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FULL COURSE AGENDA

Lecture: NLP background and the role of DNNs leading to the
Transformer architecture

Lab: Tutorial-style exploration of a franslation task using the
Transformer architecture

Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo APl and
exercises to build a text classification task and a named
entity recognition task using BERT-based language models

Lecture: Discussion of production deployment considerations
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering
task to NVIDIA Triton
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FOUNDATION OF COUNTLESS
APPLICATIONS



NLP TASKS

Intent
Detection

Common
Sense
Reasoning

Auto
Completion

Sentiment
Analysis

General
Q&A

Automatic
Writing

Summary
Generation

Automatic
Dialogue
Generation

Code
Generation

And many more....



GLIMPSE OF WHAT IS POSSIBLE, TODAY...
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PROBLEM FORMULATION



MACHINE LEARNING

Discovering the discussed structures in text

d  Machine Learning

Text Algorithm
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MACHINE LEARNING

Discovering the discussed structures in text

d  Machine Learning

Text Algorithm
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MACHINE LEARNING

Design decisions

?

Problem formulation

Text Pre- Text Dimensionality Vector Machine Learning

Text — Reweighting

processing Representation Reduction Comparison Algorithm
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MACHINE LEARNING

All linear combinations feasible

?

Problem formulation

?

Text Pre-

Text — ,
processing

Text Dimensionality Vector
Representation Reduction Comparison

Machine Learning
Algorithm

GloVe Word2Vec
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MACHINE LEARNING

In this class

Subset of Problem formulations

Text ——

Text Pre-

processing Representation

Text

Reweighting

Dimensionality
Reduction

Vector
Comparison

Machine Learning
Algorithm

Subset of word representations

Subset of
approaches
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TEXT REPRESENTATIONS

The bag of words

Bag of words/ngrams - feature per word/ngram

the cat sat on the mat

Cat Sat the mat quic .. [Vocabulary
kly
1 1 1 2 1 0
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Sparse Input (1-hot)

¢ oo

Word 1 ‘

‘ Word n ‘

No semantic generalization

dog:

cat:

10000..0

00100..0

THE BAG OF WORDS

Key challenges

—

—

p>>n (overfitting!)

!

lots of data required,
low accuracy
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BTN ¢ . DISTRIBUTED WORD
i R REPRESENTATIONS



DISTRIBUTIONAL HYPOTHESIS

The intuition

‘You can tell a word by the company it keeps’
Firth 1957

‘Distributional statements can cover all of the
material of a language without requiring support from
other types of information’

Harris 1954

‘The meaning of a word is its use in the language’
Wittgenstein 1953

‘The complete meaning of a word is always contextual,
and no study of meaning apart from context can be
taken seriously.’

Firth 1957
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CO-OCCURRENCE PATTERNS

The latent information

a big bug the Ilittle but beetle bit back
a 0 5 ¥ 2 1 0 0 3 0
big 5 0 10 8 - 0 - 8
bug | 4 10 0 8 4 0 4 8 5
the 2 8 8 0 8 3 8 10 3
little | 1 = 4 13 1 3 10 8 0
but | 0 0 0 7 7 0 7 3 0
beetle | 0 4 4 11 11 4 1 8 1
bit 3 8 7 12 9 3 8 0 1
back | 0 - 5 3 0 0 1 2 0
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CO-OCCURRENCE PATTERNS

Where to find them?

Possible relationships:
Word to documents (very sparse and very wide) wp
Word to word (very dense and compact)
Word to user / person
Word to user behaviour
Word to product
Word to custom feature (e.g. movie raking)
Not only metrices:

