05	78.15	0.38%	Model	Backbone	FP32	INT8	Rel Err
VGG-16	70.89	70.75	70.82	0.10%	moder	Buckbone	11.32	inte	THE CELL
VGG-19	71.01	70.91	70.85	0.23%	SSD-300	VGG-16	77.7	77.6	0.13%
Inception v3	77.99	77.7	77.85	0.18%	SSD-512	VGG-16	79.9	79.9	0.0%
Inception v4	80.19	1.68	80.16	0.04%	All results VOC mAP o	on VOC 07 test, higher is l	better		

IMPACT OF MODEL DESIGN Not all neural network mechanisms quantize well

Bert large uncased	FP32	Int8
MRPC	0.855	0.823
SQuAD 1.1 (F1)	91.01	85.16

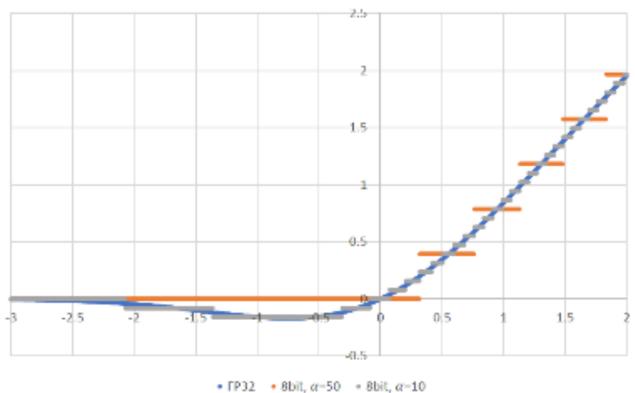


IMPACT OF MODEL DESIGN

Model alterations required

Bert large uncased	FP32	Int8	Rel Err %
MRPC	0.855	0.823	3.74%
SQuAD 1.1 (F1)	91.01	85.16	6.43%
Bert large uncased	FP32	Int8 (GeLU10)	Rel Err %
MRPC	0.855	0.843	0.70%
SQuAD 1.1 (F1)	91.01	90.40	0.67%
	GeLU		
	2.5		

- GeLU produces highly asymmetric range
- Negative values between [-0.17,0]
- All negative values clipped to 0
- GeLU10 allows to maintain negative values



 $f(x) = \frac{x}{2}(1 + erf(\frac{x}{\sqrt{2}}))$

LOSS OF ACCURACY Reasons

Outlier in the tensor:

- Example: BERT, Inception V4
- Solution: Clip. Tighten the range, use bits more efficiently

Not enough precision in quantized representation

- Example: Int8 for MobileNet V1
- Example: Int4 for Resnet50
- Solution: Train/fine tune for quantization

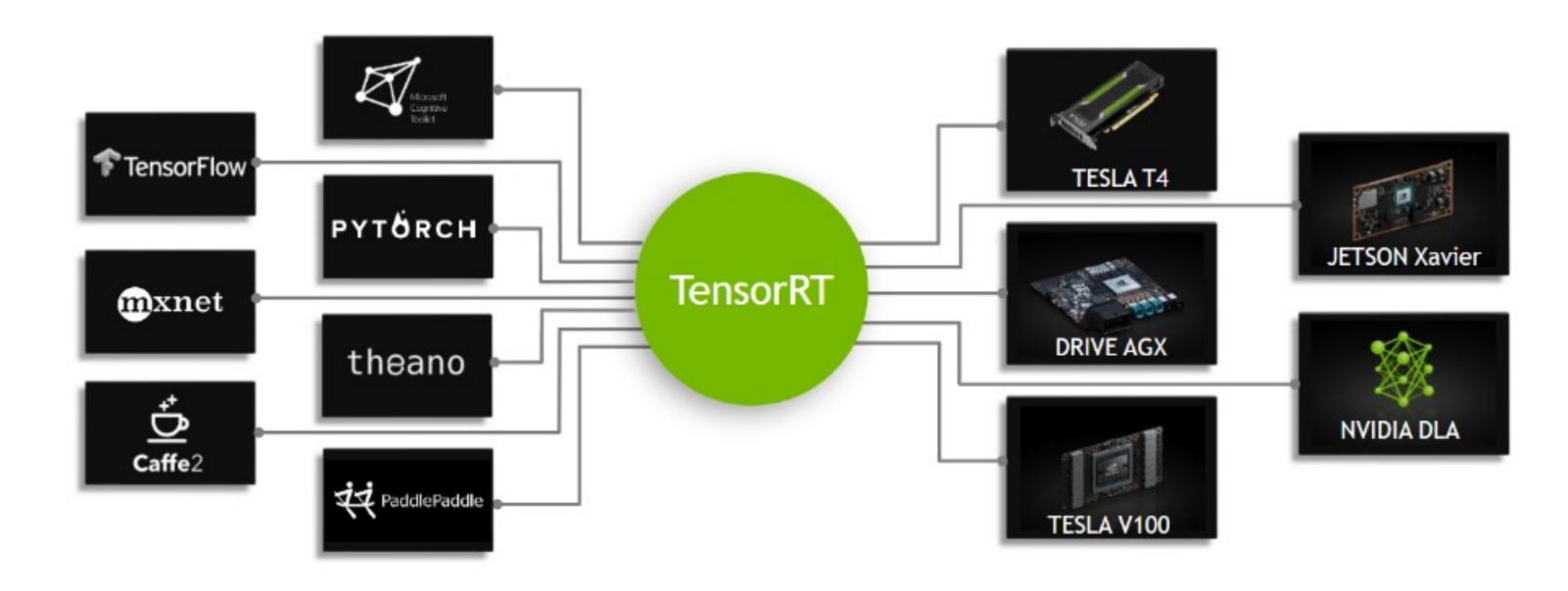
LEARN MORE **GTC** Talks

- S9659: Inference at Reduced Precision on GPUs
- S21664: Toward INT8 Inference: Deploying Quantization-Aware Trained Networks using TensorRT

QUANTIZATION TOOLS

NVIDIA TENSORRT

From Every Framework, Optimized For Each Target Platform



INT8 QUANTIZATION EXAMPLE **TF-TRT**

Step 1 Obtain the TF frozen graph (trained in FP32)

Step 2 Create the calibration graph -> Execute it with calibration data -> Convert it to the INT8 optimized graph

create a TRT inference graph, the output is a frozen graph ready for calibration calib_graph = trt.create_inference_graph(input_graph_def=frozen_graph, outputs=outputs,

> max_batch_size=1, max_workspace_size_bytes=1<<30,</pre> precision_mode="INT8", minimum_segment_size=5)

```
# Run calibration (inference) in FP32 on calibration data (no conversion)
f_score, f_geo = tf.import_graph_def(calib_graph, input_map={"input_images":inputs},
              return_elements=outputs, name="")
Loop img: score, geometry = sess.run([f_score, f_geo], feed_dict={inputs: [img]})
```

apply TRT optimizations to the calibration graph, replace each TF subgraph with a TRT node optimized for INT8 trt_graph = trt.calib_graph_to_infer_graph(calib_graph) Step 3 Import the TRT graph and run

https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html

....

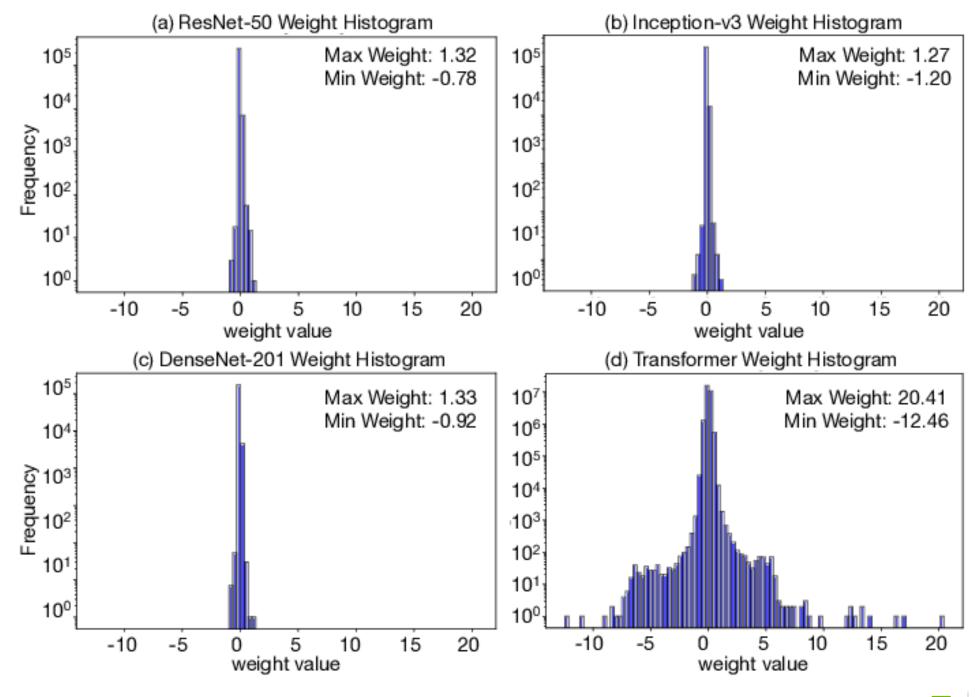
....

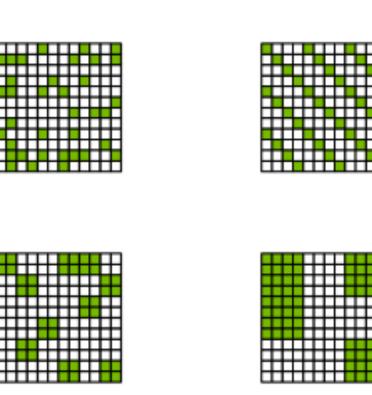
PRUNING

PRUNING The idea

The opportunity:

- Reduced memory bandwidth
- Reduced memory footprint
- Acceleration (especially in presence of hardware acceleration)





DIFFICULT TO GET TO WORK RELIABLY

STRUCTURED SPARSITY

SPARSITY IN A100 GPU

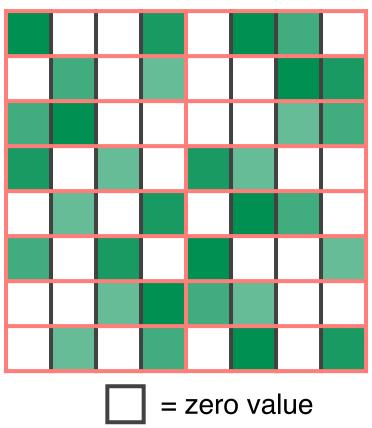
Fine-grained structured sparsity for Tensor Cores

- 50% fine-grained sparsity
- 2:4 pattern: 2 values out of each contiguous block of 4 must be 0

Addresses the 3 challenges:

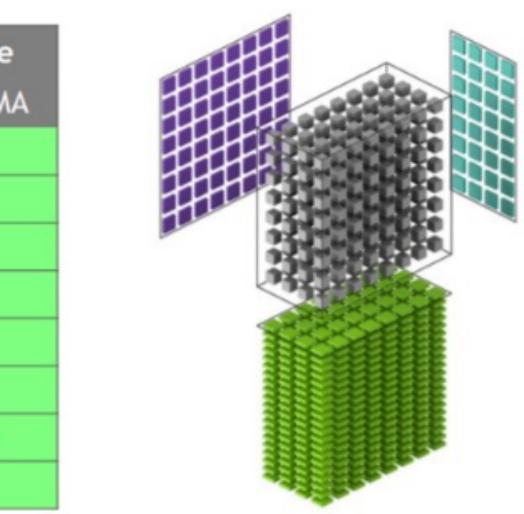
- Accuracy: maintains accuracy of the original, unpruned network
 - Medium sparsity level (50%), fine-grained
- Training: a recipe shown to work across tasks and networks
- Speedup:
 - Specialized Tensor Core support for sparse math
 - Structured: lends itself to efficient memory utilization

2:4 structured-sparse matrix



PRUNING Structured sparsity

			Dense	Sparse
INPUT OPERANDS	ACCUMULATOR	TOPS	vs. FFMA	Vs. FFM
FP32	FP32	19.5		-
TF32	FP32	156	8X	16X
FP16	FP32	312	16X	32X
BF16	FP32	312	16X	32X
FP16	FP16	312	16X	32X
INT8	INT32	624	32X	64X
INT4	INT32	1248	64X	128X
BINARY	INT32	4992	256X	-



RELIABLE APPROACH

PRUNING Model performance

		Accuracy		
Network	Dense FP16	Sparse FP16	Sparse IN	Т8
ResNet-34	73.7	73.9 0.2	73.7	-
ResNet-50	76.6	76.8 0.2	76.8	0.2
ResNet-101	77.7	78.0 0.3	77.9	-
ResNeXt-50-32x4d	77.6	77.7 0.1	77.7	-
ResNeXt-101-32x16d	79.7	79.9 0.2	79.9	0.2
DenseNet-121	75.5	75.3 -0.2	75.3	-0.2
DenseNet-161	78.8	78.8 -	78.9	0.1
Wide ResNet-50	78.5	78.6 0.1	78.5	-
Wide ResNet-101	78.9	79.2 0.3	79.1	0.2
Inception v3	77.1	77.1 -	77.1	-
Xception	79.2	79.2 -	79.2	-
VGG-16	74.0	74.1 0.1	74.1	0.1
VGG-19	75.0	75.0 -	75.0	-

PRUNING Model performance

	Accuracy				
Network	Dense FP16	Sparse FP16	Sparse INT8		
ResNet-50 (SWSL)	81.1	80.9 -0.2	80.9 -0.2		
ResNeXt-101-32x8d (SWSL)	84.3	84.1 -0.2	83.9 -0.4		
ResNeXt-101-32x16d (WSL)	84.2	84.0 -0.2	84.2 -		
SUNet-7-128	76.4	76.5 0.1	76.3 -0.1		
DRN-105	79.4	79.5 0.1	79.4 -		

PRUNING Model performance

		Accuracy			
Network	Dense FP16	Spanse FP1	6	INT	8
MaskRCNN-RN50	37.9	37.9	-	37.8	-0.1
SSD-RN50	24.8	24.8	-	24.9	0.1
FasterRCNN-RN50-FPN-1x	37.6	38.6	1.0	38.4	0.8
FasterRCNN-RN50-FPN-3x	39.8	39.9	-0.1	39.4	-0.4
FasterRCNN-RN101-FPN-3x	41.9	42.0	0.1	41.8	-0.1
MaskRCNN-RN50-FPN-1x	39.9	40.3	0.4	40.0	0.1
MaskRCNN-RN50-FPN-3x	40.6	40.7	0.1	40.4	0.2
MaskRCNN-RN101-FPN-3x	42.9	43.2	0.3	42.8	0.1
RetinaNet-RN50-FPN-1x	36.4	37.4	1.0	37.2	0.8
RPN-RN50-FPN-1x	45.8	45.6	-0.2	45.5	0.3

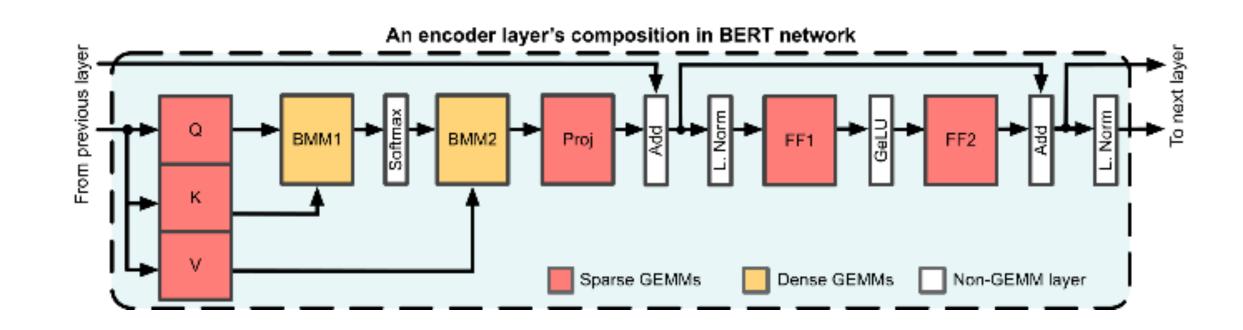
RN = ResNet Backbone

FPN = Feature Pyramid Network RPN = Region Proposal Network

IMPACT ON NLP

NETWORK PERFORMANCE BERT-Large

1.8x GEMM Performance -> 1.5x Network Performance Some operations remain dense: Non-GEMM layers (Softmax, Residual add, Normalization, Activation functions, ...) GEMMs without weights to be pruned - Attention Batched Matrix Multiplies



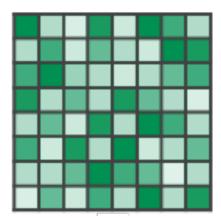
TRAINING RECIPE

RECIPE FOR 2:4 SPARSE NETWORK TRAINING

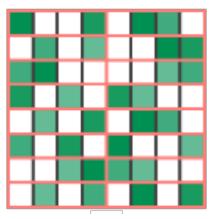
1) Train (or obtain) a dense network 2) Prune for 2:4 sparsity

3) Repeat the original training procedure

- Same hyper-parameters as in step-1
- Initialize to weights from step-2
- Maintain the 0 pattern from step-2: no need to recompute the mask



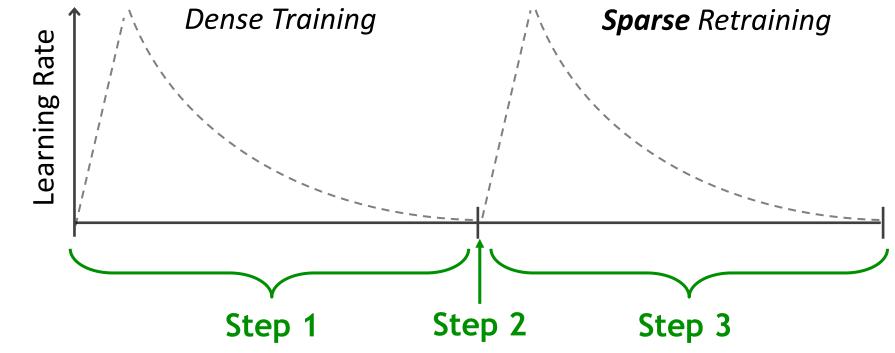
Dense weights



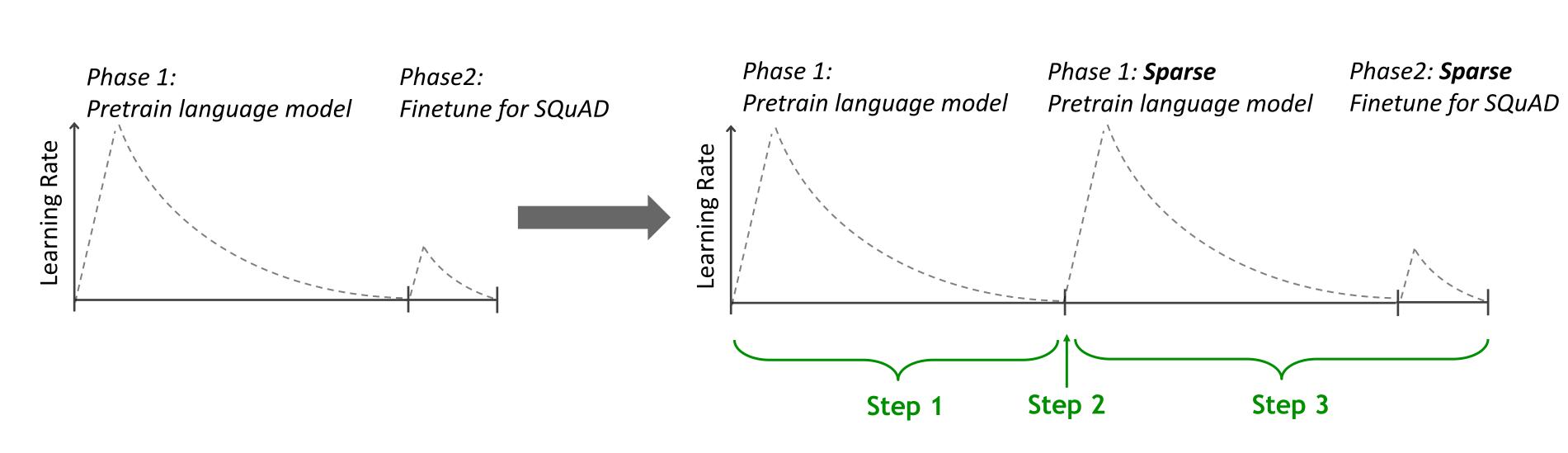
2:4 sparse weights

Retrained 2:4 sparse weights

EXAMPLE LEARNING RATE SCHEDULE



BERT SQUAD EXAMPLE SQuAD Dataset and fine-tuning is too small to compensate for pruning on its own



APEX: AUTOMATIC SPARSITY

TAKING ADVANTAGE OF STRUCTURED SPARSITY

APEX's Automatic SParsity: ASP

```
import torch
from apex.contrib.sparsity import ASP
device = torch.device('cuda')
```

```
model = TheModelClass(*args, **kwargs) # Define model structure
model.load state dict(torch.load('dense model.pth'))
```

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # Define optimizer

ASP.prune trained model (model, optimizer)

```
x, y = DataLoader( ... ) #load data samples and labels to train the model
for t in range(500):
    y \text{ pred} = \text{model}(x)
    loss = loss fn(y pred, y)
    optimizer.zero grad()
    loss.backward()
    optimizer.step()
```

torch.save(model.state dict(), 'pruned model.pth') # checkpoint has weights and masks

Init mask buffers, tell optimizer to mask weights and gradients, compute sparse masks: Universal Fine Tuning

Part 3: Production Deployment

- Lecture
 - Model Selection

 - Product Quantization

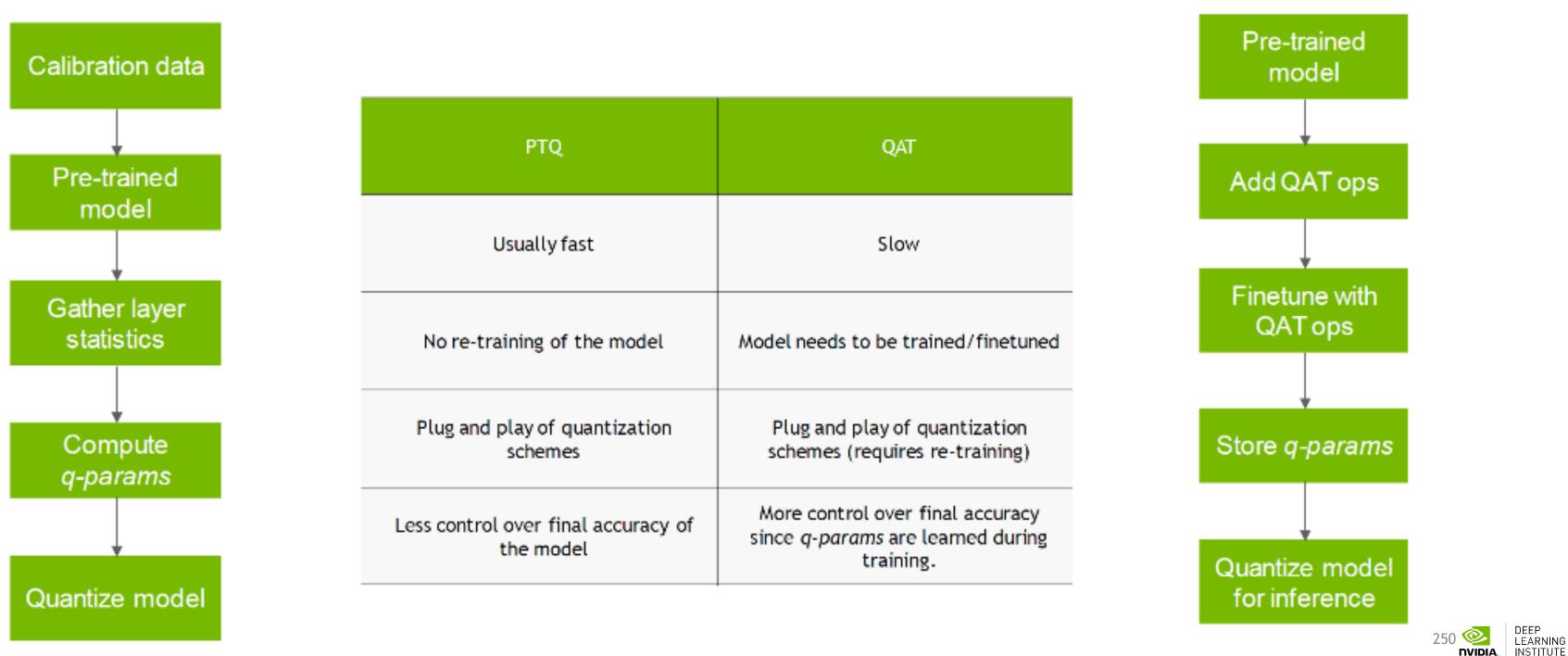
 - Model Serving

- Exporting the Model
- Hosting the Model
- Server Performance
- Using the Model

 Post-Training Optimization Knowledge Distillation • Model Code Efficiency • Building the Application

QUANTIZATION Approaches

Post-training quantization(PTQ)



Quantization-aware training (QAT)

EXTREME MODEL COMPRESSION Training with quantization noise

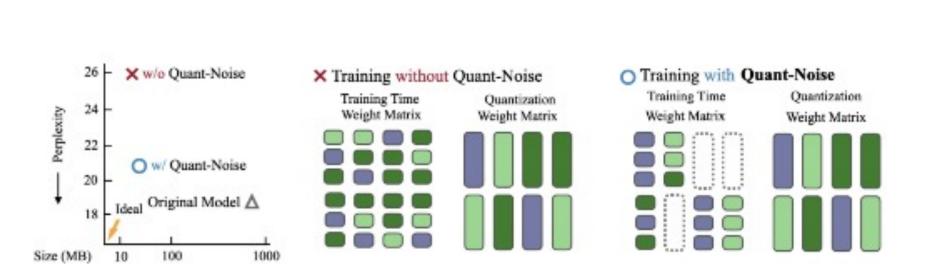


Figure 1: Quant-Noise trains models to be resilient to inference-time quantization by mimicking the effect of the quantization method during training time. This allows for extreme compression rates without much loss in accuracy on a variety of tasks and benchmarks.

Quantization	Scheme
--------------	--------

Quantization Scheme	Language Modeling 16-layer Transformer Wikitext-103				Image Classification EfficientNet-B3 ImageNet-1k			
	Size	Compression		PPL	Size	Compression		Top-1
Uncompressed model	942	×	1	18.3	46.7	×	1	81.5
int4 quantization	118	×	8	39.4	5.8	×	8	45.3
- trained with QAT	118	×	8	34.1	5.8	×	8	59.4
- trained with Quant-Noise	118	×	8	21.8	5.8	×	8	67.8
int8 quantization	236	×	4	19.6	11.7	×	4	80.7
- trained with QAT	236	×	4	21.0	11.7	×	4	80.8
- trained with Quant-Noise	236	×	4	18.7	11.7	×	4	80.9
iPQ	38	×	25	25.2	3.3	×	14	79.0
- trained with QAT	38	×	25	41.2	3.3	×	14	55.7
- trained with Quant-Noise	38	×	25	20.7	3.3	×	14	80.0
iPQ & int8 + Quant-Noise	38	×	25	21.1	3.1	×	15	79.8

Table 1: Comparison of different quantization schemes with and without Quant-Noise on language modeling and image classification. For language modeling, we train a Transformer on the Wikitext-103 benchmark and report perplexity (PPL) on test. For image classification, we train a EfficientNet-B3 on the ImageNet-1k benchmark and report top-1 accuracy on validation and use our re-implementation of EfficientNet-B3. The original implementation of Tan et al. [4] achieves an uncompressed Top-1 accuracy of 81.9%. For both settings, we report model size in megabyte (MB) and the compression ratio compared to the original model.

"We used Quant-Noise to compress Facebook AI's state-of-the-art RoBERTa Base model from 480 MB to 14 MB while achieving 82.5 percent on MNLI, compared with 84.8 percent for the original model."

Part 3: Production Deployment

- Lecture
 - Model Selection

 - Product Quantization

 - Model Serving

- Exporting the Model
- Hosting the Model
- Server Performance
- Using the Model

 Post-Training Optimization Knowledge Distillation • Model Code Efficiency • Building the Application

KNOWLEDGE DISTILLATION The idea

Distilling the Knowledge in a Neural Network

Geoffrey Hinton*†Oriol Vinyals†Google Inc.Google Inc.Mountain ViewMountain Viewgeoffhinton@google.comvinyals@google.com

Abstract

A very simple way to improve the performance of almost any machine learning algorithm is to train many different models on the same data and then to average their predictions [3]. Unfortunately, making predictions using a whole ensemble of models is cumbersome and may be too computationally expensive to allow deployment to a large number of users, especially if the individual models are large neural nets. Caruana and his collaborators [1] have shown that it is possible to compress the knowledge in an ensemble into a single model which is much easier to deploy and we develop this approach further using a different compression technique. We achieve some surprising results on MNIST and we show that we can significantly improve the acoustic model of a heavily used commercial system by distilling the knowledge in an ensemble of models into a single model. We also introduce a new type of ensemble composed of one or more full models and many specialist models which learn to distinguish fine-grained classes that the full models confuse. Unlike a mixture of experts, these specialist models can be trained rapidly and in parallel.

Jeff Dean Google Inc. Mountain View jeff@google.com

KNOWLEDGE DISTILLATION DistillBERT

Table 1: DistilBERT retains 97% of BERT performance. Comparison on the dev sets of the GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the medians of 5 runs with different seeds.