Word to user to product

CHI '88
Technical Memo Example
(A) Database of Titles (B) Term by Title Matrix
Titles
cl ¢c2 ¢c3 c4 ¢5§ ml m2 m3 m
Terms = e= ee e ee = ee em e
cl: Human machine interface for computer applications human 1 0o 0 1t 0 O O O O
c2: Survey of user opinion of computer system response time interface 1 0 1 0 0 O O 0 O
c3: The EPS user interface management system computer '+ 1 0 O O O O0 O O
c4: System and human system engineering testing of EPS user o 1 1 0 1 0 O o0 O
c5: User-perceived response time and error measurement system o t+ 1 2 0 O O O O
response 0 1 O O 1 O 0 0 O
ml: The generation of random, binary, unordered trees time 0O 1 0 0 1 O 0 o 0
m2: The iotersection graph of paths in trees EPS o 011 0 O O O O
m3: Graph minors: Widths of trees and well-quasi-ordering survey o 1 0 0 0 0 0 o0 1
m4: Graph minors: A survey trees 0O 0 0 0 0 1 1 1 0
graph o 0 0 0 0 0 1 1 1
minors O 0 0 0 0 0 0 1 1

Figure 1. (A) A sample dataset consisting of the titles of nine technical memoranda. Terms occurring in more than
one title are italicized. There are two classes of objects - five titles about buman-computer interaction (cl-c5) and
four about graphs (m1-m4). (B) This dataset can be described by means of a term by title matrix where each cell
entry indicates the frequency with which a term occurs in a title. This matrix was used as the data, X, on which SVD
was performed.
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DIMENSIONALITY REDUCTION

Rationale

The need for compact and computationally efficient representations

More robust notions of distance exposing the information captured by our distributional representation
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LSA/LSI

Latent Semantic Analysis / Latent Semantic Indexing
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LLSA/LSI

Truncated SVD

Terms x Documents

N

X=TxSx«PT

Dumais, Susan T., et al. "Using latent semantic analysis to improve access to textual information." Proceedings of the SIGCHI conference on &Y b
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LSA/LSI

Truncated SVD

Terms x Documents

N

X=TxSx«PT

K largest singular values

X=Tk*Sk*PE

Dumais, Susan T., et al. "Using latent semantic analysis to improve access to textual information." Proceedings of the SIGCHI conference on oS b
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LSA/LSI

Truncated SVD

Terms x Documents

N

X=TxSx«PT

K largest singular values

X:Tk*Sk*PkT

/'

Latent Semantic Space

Dumais, Susan T., et al. "Using latent semantic analysis to improve access to textual information." Proceedings of the SIGCHI conference on 5 S b
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LSA/LSI

Documents that are similar are closer

= Il Biochemist Genetics
Titles i

c4A ¢ ml m2 m3 md B Medical Sciences
Neurobiology

' I Cell Biology

Immunology

2]
—
Q
N
e
w

Biophysics

Terms
human
interface
computer
user
system
response
time
EPS
survey
trees
graph
minors

Evolution

Xsz*Sk*P,f

COOOODOO D st |
C OO Ot bt it e DD
OO OO D -
CCLCO=OOONOCOO ™~
COD OO = =mO=OO0O
COmOOOC OO
QF‘H@OOOQOcQ@l
e QO OO0 OO Q
——— O OO OO OOCOO

Landauer, Thomas K., Darrell Laham, and Marcia Derr. "From paragraph to graph: Latent semantic analysis for information visualization." Proceedings of the National Academy 33 fl%A IENESEE%%
of Sciences 101.suppl 1 (2004): 5214-5219. '



LSA/LSI

|ts so 1988

Dumais, Susan T., et al. "Using latent semantic analysis to improve access to textual information." Proceedings of the SIGCHI conference on
Human factors in computing systems. 1988.
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O DID WE MAKE FURTHER
7y o+ PROGRESS?



STATUS AS OF 2010

Yes and No

Clustering Based
Representations

Brown Clustering
HMM-LDA

CRF Chunker with
HMM

It was not clear that you can combine unsupervised approaches

| (i.e. embeddings) with supervised models

Text Unsupervised Machine Learning

Distributed

Representations
Collobert and
Weston embeddings

HLBL embeddings

Distributional

Representations
- LSA/LSI
pLSA
LDA
HAL
ICA
Random Indexing

embedding Algorithm

Turian, Joseph, Lev Ratinov, and Yoshua Bengio. "Word representations: a simple and general method for semi-supervised 36 & | DEER e
learning." Proceedings of the 48th annual meeting of the association for computational linguistics. 2010. B INSTHOTE
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WHY NOT DO THE SAME
WITH NEURAL NETWORKS?