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo	68.7	44.1	68.6	76.6	71.1	86.2	53.4	91.5	70.4	56.3
BERT-base	79.5	56.3	86.7	88.6	91.8	89.6	69.3	92.7	89.0	53.5
DistilBERT	77.0	51.3	82.2	87.5	89.2	88.5	59.9	91.3	86.9	56.3

Table 2: DistilBERT yields to comparable performance on downstream tasks. Comparison on downstream tasks: IMDb (test accuracy) and SQuAD 1.1 (EM/F1 on dev set). D: with a second step of distillation during fine-tuning.

Table 3: DistilBERT is significantly smaller while being constantly faster. Inference time of a full pass of GLUE task STS-B (sentiment analysis) on CPU with a batch size of 1.

Model	# param. (Millions)	Inf. time (seconds)
ELMo	180	895
BERT-base	110	668
DistilBERT	66	410

Model	IMDb (acc.)	SQuAD (EM/F1)
BERT-base	93.46	81.2/88.5
DistilBERT	92.82	77.7/85.8
DistilBERT (D)	-	79.1/86.9

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Part 3: Production Deployment

- Lecture
 - Model Selection

 - Product Quantization

 - Model Serving

- Exporting the Model
- Hosting the Model
- Server Performance
- Using the Model ullet

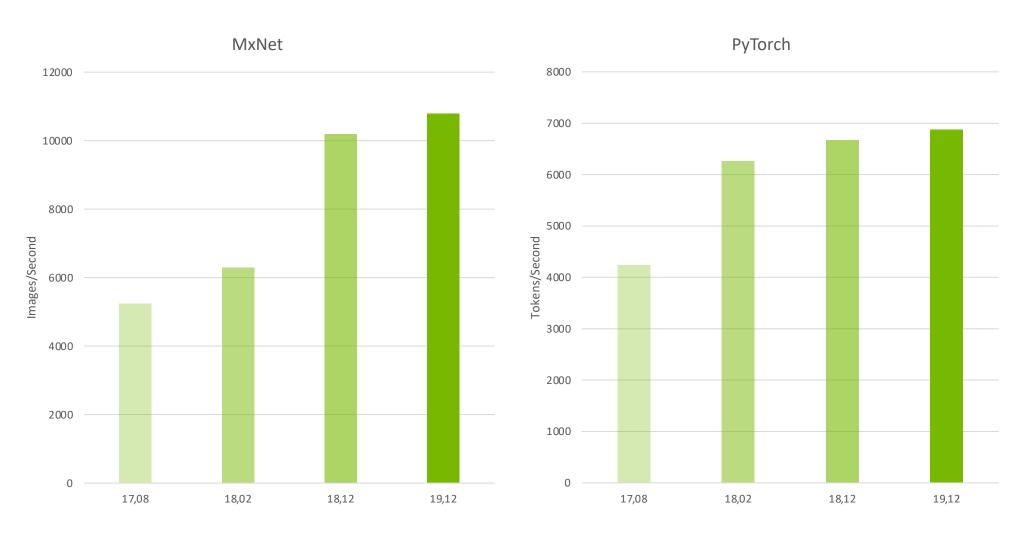
 Post-Training Optimization Knowledge Distillation • Model Code Efficiency • Building the Application

NOT ALL MODELS HAVE THE SAME CODE QUALITY

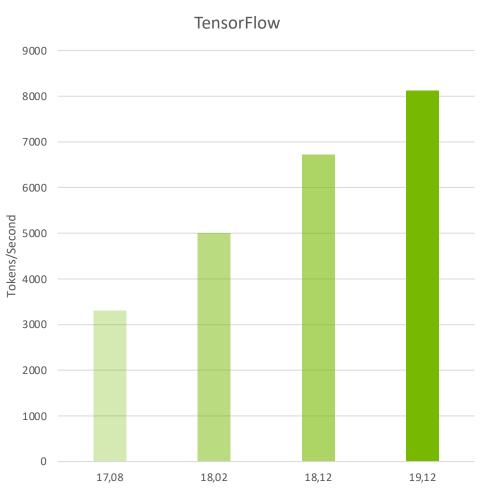
COMPUTE MATTERS

But so does code quality

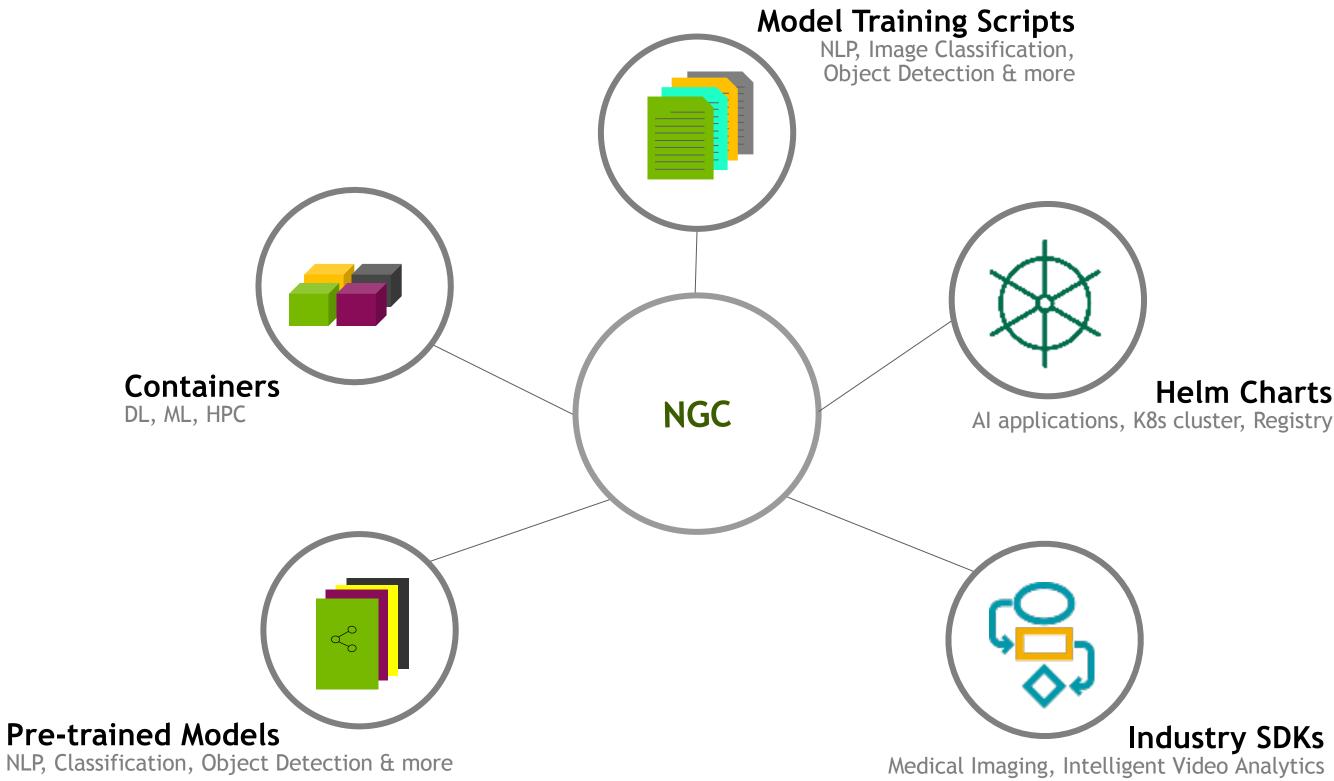
Monthly DL Framework Updates & Optimizations Drive Performance



ResNet-50 v1.5 Training | 8x V100 | DGX-1



NGC: GPU-OPTIMIZED SOFTWARE HUB Simplifying DL, ML and HPC Workflows



PRETRAINED MODELS & MODEL SCRIPTS Build AI Solutions Faster

PRE-TRAINED MODELS

- Deploy AI quickly with models for industry specific use cases
- Covers everything from speech to object detection
- Integrate into existing workflows with code samples
- Easily use transfer learning to adapt to your bespoke use case

MODEL SCRIPTS

- Reference neural network architectures across all domains and popular frameworks with latest SOTA
- Jupyter notebook starter kits

Healthcare (~30 mod

Manufacturing (~25 M

Retail (~25 models)

70 TensorRT Plans

Natural Language Pro

Recommendation Eng

Speech

Translation

dels)	BioBERT (NLP), Clara (Computer Vision)
Models)	Object Detection, Image Classification
	BERT, Transformer
	Classification/Segmentation for v5, v6, v7
ocessing	25 Bert Configurations
gines	Neural Collaborative Filtering, VAE
	Jasper, Tacotron, WaveGlow
	GNMT

THIS APPLIES NOT ONLY TO TRAINING BUT **INFERENCE AS WELL**

CODE QUALITY IS KEY Dramatic differences in model performance

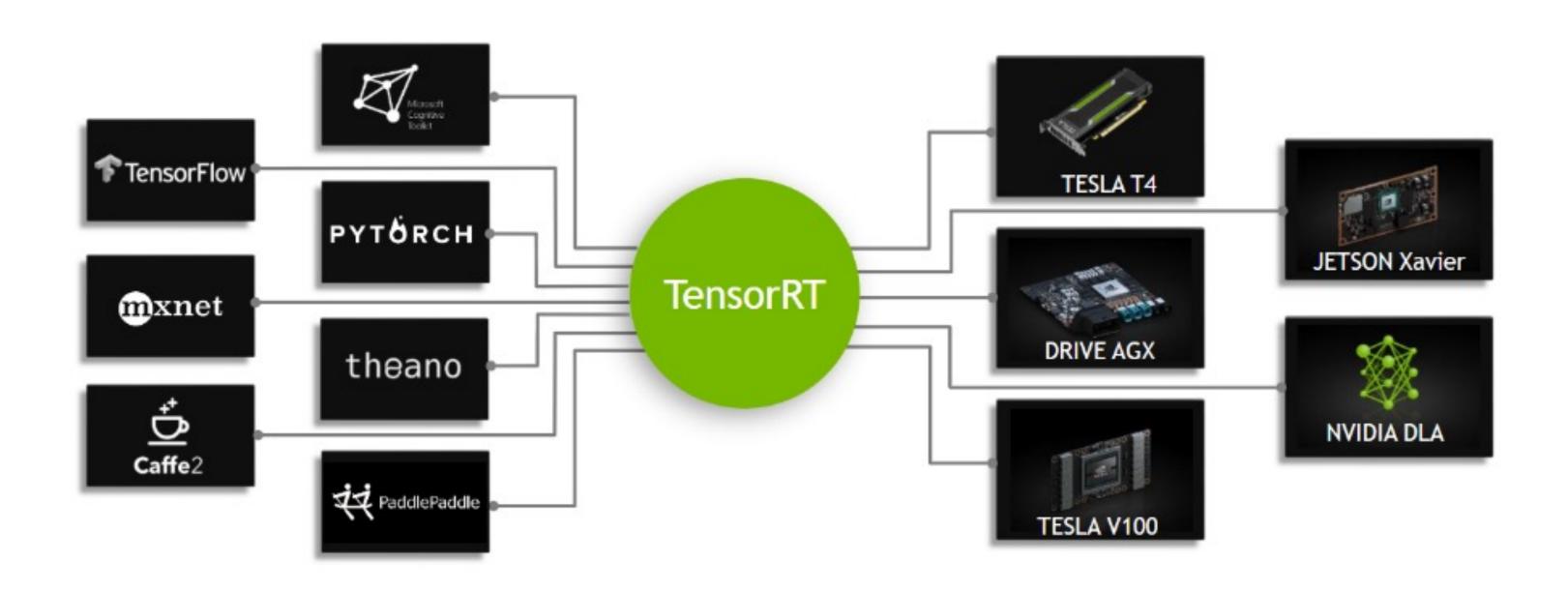
3-layer BERT with 128 sequence length

		Batch size	Inference on	Throughput (Query per second)	Latency (milliseconds)
	Original 3-layer BERT	1	Azure Standard F16s_v2 (CPU)	6	157
CPU	ONNX Model	1	Azure Standard F16s_v2 (CPU) with ONNX Runtime	111	9
	Original 3-layer BERT	4	Azure NV6 GPU VM	200	20
GPU	ONNX Model	4	Azure NV6 GPU VM with ONNX Runtime	500	8
	ONNX Model	64	Azure NC6S_v3 GPU VM with ONNX Runtime + System Optimization (Tensor Core with mixed precision, Same Accuracy)	10667	6

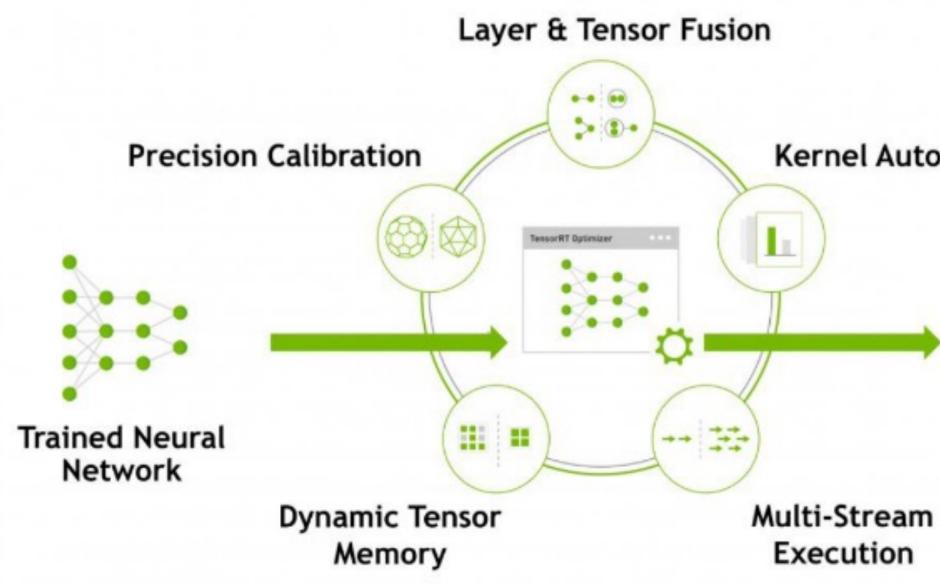
OPTIMIZING INFERENCE WITH TENSORRT

NVIDIA TENSORRT

From Every Framework, Optimized For Each Target Platform



TENSORRT **Optimizations**



Kernel Auto-Tuning

Optimized Inference Engine

TensorRT ONNX PARSER High-Performance Inference for ONNX Models

Optimize and deploy models from ONNX-supported frameworks to production

Apply TensorRT optimizations to any ONNX framework (Caffe 2, Microsoft Cognitive Toolkit, MxNet & PyTorch)

Import TensorFlow and Keras through converters (tf2onnx, keras2onnx)

Use with C++ and Python apps

20+ New Ops in TensorRT 7

Support for Opset 11 (See List of Supported Ops)

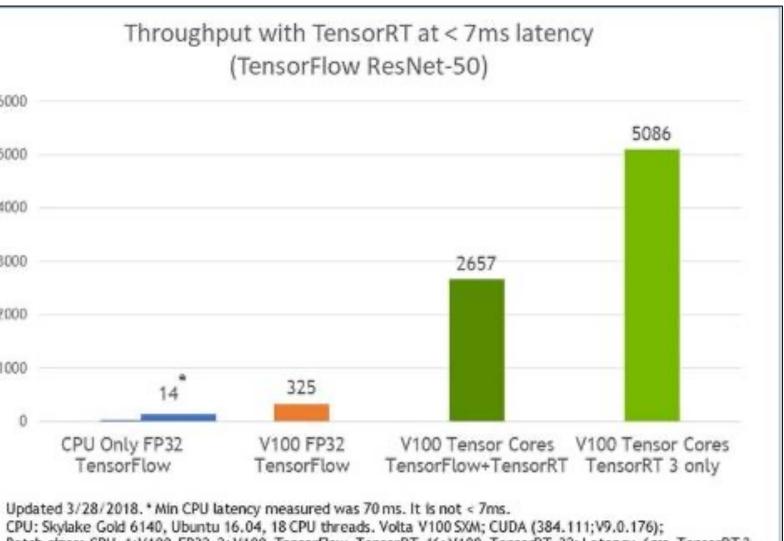
developer.nvidia.com/tensorrt

DNNX

TENSORRT Tight integration with DL frameworks

ResNet50 Host Runtime Speed Up TITAN V - Batch Size 32 - Input Size 224x224 6000 5000 Sec 4000 ~ Images 3000 2000 1000 FP32 FP16 JIT TensorRT TRTorch PyTorch 1.4.0 (CuDNN Benchmark mode enabled) CUDA 10.1 TensorRT 6.0.1.5, TITAN V, i7-7800X

Pytorch -> TRTorch



Batch sizes: CPU=1;V100_FP32=2; V100_TensorFlow_TensorRT=16; V100_TensorRT=32; Latency=6ms. TensorRT 3. Latest results at: https://developer.nvidia.com/deep-learning-performance-training-inference

TensorFlow -> TF-TRT

WIDELY ADOPTED

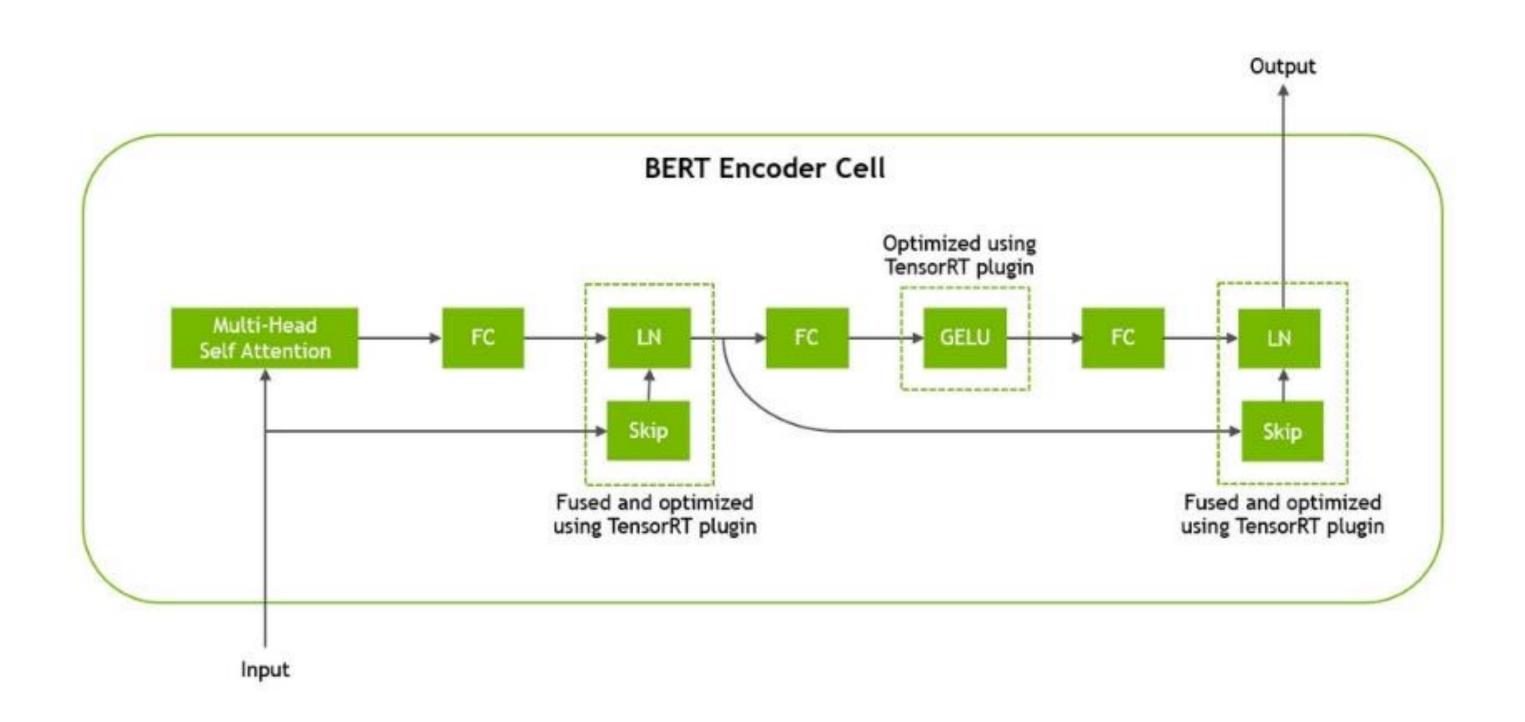
Accelerating most demanding applications

ByteDance 字节跳动

Tencent 腾讯

IMPACT ON NLP

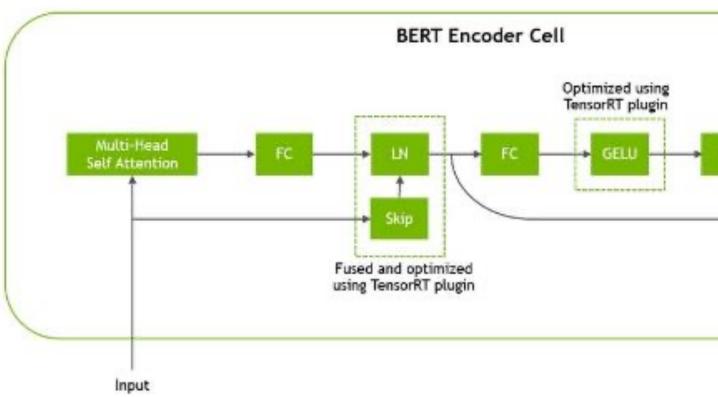
TENSORRT **BERT Encoder optimizations**



CUSTOM PLUGINS

Optimized GeLU as well as skip and layer-normalization operations

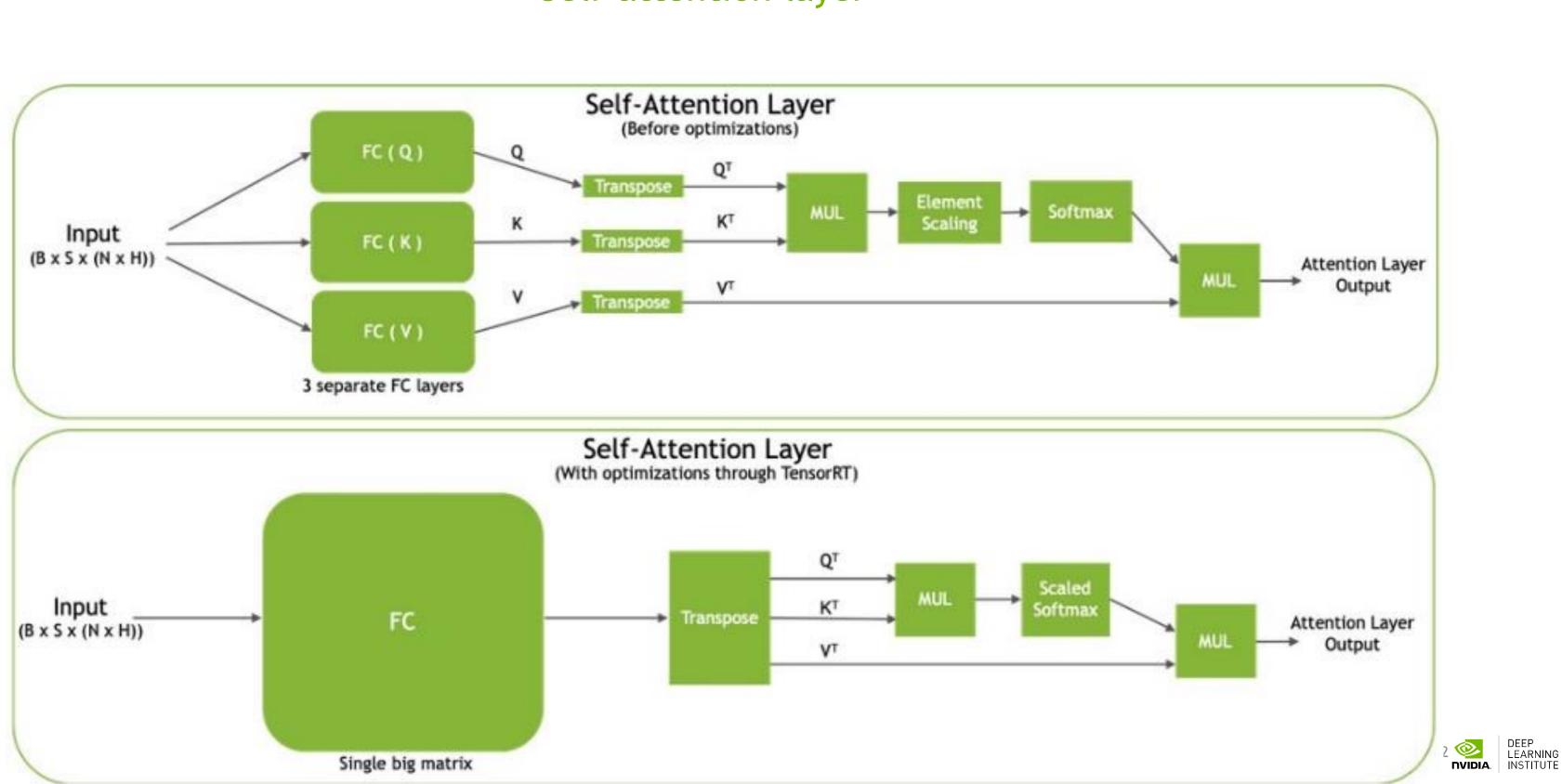
- Naïve implementation would require a large number of TensorRT elementary layers
- For k layers, the naïve implementation would require k-1 memory roundtrips
- The skip and layer-normalization(LN) layers occur twice per Transformer layer and are fused in a single kernel



```
gelu(x) = a * x * (1 + tanh(b * (x + c * x^3)))
Result = x^3
Result = c * Result
Result = x + Result
Result = b * Result
Result = tanh(Result)
Result = x * Result
Result = a * Result
              Output
           Fused and optimized
           using TensorRT plugin
```

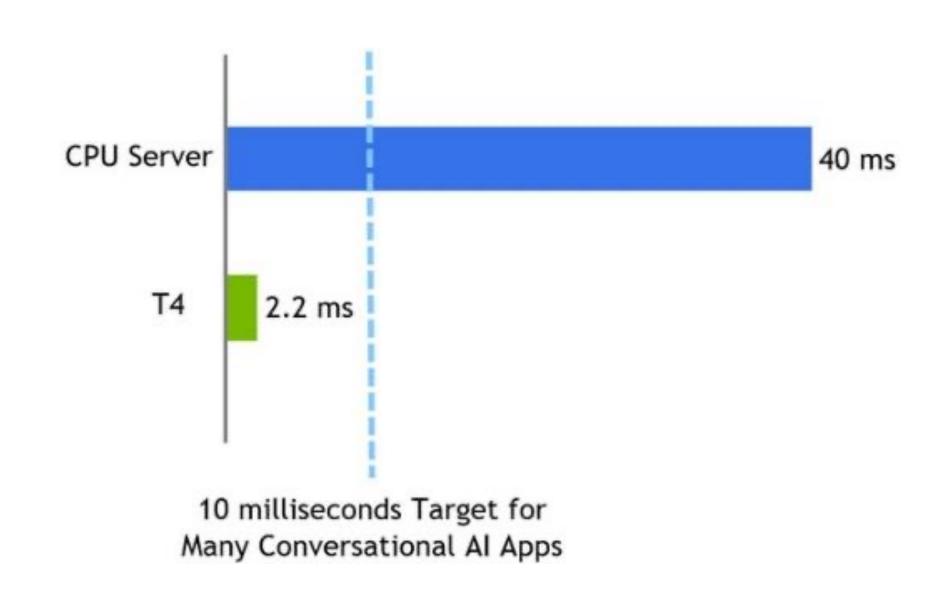

CUSTOM PLUGINS

Self-attention layer



IMPLICATIONS

Significant impact on latency and throughput (batch 1)



Using a Tesla T4 GPU, BERT optimized with TensorRT can perform inference in 2.2 ms for a QA task similar to available in SQuAD with batch size =1 and sequence length = 128.

IMPLICATIONS

Significant impact on latency and throughput

DGX A100 server w/ 1x NVIDIA A100 with 7 MIG instances of 1g.5gb | Batch Size = 94 | Precision: INT8 | Sequence Length = 128 DGX-1 server w/1x NVIDIA V100 | TensorRT 7.1 | Batch Size = 256 | Precision: Mixed | Sequence Length = 128

BEYOND BERT

FASTER TRANSFORMER Designed for training and inference speed

- Encoder:
 - 1.5x compare to TensorFlow with XLA on FP16
- Decoder on NVIDIA Tesla T4
 - 2.5x speedup for batch size 1 (online translating scheme)
 - 2x speedup for large batch size in FP16
- Decoding on NVIDIA Tesla T4
 - 7x speedup for batch size 1 and beam width 4 (online translating scheme)
 - 2x speedup for large batch size in FP16.
- Decoding on NVIDIA Tesla V100
 - 6x speedup for batch size 1 and beam width 4 (online translating scheme)
 - 3x speedup for large batch size in FP16.