STATUS AS OF 2010

Not enough computational power

Word embeddings are typically induced us-
ing neural language models, which use neural
networks as the underlying predictive model
(Bengio, 2008). Historically, training and testing
of neural language models has been slow, scaling
as the size of the vocabulary for each model com-
putation (Bengio et al., 2001; Bengio et al., 2003).
However, many approaches have been proposed
in recent years to eliminate that linear dependency
on vocabulary size (Morin & Bengio, 2005;
Collobert & Weston, 2008; Mnih & Hinton, 2009)
and allow scaling to very large training corpora.

Turian, Joseph, Lev Ratinov, and Yoshua Bengio. "Word representations: a simple and general method for semi-supervised 39 & | PEEP e
learning." Proceedings of the 48th annual meeting of the association for computational linguistics. 2010. VIDIA. | INSTITUTE



WORD2VEC




> Mikolov et al., 2013 (while at Google)

> Linear model (trains quickly)

WORD2VEC

> Two models for training embeddings in an unsupervised manner:

Continuous Bag-of-Words (CBOW)

1-hot (|V|)

d-dimensional

d-dimensional

1-hot (|V|)

PAD

the

cat

sat

on

PAD

cat

Skip-Gram

the

O

cat

sat

cat

on

cat

1-hot (|V|)

d-dimensional

d-dimensional

1-hot (|V|)
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GLOVE

The objective

To learn vectors for words such that their dot product is proportional to their probability of co-occurence

Probability and Ratio | & = solid k = gas k = water k = fashion
P(k|ice) 19%10°* 66%x10~ 30%10° 17107
P(k|steam) 22%10> F8%1G* 273300 ° 18ig™
P(klice)/P(k|steam) 8.9 85 X 10-= 1.36 0.96

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference @ DR
on empirical methods in natural language processing (EMNLP) (pp. 1532-1543). nVIDIA.  INSTITUTE



GLOVE

The objective

Training Time (hrs) Training Time (hrs)
1 2 3 - 5 6 3 6 9 12 1'5 1§ 2'1 24
72 L) L) L) L) L] d 72-
701 70t
2 68} £ sl
o 9
- o
§ 66} g 66}
< <
64} 64} GI(_)Ve
e SKip-Gram
62r 62
a5 5 10 15 20 25 = .20 . 40 60 80 100
Iterations (GloVe) Iterations (GloVe)
135710 15 20 25 30 40 50 12340 8 F£ 1012 15 20
Negative Samples (CBOW) Negative Samples (Skip-Gram)
(a) GloVe vs CBOW (b) GloVe vs Skip-Gram

Figure 4: Overall accuracy on the word analogy task as a function of training time, which is governed by
the number of iterations for GloVe and by the number of negative samples for CBOW (a) and skip-gram
(b). In all cases, we train 300-dimensional vectors on the same 6B token corpus (Wikipedia 2014 +
Gigaword 5) with the same 400,000 word vocabulary, and use a symmetric context window of size 10.

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference @S DR
on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).
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Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).

DEEP
45 @Z LEARNING
NVIDIA.  INSTITUTE



GLOVE

Not a distant past

\

Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors for word representation. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP) (pp. 1532-1543).
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USING THE EMBEDDINGS



THE APPROACH TO NLP

Unsupervised feature representation + Machine Learning models

Subset of Problem formulations

Text ——

Text Pre-
processing

Text
Representation

Reweighting

Dimensionality
Reduction

Vector
Comparison

Machine Learning
Algorithm

Subset of word representations

Subset of
approaches
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THE APPROACH TO NLP

What ML model to choose

Subset of Problem formulations

o Text Pre-

Text

processing Representation

Reweighting

Dimensionality
Reduction

Vector
Comparison

Machine Learning
Algorithm

Subset of word representations

Subset of
approaches
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CLASSICAL APPROACHES



CLASSICAL APPROACHES

Very broad selection of tools

scikit-learn
algorithm cheat-sheet

classification

WORKING

regression

dimensionality
reduction

51 &

NVIDIA.

DEEP
LEARNING
INSTITUTE



I ° e WHAT ABOUT FEATURE
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DEEP REPRESENTATION LEARNING

Beyond distributional hypothesis
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RECURRENT NEURAL NETWORKS

y Yi-1 Yi Yi+1 Yi+2
S St-1 St St+1 St+2
X Xt-1 Xt Xt+1 Xt+2

Unrolling in Time

DEEP
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LONG SHORT TERM (LSTM) CELL

Addressing problems of stability

Yy
A
i N
& Forget gate
R (t)
4 Input gate /
> h(t)
Output gate | reeeeeeeeemmmieeaao,
Element-wise !
multiplication
@ Addition
. z .
S >\ LSTM celU o logistic

....................

T
X+ W, -h,_,+b)

T
f X+ Wy -hy_py+by)

T
xo X(t) + Who h(t 1) +b )

T
(W * X(,) + Wh.g * h(t—l) + bg)

Xg

=fH ® ¢y + i ® g
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CONVOLUTIONAL NEURAL NETWORKS

Basic principles

sentence convolutional pooled

i : softmax
matrix feature map representatlon
SFIRdXL‘l CcRnXIS\ mé1 cmﬂl eRlXﬂ
—
C \b
O | —
= ~
[} |
E
© |
o F ¢ Rdxm
c |
3 /
5 > g /
GE) A
vy @ @ L2
& & & & A
N <
"yQ

Severyn, Aliaksei, and Alessandro Moschitti. "Unitn: Training deep convolutional neural network for twitter sentiment S B
classification." Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015). 2015. NVIDIA. | INSTITUTE
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WHAT ABOUT LONG SEQUENCES?

The challenge illustrated with SQUAD

Words in context Words in question _ Words in answer

14 4
. >010 4 >
3‘ - v
c c c
@ 0 @ 008 { v
S > -
o o o0
Q Qo v
- 0 b It
e w (g
004 1
00 T
S00 0 80 1 30 40 0 &0 20 0 40

Figure 1: Number of words in contexts, questions, and answers in SQuAD training set.

Exact word matches relative to answer start

025 4

o
N
o

o
» o
W

o
..
o

Fraction of exact matches

005 1

40 -30 -20 -10 O 10 20 30 4
Offset from answer start

Figure 2: Frequency of exact word matches relative to answer start position
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The impact of attention mechanism on Question Answering performance



WHAT ABOUT LONG SEQUENCES?

The challenge

)

—

o

O

N

- .

E ' : N SN :

M 10+ — RNNsearch-50 SRR e et S \»,\ .......... -
----- RNNsearch-30 s ~ 'g\ S -

5H — - RNNenc-50 e asaciiziuiis, ST ‘ S s sasananasanas .

--- RNNenc-30 | § §

O | | i i |
0 10 20 30 40 50 60
Sentence length

62 @2 EEEENIN
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473. nvibia ISTITUTE



ATTENTION

The mechanism

Attention Layer I Attention Layer

- - - - - M - - - -

Context vector Context vector

Aligned position '

Pt

Global align weights
|a

Global Attention Model Local Attention Model

63 @2 EEEENIN
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473. nvibia ISTITUTE



ATTENTION
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(a) (b) (c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight «;; of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b—d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.
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ATTENTION

Examples

GPUS8

8 ilayers

GPU3

GPU2

GPU2 :

GPU1§

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., ... & Klingner, J. (2016). Google's neural machine translation system: Bridging the gap

between human and machine translation. arXiv preprint arXiv:1609.08144.