CONSIDER USING TENSORRT

Part 3: Production Deployment

- Lecture
 - Model Selection

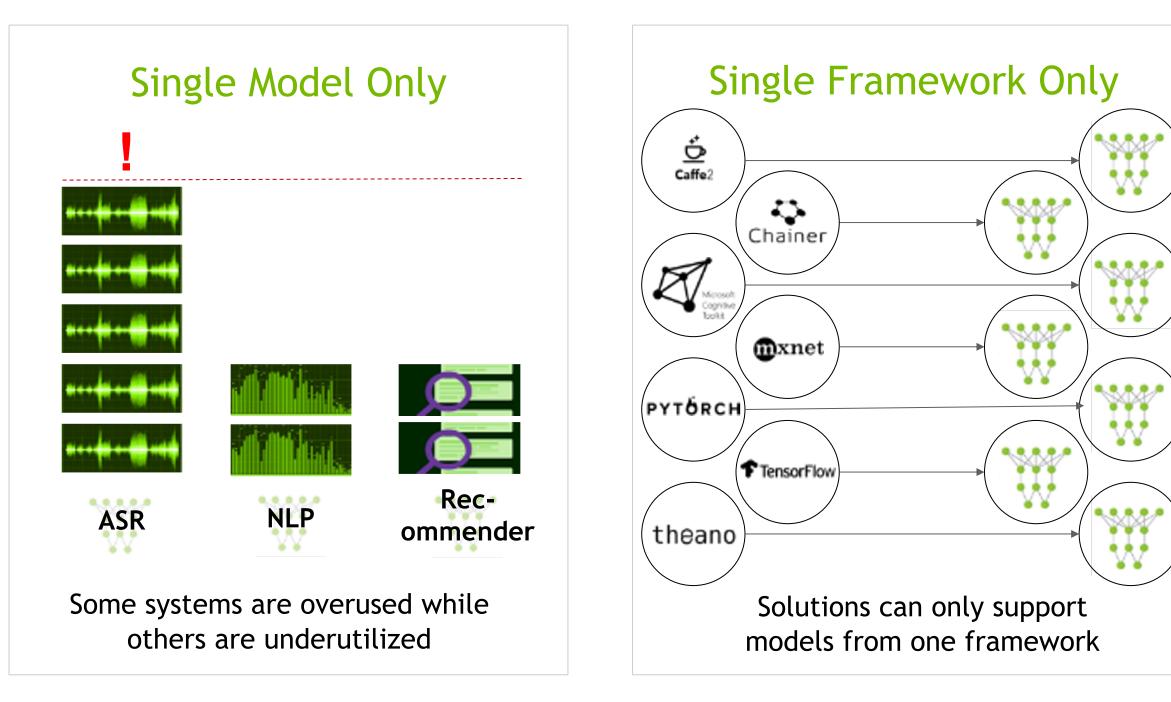
 - Product Quantization

 - Model Serving

- Exporting the Model
- Hosting the Model
- Server Performance
- Using the Model

 Post-Training Optimization Knowledge Distillation • Model Code Efficiency • Building the Application

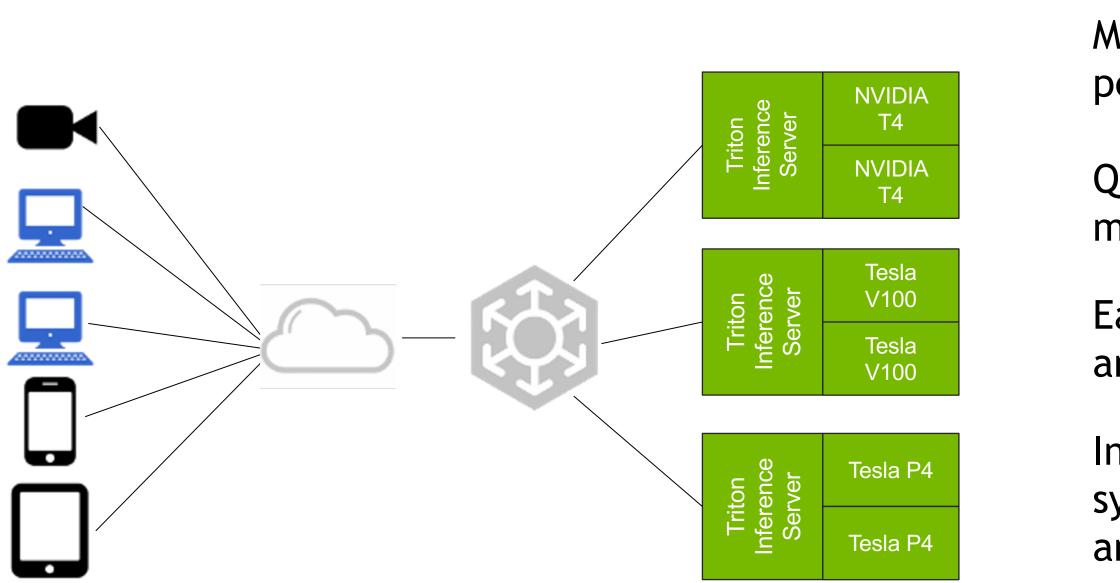
INEFFICIENCY LIMITS INNOVATION Difficulties with deploying data center inference



Custom Development

Developers need to reinvent the plumbing for every application

NVIDIA TRITON INFERENCE SERVER Production data center inference server



- Maximize real-time inference performance of GPUs
- Quickly deploy and manage multiple models per GPU per node
- Easily scale to heterogeneous GPUs and multi GPU nodes
- Integrates with orchestration systems and auto-scalers via latency and health metrics
- Now open source for thorough customization and integration

Concurrent Model Execution

Multiple models (or multiple instances of same model) may execute on GPU simultaneously

CPU Model Inference Execution

Framework native models can execute inference requests on the CPU

Metrics

Utilization, count, memory, and latency

Custom Backend

Custom backend allows the user more flexibility by providing their own implementation of an execution engine through the use of a shared library

Model Ensemble

Pipeline of one or more models and the connection of input and output tensors between those models (can be used with custom backend)

FEATURES

Dynamic Batching

Inference requests can be batched up by the inference server to 1) the model-allowed maximum or 2) the user-defined latency SLA

Multiple Model Format Support

PyTorch JIT (.pt) TensorFlow GraphDef/SavedModel TensorFlow and TensorRT GraphDef ONNX graph (ONNX Runtime) TensorRT Plans Caffe2 NetDef (ONNX import path)

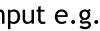
CMake build

Build the inference server from source making it more portable to multiple OSes and removing the build dependency on Docker

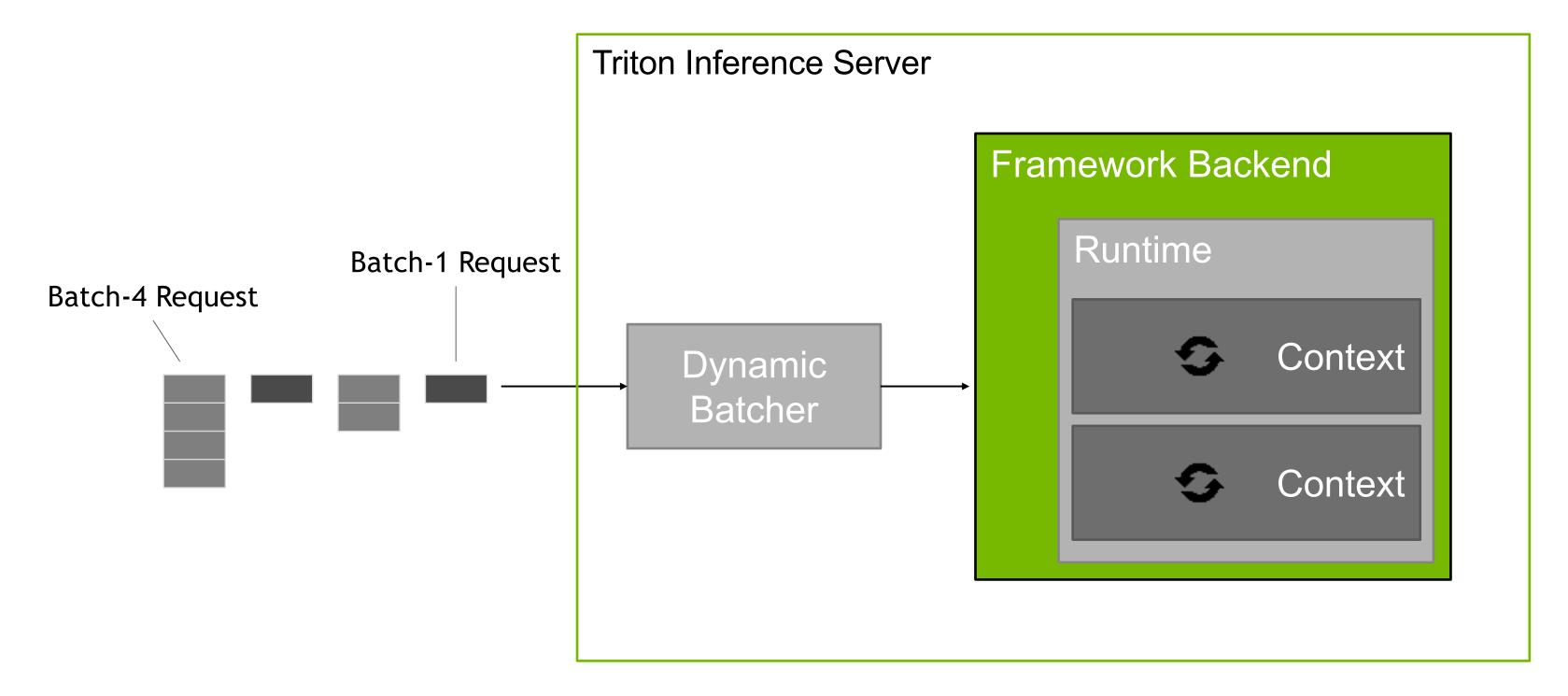
Streaming API

Built-in support for audio streaming input e.g. for speech recognition

TensorRT PYTÖRCH



DYNAMIC BATCHING SCHEDULER

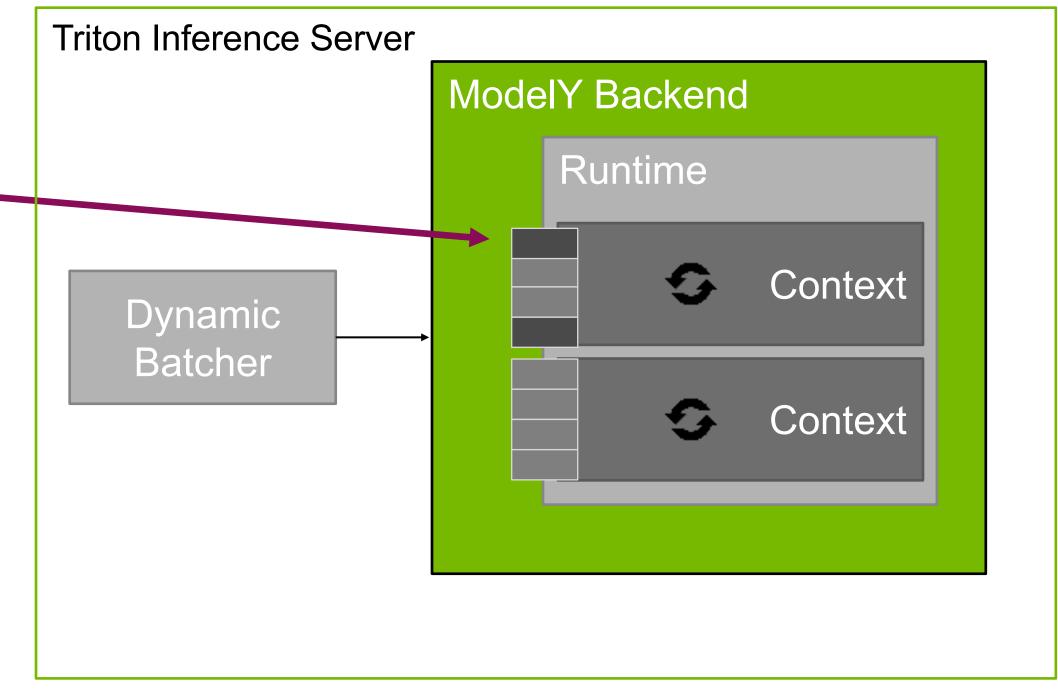


DYNAMIC BATCHING SCHEDULER

Grouping requests into a single "batch" increases overall GPU throughput

Preferred batch size and wait time are configuration options.

Assume 4 gives best utilization in this example.



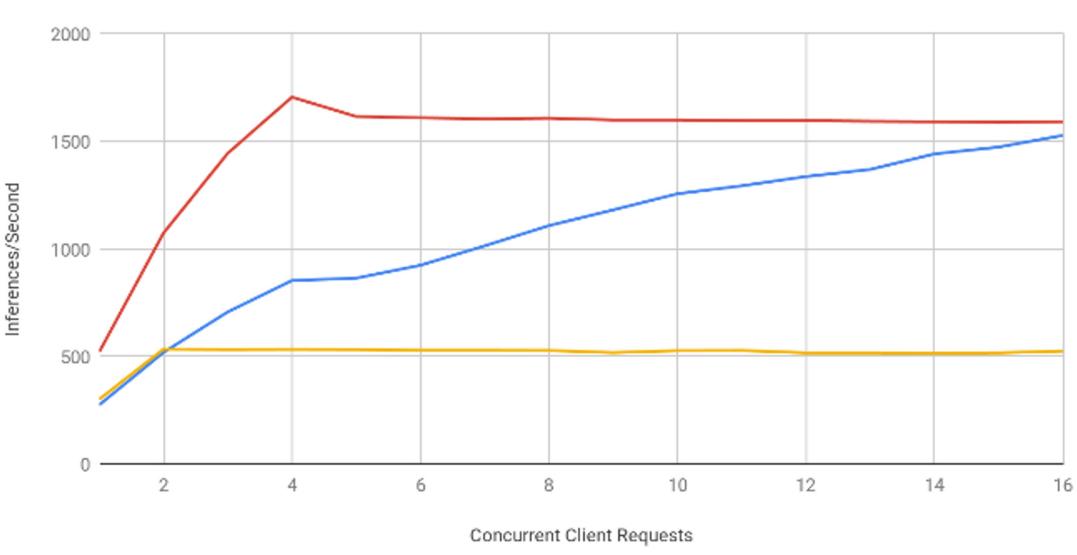
DYNAMIC BATCHING 2.5X Faster Inferences/Second at a 50ms End-to-End Server Latency Threshold

Triton Inference Server groups

inference requests based on customer defined metrics for optimal performance

Customer defines 1) batch size (required) and 2) latency requirements (optional)

Example: No dynamic batching (batch size 1 & 8) vs dynamic batching



Static vs Dynamic Batching (T4 TRT Resnet50 FP16 Instance 1)

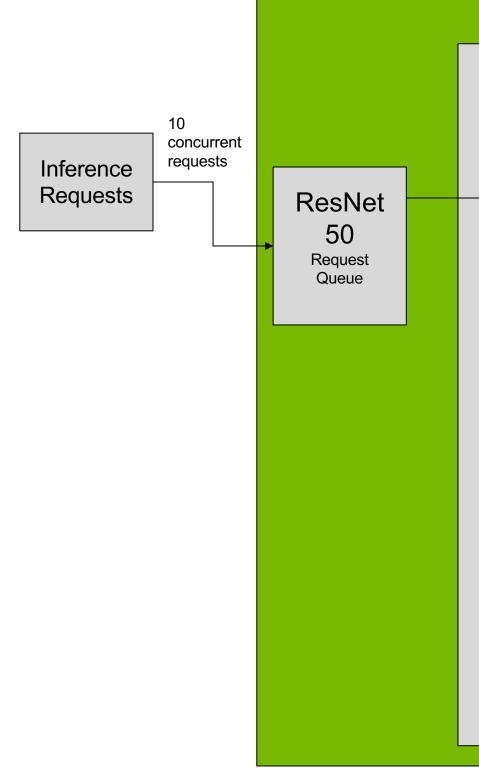
Static BS1 with Dynamic BS8 Static BS8 no Dynamic Batching Static BS1 no Dynamic Batching

CONCURRENT MODEL EXECUTION - RESNET 50 6x Better Performance and Improved GPU Utilization Through Multiple Model Concurrency

Common Scenario 1

One API using <u>multiple</u> copies of the same model on a GPU

Example: 8 instances of TRT FP16 ResNet50 (each model takes 2 GB GPU memory) are loaded onto the GPU and can run concurrently on a 16GB T4 GPU. 10 concurrent inference requests happen: each model instance fulfills one request simultaneously and 2 are queued in the per-model scheduler queues in Triton Inference Server to execute after the 8 requests finish. With this configuration, 2680 inferences per second at 152 ms with batch size 8 on each inference server instance is achieved.