A

f

—-—> Attention

_.~" Detoder LSTMs ~« _

T

GPU3 |
GPU2 |

GPU1

........
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ATTENTION

Examples

<p> They agree </s> <p>

Embeddings [ H H J——m--

Convolutions

Gated
Linear
Units

Attention

7~

» X
Dot products
A y

A Y A J Y

L H H H H H | LI JC J[C

<p> <p> <s> Sie stimmen zu Sie stimmen zu </s>

Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017, July). Convolutional sequence to sequence learning. In International o S DEE

LEARNING

conference on machine learning (pp. 1243-1252). PMLR. nviDIA  INSTITUTE
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ATTENTION IS ALL YOU NEED

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need

information processing systems (pp. 5998-6008).

Design
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t
| Linear |}
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| Add & Norm Je=~
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Forward
J
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> Add & Norm Multi-Head
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Multi-Head Multi-Head
Attention Attention
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Positional @_@ 4 Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

. In Advances in neural

68 X
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ATTENTION IS ALL YOU NEED

Design

Scaled Dot-Product Attention

I MatMul I

t A
| SoftMax
|
| Mask (opt.) |

Scale
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Pt
Q K V
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Linear
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Figure 1: The Transformer - model architecture.

Scaled Dot-Product
Attention

Linear

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, |. (2017). Attention is all you need. In Advances in neural

information processing systems (pp. 5998-6008).
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e WAS IT A BREAKTHROUGH
IN ITSELF?



ATTENTION IS ALL YOU NEED

Not a breakthrough in itself

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

i BLEU Training Cost (FLOPs)
ode EN-DE EN-FR EN-DE EN-FR

ByteNet [15] 23.75

Deep-Att + PosUnk [32] 39.2 1.0-10%
GNMT + RL [31] 24.6 39.92 2.3-101° 1.4-102%
ConvS2S [8] 25.16  40.46 9.6-10® 1.5.10%
MoE [26] 26.03  40.56 20-10'? 1.2-102%
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 - 10%°
GNMT + RL Ensemble [31] 2630  41.16 1.8-10%° 1.1.10%
ConvS2S Ensemble [8] 2636  41.29 7.7-101* 1.2:.10%
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 284 41.0 2.3:10"

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, |. (2017). Attention is all you need. In Advances in neural S R

information processing systems (pp. 5998-6008). nVIDIA  INSTITUTE



ATTENTION IS ALL YOU NEED

“ ... the Transformer can be trained significantly faster than
architectures based on recurrent or convolutional layers.”

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, |. (2017). Attention is all you need. In Advances in neural oEEP
information processing systems (pp. 5998-6008). . DA -~ INSTITUTE



NEURAL EMBEDDINGS



FEATURE REUSE

The opportunity
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IT WAS DIFFICULT TO
REUSE NLP EMBEDDINGS



SEMI-SUPERVISED SEQUENCE LEARNING

More complex representations

We present two approaches that use unlabeled data to improve sequence learning
with recurrent networks. The first approach is to predict what comes next in a
sequence, which 1s a conventional language model 1n natural language processing.
The second approach is to use a sequence autoencoder, which reads the mput se-
quence Into a vector and predicts the input sequence again. These two algorithms
can be used as a “pretraining” step for a later supervised sequence learning algo-
rithm. In other words, the parameters obtained from the unsupervised step can be
used as a starting point for other supervised training models. In our experiments,
we find that long short term memory recurrent networks after being pretrained
with the two approaches are more stable and generalize better. With pretraining,
we are able to train long short term memory recurrent networks up to a few hun-
dred timesteps, thereby achieving strong performance in many text classification
tasks, such as IMDB, DBpedia and 20 Newsgroups.
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SEMI-SUPERVISED SEQUENCE LEARNING

More complex representations

<eos>

L]
]

zZ

”f
T T T T ]

W X Y Y4 <eos>

S —>» > x
¢ —p e <

Figure 1: The sequence autoencoder for the sequence “WXYZ”. The sequence autoencoder uses
a recurrent network to read the input sequence in to the hidden state, which can then be used to
reconstruct the original sequence.
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SEMI-SUPERVISED SEQUENCE LEARNING

More complex representations

After training the recurrent language model or the sequence autoencoder for roughly 500K steps
with a batch size of 128, we use both the word embedding parameters and the LSTM weights to
initialize the LSTM for the supervised task. We then train on that task while fine tuning both the

embedding parameters and the weights and use early stopping when the validation error starts to
increase. We choose the dropout parameters based on a validation set.