Triton Inference Server

 ТТ	4 16GB GPU	
	CUDA Stream	
RN50 Instance 1		
RN50 Instance 2	CUDA Stream	
RN50 Instance 3	CUDA Stream	
RN50 Instance 4	CUDA Stream	
RN50 Instance 5	CUDA Stream	
RN50 Instance 6	CUDA Stream	
RN50 Instance 7	CUDA Stream	
RN50 Instance 8	CUDA Stream	

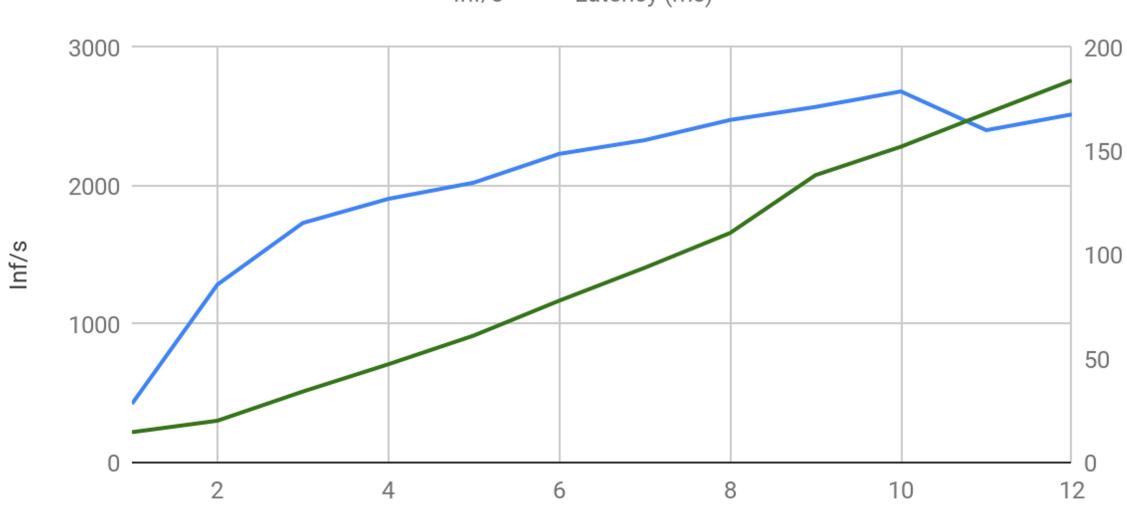
CONCURRENT MODEL EXECUTION - RESNET 50 6x Better Performance and Improved GPU Utilization Through Multiple Model Concurrency

Common Scenario 1

One API using <u>multiple</u> copies of the same model on a GPU

Example: 8 instances of TRT FP16 ResNet50 (each model takes 2 GB GPU memory) are loaded onto the GPU and can run concurrently on a 16GB T4 GPU. 10 concurrent inference requests happen: each model instance fulfills one request simultaneously and 2 are queued in the per-model scheduler queues in Triton Inference Server to execute after the 8 requests finish. With this configuration, 2680 inferences per second at 152 ms with batch size 8 on each inference server instance is achieved.

TRT FP16 Inf/s vs. Concurrency BS 8 Instance 8 on T4



Inf/s
 Latency (ms)

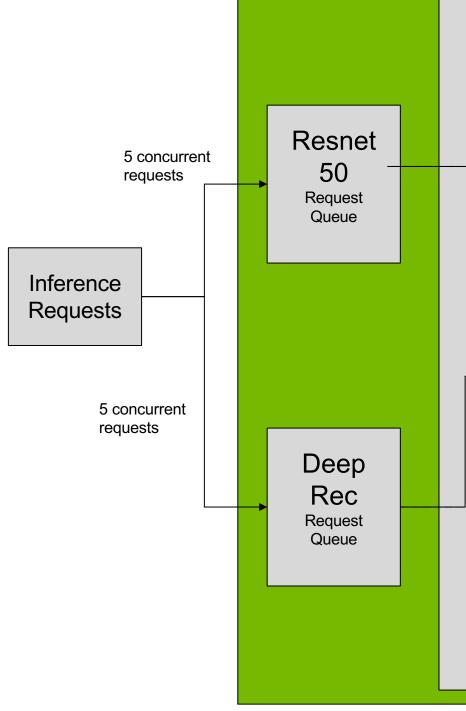
Concurrency

CONCURRENT MODEL EXECUTION RESNET 50 & DEEP RECOMMENDER

Common Scenario 2

<u>Many</u> APIs using multiple <u>different</u> models on a GPU

Example: 4 instances of TRT FP16 ResNet50 and 4 instances of TRT FP16 Deep Recommender are running concurrently on one GPU. Ten requests come in for both models at the same time (5 for each model) and fed to the appropriate model for inference. The requests are fulfilled concurrently and sent back to the user. One request is queued for each model. With this configuration, 5778 inferences per second at 80 ms with batch size 8 on each inference server instance is achieved.



Triton Inference Server

T4 16GB GPU	
RN50 Instance 1 CUDA Stream	
RN50 Instance 2 CUDA Stream	
RN50 Instance 3 CUDA Stream	
RN50 Instance 4 CUDA Stream	
DeepRec Instance 1 CUDA Stream	
DeepRec Instance 2 CUDA Stream	
DeepRec Instance 3 CUDA Stream	
DeepRec Instance 4 CUDA Stream	

LEARNING

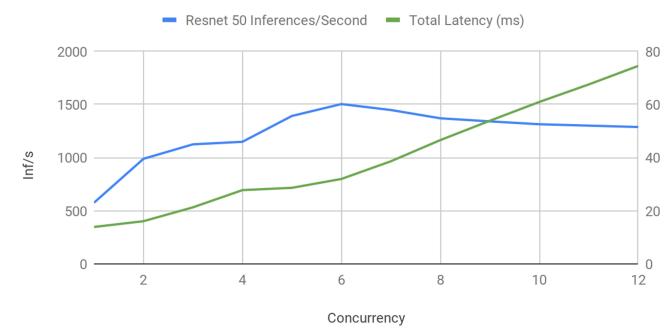
INSTITUTE

CONCURRENT MODEL EXECUTION RESNET 50 & DEEP RECOMMENDER

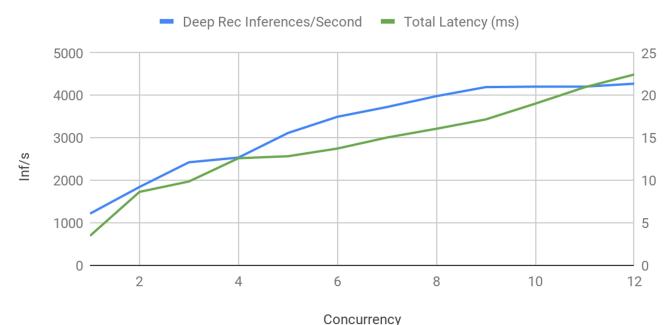
Common Scenario 2

<u>Many</u> APIs using multiple <u>different</u> models on a GPU

Example: 4 instances of TRT FP16 ResNet50 and 4 instances of TRT FP16 Deep Recommender are running concurrently on one GPU. Ten requests come in for both models at the same time (5 for each model) and fed to the appropriate model for inference. The requests are fulfilled concurrently and sent back to the user. One request is queued for each model. With this configuration, 5778 inferences per second at 80 ms with batch size 8 on each inference server instance is achieved. TRT FP16 Resnet 50 Inferences/Second vs Total Latency BS8 Instance 4 on T4



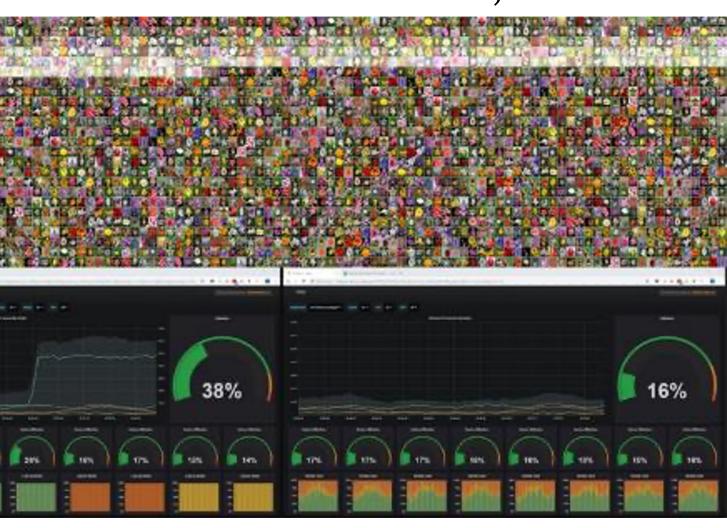
TRT FP16 Deep Rec Inferences/Second vs Total Latency BS8 Instance 4 on T4



TRITON INFERENCE SERVER METRICS FOR AUTOSCALING Before Triton Inference Server - 5,000 FPS

Before Triton Inference Server - 800 FPS

- One model per GPU
- Requests are steady across all models
- Utilization is low on all GPUs

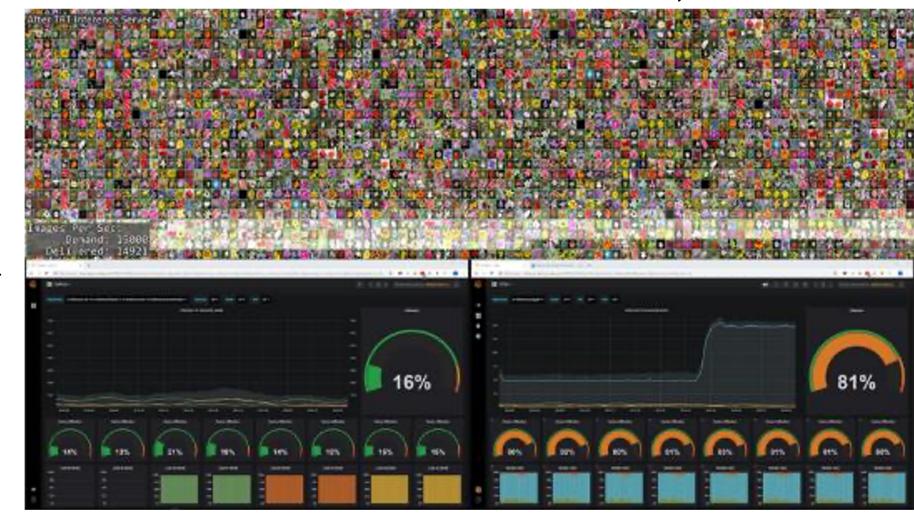


Spike in requests for blue model GPUs running blue model are being fully utilized Other GPUs remain underutilized

TRITON INFERENCE SERVER METRICS FOR AUTOSCALING After Triton Inference Server - 15,000 FPS

After Triton Inference Server - 5,000 FPS

- Load multiple models on every GPU
- Load is evenly distributed between all GPUs



- - 0 0

Spike in requests for blue model Each GPU can run the blue model concurrently Metrics to indicate time to scale up **GPU** utilization Power usage

- Inference count
- Queue time
- Number of requests/sec

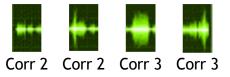
STREAMING INFERENCE REQUESTS

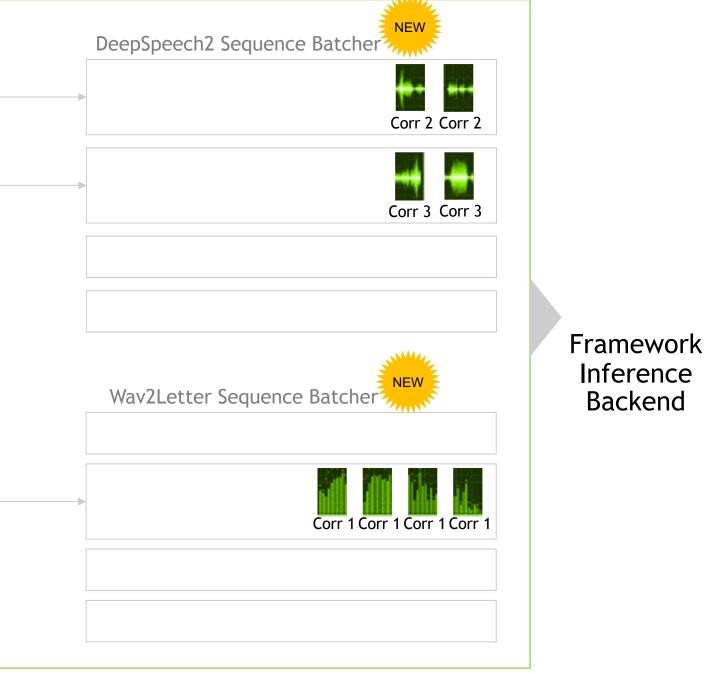
New Streaming API

Based on the correlation ID, the audio requests are sent to the appropriate batch slot in the sequence batcher*

*Correct order of requests is assumed at entry into the endpoint Note: Corr = Correlation ID

Corr 1 Corr 1 Corr 1 Corr 1 Inference Request Per Model Request Queues DeepSpeech2 Corr 3 Corr 3 Corr 2 Corr 2 Wave2Letter Corr 1 Corr 1 Corr 1 Corr 1