Using SA-LSTMSs, we are able to match or surpass reported results for all datasets. It 1s important
to emphasize that previous best results come from various different methods. So it 1s significant
that one method achieves strong results for all datasets, presumably because such a method can be
used as a general model for any similar task. A summary of results in the experiments are shown in
Table 1. More details of the experiments are as follows.

Table 1: A summary of the error rates of SA-LSTMs and previous best reported results.

Dataset SA-LSTM Previous best result
IMDB 7.24% 7.42%
Rotten Tomatoes 16.7% 18.5%
20 Newsgroups 15.6% 17.1%
DBpedia 1.19% 1.74%
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Embeddings for Language Models

ELMo

Peters, M. E., Neumann, M., lyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint 79 & | DEER e
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Peters, M. E., Neumann, M., lyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint

arXiv:1802.05365.

ELMO

Embeddings for Language Models

INCREASE
TASK PREVIOUS SOTA OUr ELMO + (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liu et al. (2017) 84.4 || 81.1 85.8 4.7 124.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7+0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 3.2117.2%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 +0.19 || 90.15 92.22 +0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 514 54.7+0.5 3.3/6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across
six benchmark NLP tasks. The performance metric varies across tasks — accuracy for SNLI and SST-5; F; for
SQuAD, SRL and NER; average F, for Coref. Due to the small test sizes for NER and SST-5, we report the mean
and standard deviation across five runs with different random seeds. The “increase” column lists both the absolute
and relative improvements over our baseline.
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ULM-FIT

Universal Language Model Fine-Tuning for Text Classification
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(b) LM fine-tuning (c) Classifier fine-tuning

(a) LM pre-training

Figure 1: ULMFIT consists of three stages: a) The LM is trained on a general-domain corpus to capture
general features of the language in different layers. b) The full LM is fine-tuned on target task data using
discriminative fine-tuning (‘Discr’) and slanted triangular learning rates (STLR) to learn task-specific
features. c¢) The classifier 1s fine-tuned on the target task using gradual unfreezing, ‘Discr’, and STLR to
preserve low-level representations and adapt high-level ones (shaded: unfreezing stages; black: frozen).

Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146.
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TRANSFER LEARNING IN NLP

Not trivial to use and not universally applicable

\

Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146.

Peters, M. E., Neumann, M., lyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. arXiv preprint

arXiv:1802.05365.

First successes in
transfer learning

Distributional LSA / LS The use of unsupervised

Hypothesis embeddings success of NN
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THIS CREATED A
FOUNDATION FOR THE

NEW NLP MODELS
(DISCUSSED IN THE NEXT CLASS)



THE LAB



ATTENTION IS ALL YOU NEED

Deep dive into the transformer design
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Figure 1: The Transformer - model architecture.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, |. (2017). Attention is all you need. In Advances in neural g Y e
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BERT

How it relates to transformer and pretraining

Encoder

Qutput
Probabilities

Linear

A Add & Norm

[
4 A
| Add & Norm |
Feed
Forward Nx
lq_" L
%- Nx
L —{((Add & Norm ] T
Multi-Head Multi-Hea
Attention Attention
At 1___;_J3
e 3/ o J
Positional ositional
Encod 9 Q0 i
ncoding ncoding
Input QOutput
Embedding/ Embedding
Inputs Qutputs
_ (shifted right)
Tokenizer

,‘l,‘

Unprocessed text

g6 X

NVIDIA.

DEEP
LEARNING
INSTITUTE



IN THE NEXT CLASS...
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Part 1: Machine Learning in NLP

 What is NLP?