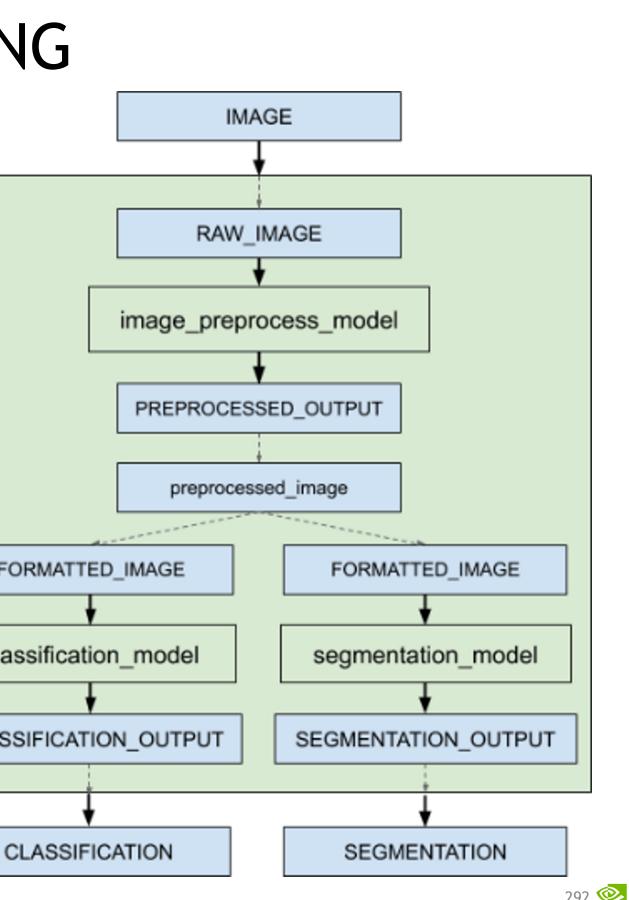




MODEL ENSEMBLING

- Pipeline of one or more models and the connection of input and output tensors between those models
- Use for model stitching or data flow of multiple models such as data preprocessing \rightarrow inference \rightarrow data post-processing
- Collects the output tensors in each step, provides them as input tensors for other steps according to the specification
- Ensemble models will inherit the characteristics of the models involved, so the meta-data in the request header must comply with the models within the ensemble

_	
	FOR
_	
	class
	CLASSI



perf client TOOL

•	Measures throughput (inf/s) and
	latency under varying client loads

- perf client Modes
 - Specify how many concurrent 1. outstanding requests and it will find a stable latency and throughput for that level
 - Generate throughput vs 2. latency curve by increasing the request concurrency until a specific latency or concurrency limit is reached
- Generates a file containing CSV output of the results
- Easy steps to help visualize the throughput vs latency tradeoffs

	14							
	p99 Batch Latency (microseconds)							
	Client Send	Network+Server Send/Recv	Server Queu	Server Compute	Client Recy			
24	75	689	51	1522	6			
83	91	696	42	2076	7			
25	104	706	508	2293	7			
22	126	755	522	2140	7			
17	166	909	548	2168	7			
87	194	969	601	2247	7			
10	224	1060	690	2367	7			
Z3	248	1141	723	2505	7			
82	272	1290	797	2668	7			
41	289	1352	987	2781	7			
96	302	1467	1093	2922	7			
53	327	1688	1135	3073	8			
01	334	1619	1271	3252	8			
35	362	1723	1350	3419	8			
80	374	1782	1451	3565	8			
17	383	1874	1550	3710	8			

Throughput: 721_infer/sec Avg Latency: 2728 usec (standard deviation 162 usec) Avg sRPC time: 2187 user (marshal 89 user + response wait 2591 user + unmarshal 7 user) erver Request count: 2623 Avg request latency: 1978 usec (overhead 18 usec + queue 38 usec + compute 1914 usec) pest concurrency: 3 Pass [1] throughput: 861 inter/sec. Avg latency: 347] usec (std 1429 usec) Pass [2] throughput: 861 inter/sec. Avg latency: 3467 usec (std 1342 usec) Pass [3] throughput: 861 inter/sec. Avg latency: 3468 usec (std 1446 usec) Ctimi Request count: 2585 Throughput: 8b1 inter/sec Avg Latency: 3468 usec (standard deviation 1446 usec). Avg gRPC time: 0440 used (marshal 98 used + response wait 0305 used + unmarshal 7 used) Server: Request count: 3093 Avg request latency: 27D1 usec (overhead 15 usec + gueue 484 usec + compute 22D1 usec) uest concurrency: 4 Pass [1] throughput: 918 infer/sec. Avg latency: 4342 usec (std 1251 usec) Pass [2] throughput: 894 infer/sec. Avg tatency: 4459 usec (std 1392 usec) Pass [3] Huroughpul: 989 inter/and. Ang Latendy: 4384 cand (std 1271 cand) Ctient: Request count: 2728 Throughput: 909 infer/sec Avg Latency: 4383 usec (standard deviation 1271 usec) Avg gRPC time: 4355 used (marshal 118 used + response wait 4231 used + unmarshal 7 used) Server Request count: 3267 Avg request latency: 1507 usec (owerhead 15 usec + queue 1376 usec + compute 2196 usec) (ferences/Second ws. Client Average Batch Latency) oncurrency: 1, 418 inter/ass, latency 7376 wass unrunnency: 2, 729 inter/sec, latence 2728 usec incurrency: 1, 061 infer/sec. latency 3468 usec ncurrency: 4, 909 infer/sec, latency (303 used

ALL CPU WORKLOADS SUPPORTED

Deploy the CPU workloads used today and benefit from Triton Inference Server features (TRT not required)

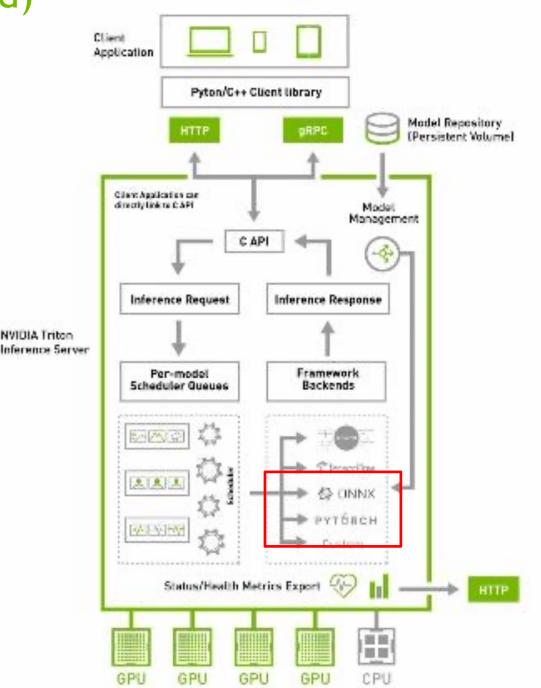
Triton relies on framework backends (Tensorflow, Caffe2, PyTorch) to execute the inference request on CPU

Support for Tensorflow and Caffe2 CPU optimizations using Intel MKL-DNN library

Allows frameworks backends to make use of multiple CPUs and cores

Benefit from features:

- Multiple Model Framework Support
- Dynamic batching
- Custom backend
- Model Ensembling
- Audio Streaming API



TRITON INFERENCE SERVER COLLABORATION WITH KUBEFLOW

What is Kubeflow?

- Open-source project to make ML workflows on Kubernetes simple, portable, and scalable
- Customizable scripts and configuration files to deploy containers on their chosen environment

Problems it solves

Easily set up an ML stack/pipeline that can fit into the majority of enterprise datacenter and multi-cloud environments

How it helps Triton Inference Server

- Triton Inference Server is deployed as a component inside of a production workflow to
 - **Optimize GPU performance**
 - Enable auto-scaling, traffic load balancing, and redundancy/failover via metrics

For a more detailed explanation and step-by-step guidance for this collaboration, refer to this GitHub repo.

TRITON INFERENCE SERVER HELM CHART

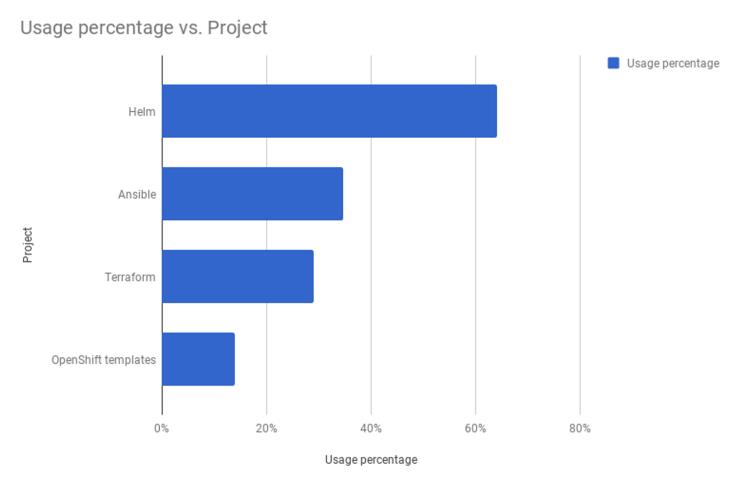
Simple helm chart for installing a single instance of the NVIDIA Triton Inference Server

Helm: Most used "package manager" for Kubernetes

We built a simple chart ("package") for the Triton Inference Server.

You can use it to easily deploy an instance of the server. It can also be easily configured to point to a different image, model store, ...

https://github.com/NVIDIA/tensorrt-inferenceserver/tree/b6b45ead074d57e3d18703b7c0273672c5e92893/deploy/single server



Part 3: Production Deployment

- Lecture
 - Model Selection

 - Product Quantization

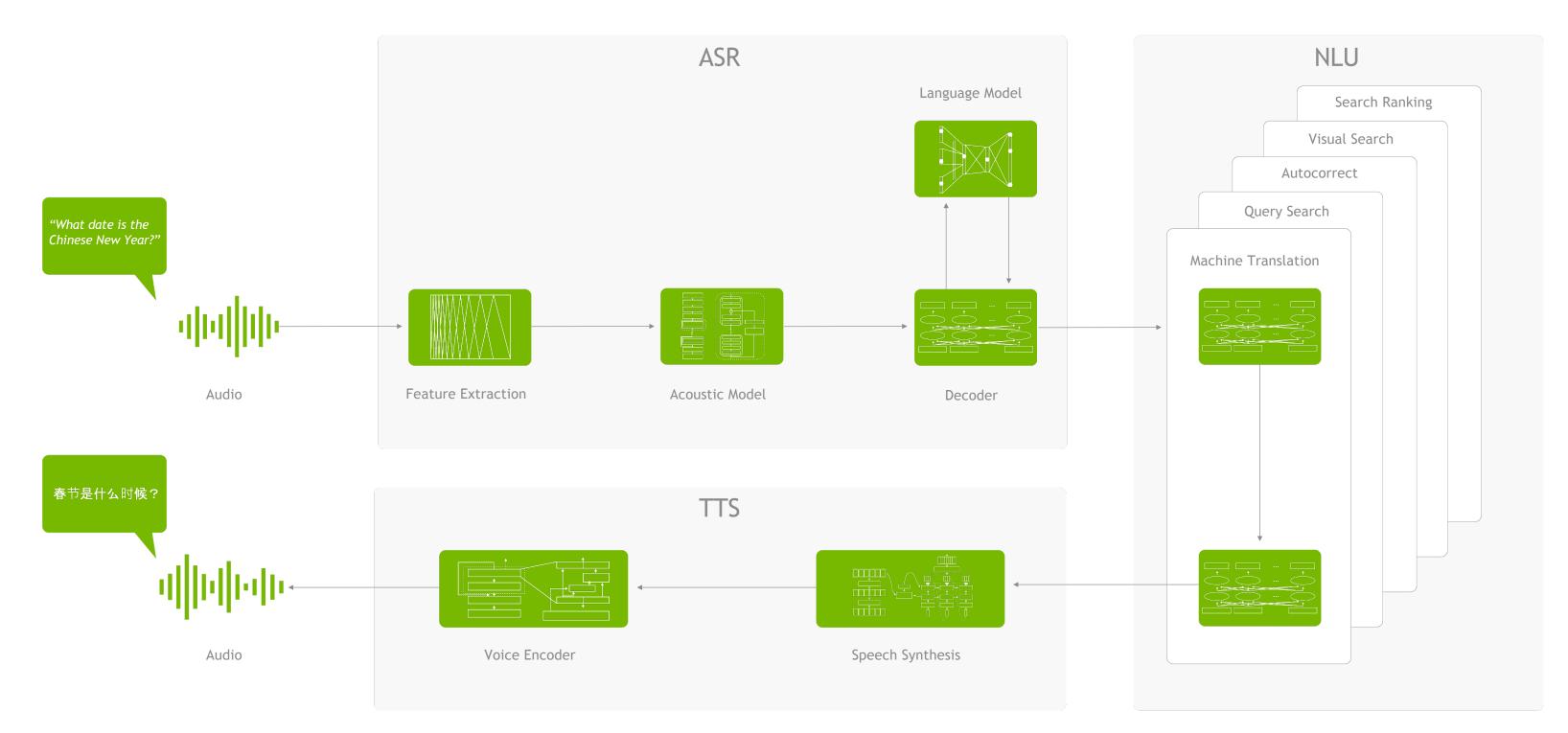
 - Model Serving

- Exporting the Model
- Hosting the Model
- Server Performance
- Using the Model

 Post-Training Optimization Knowledge Distillation • Model Code Efficiency • Building the Application

APPLICATION != SINGLE MODEL

THE APPLICATION Typically composed of many components

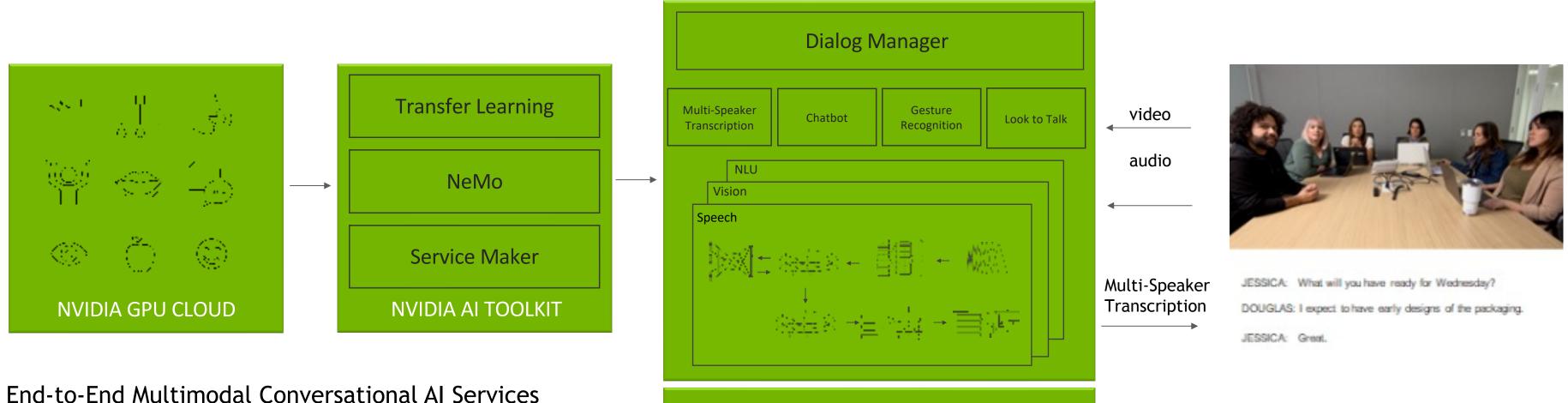


NVIDIA RIVA

Fully Accelerated Framework for Multimodal Conversational AI Services

Riva

TRITON INFERENCE SERVER



End-to-End Multimodal Conversational AI Service

Pre-trained SOTA models-100,000 Hours of DGX

Retrain with NeMo

Interactive Response - 150ms on A100 versus 25sec on CPU

Deploy Services with One Line of Code

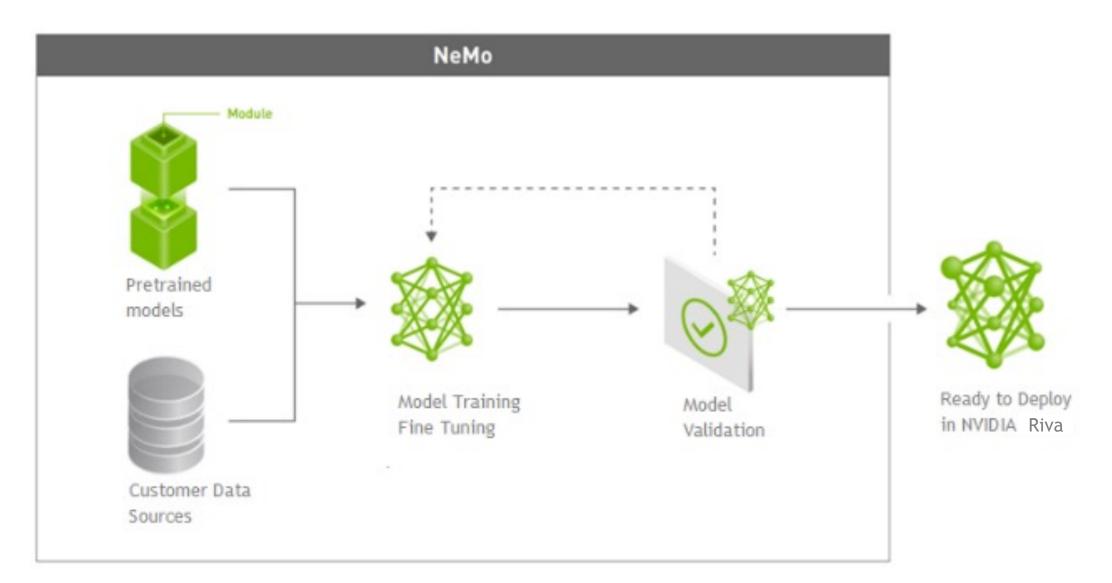
PRETRAINED MODELS AND AI TOOLKIT Train SOTA Models on Your Data to Understand your Domain and Jargon

100+ pretrained models in NGC

SOTA models trained over 100,000 hours on NVIDIA DGX™

Retrain for your domain using NeMo & TAO Toolkit

Deploy trained models to real-time services using Helm charts



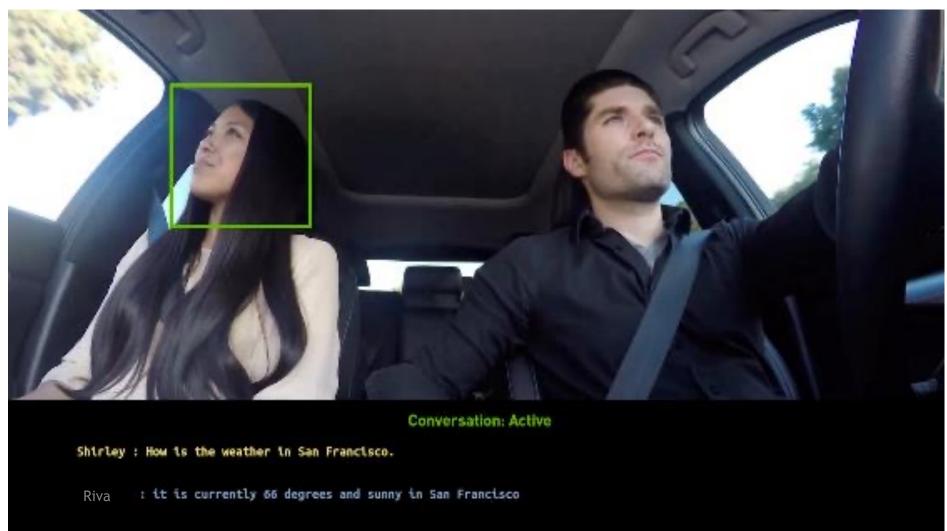
MULTIMODAL SKILLS Use speech and vision for natural interaction

Build new skills by fusing services for ASR, NLU, TTS, and CV

Reference skills include:

- Multi-speaker transcription
- Chatbot
- Look-to-talk

Dialog manager manages multi-user and multi-context scenarios



Multimodal application with multiple users and contexts

BUILD CONVERSATIONAL AI SERVICES

Optimized Services for Real Time Applications

Build applications easily by connecting performance tuned services

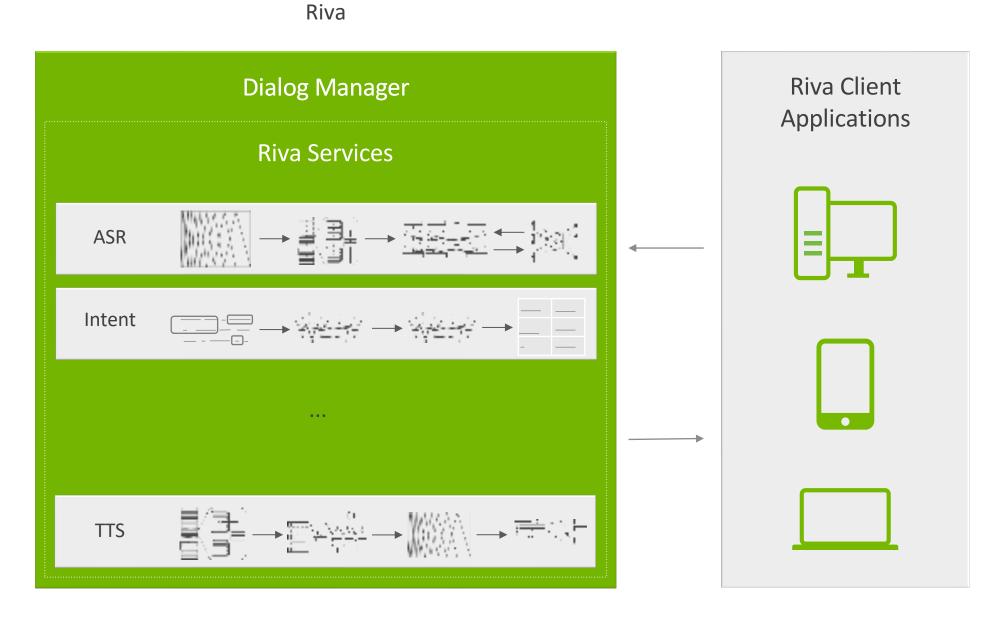
Task specific services include:

- ASR
- Intent Classification
- Slot Filling
- Pose Estimation
- Facial Landmark Detection

Services for streaming & batch usage

Build new services from any model in ONNX format

Access services for gRPC and HTTP endpoints



Riva AI services

DEPLOY MODELS AS REAL-TIME SERVICES One Click to Create High-Performance Services from SOTA Models

Deploy models to services in the cloud, data center, and at the edge

Single command to set up and run the entire Riva application

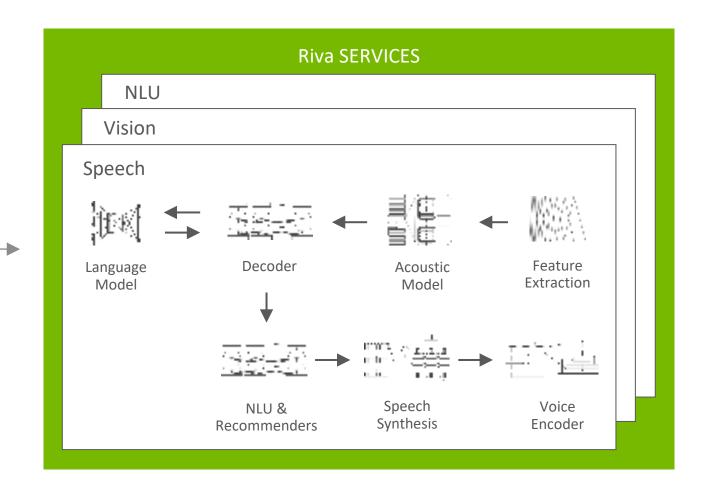
through Helm charts on Kubernetes cluster

Customization of Helm charts for your setup and use case.

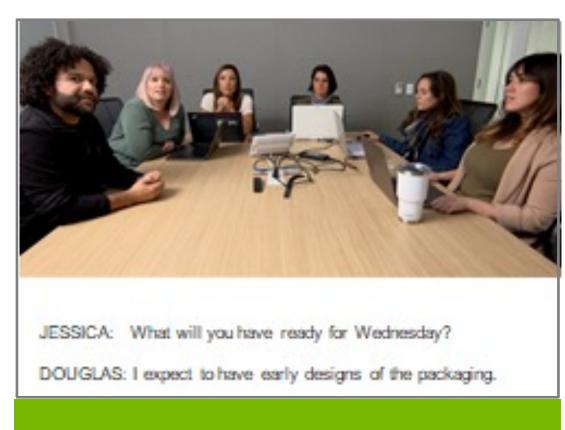
One click deployment

TensorRT **Triton Inference Server Riva API Server**

Helm command to deploy models to production

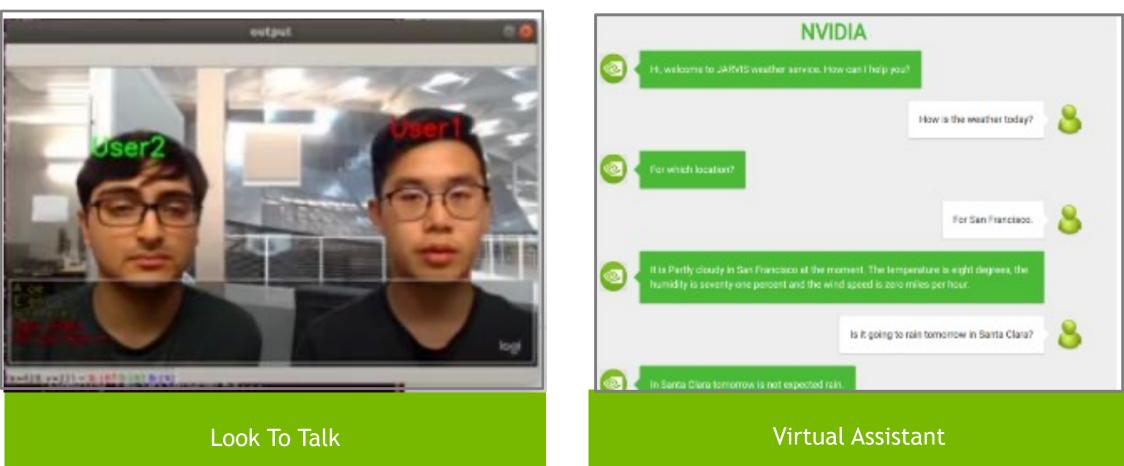


RIVA SAMPLES



Visual Diarization

Transcribe multi-user multi-context conversations



Wait for gaze before triggering AI assistant

End-to-end conversational AI system

Part 3: Production Deployment Lecture

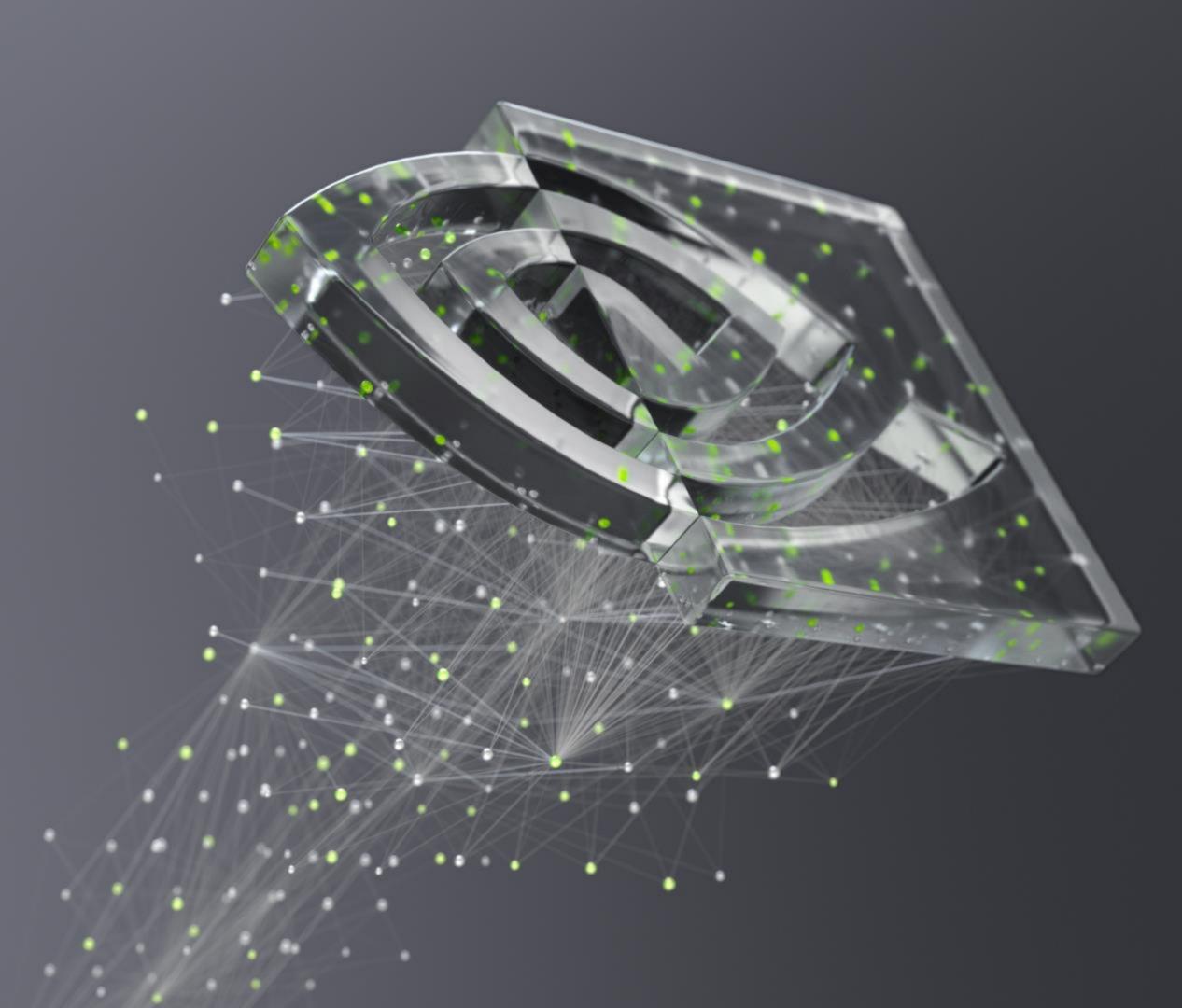
- Model Selection
- Product Quantization

- Model Serving

Lab

- Exporting the Model
- Hosting the Model
- Server Performance
- Using the Model

 Post-Training Optimization Knowledge Distillation • Model Code Efficiency • Building the Application



DEEP LEARNING INSTITUTE