* Problem Formulation

» Text Representations

* Dimensionality Reduction
 Embeddings

* RNNs

« “Attention is All You Need”

 Transformer Architecture
« BERT Model

* Pretraining BERT
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SELF-SUPERVISION, BERT
AND BEYOND




FULL COURSE AGENDA

Lecture: NLP background and the role of DNNs leading to the
Transformer architecture

Lab: Tutorial-style exploration of a franslation task using the
Transformer architecture

Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo APl and
exercises to build a text classification task and a named
entity recognition task using BERT-based language models

Lecture: Discussion of production deployment considerations
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering
task to NVIDIA Triton



Part 2: Self-Supervision, BERT and Beyond

 Why Do DNNs Work Well?
» Self-Supervised Learning
« BERT

* Explore the Data
* Explore NeMo
» Text Classifier Project

* The Scaling Laws
* Can and should we go even bigger?

 Named Entity Recognizer



Part 2: Self-Supervision, BERT and Beyond

* Why Do DNNs Work Well?
\ » Self-Supervised Learning
e « BERT

. r * Explore the Data
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* The Scaling Laws
* Can and should we go even bigger?

 Named Entity Recognizer



COMPUTE

Or lack of thereof

cat

In this section, we propose two new model architectures for learning distributed representations
of words that try to minimize computational complexity. The main observation from the previous
section was that most of the complexity is caused by the non-linear hidden layer in the model. While
this i1s what makes neural networks so attractive, we decided to explore simpler models that might
not be able to represent the data as precisely as neural networks, but can possibly be trained on much
more data efficiently. PAD the sat on

Mikolov, Tomas, et al. "Efficient estimation of word representations in vector
space." arXiv preprint arXiv:1301.3781 (2013).
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COMPUTE

Easy to forget about the computational progress of the last decades

_ ”
-
107 - -
GPU-Computing perf -’
1.5X per year o« 1000X
106 By 2025
105 Transistors
(thousands) 1.1X per year
104
103 A
s | 1.5Xperyear
102 -
o0
Single-threaded perf
1980 1990 2000 2010 2020

DEEP
96 @‘2 LEARNING
NVIDIA. INSTITUTE



CONTEXT



CONTEXT

8 petaFLOPs in June 2011 (K Computer)
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CONTEXT

5 petaFLOPs for Al - today

9x Mellanox ConnectX-6 200Gb/s Network Interface

Dual 64-core AMD Rome CPUs and 1TB RAM
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CONTEXT

~100 PFLOPS (FP16) or 48 PFLOPS (TF32) for Al - today
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SCALING LAWS




SCALING LAWS

Power Law relationship between the dataset size and accuracy

Small Data - ' Reqi Irreducible
Region ower-law Region Error
Region

Best Guess Error

Generalization Error (Log-scale)

Irreducible Error

Training Data Set Size (Log-scale)
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THE COST OF LABELING

Limits the utility of deep learning models
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SELF-SUPERVISED LEARNING

Example training tasks
Natural Language Processing:

Masked Language Model: We mask a percentage of the input tokens at random (say 15%) and ask the neural network to predict the
entire sentence

Next Sentence Prediction: We choose either two consecutive sentences from text, or two random sentences from the text. We ask
the neural network to establish whether the two sentences occur one after another.

We use another simpler neural network to replace random words in the sequence and ask the primary neural network to detect
which words were replaced (using a GAN like configuration).

Computer Vision:

Contrastive Learning: Randomly modify (crop and resize, flip, distort color, rotate, cut-out, noise, blur, etc.) and either feed the
same image, or two randomly selected images, into the neural network, asking it to say whether it is the same image or not

Noisy labels/Self Training: Use labels generated by a weak algorithm (potentially older generation of the target model) to train a
target-robust feature extractor

Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. In Advances in neural information processing systems (pp. 3079-3087).
Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709. 108 X ?EET%$‘G’¥E
Xie, Q., Howy, E., Luong, M. T., & Le, Q. V. (2019). Self-training with Noisy Student improves ImageNet classification. arXiv preprint arXiv:1911.04252. nyisia



THE COST OF LABELING

Semi-supervised models
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SELF-SUPERVISED LEARNING

What was missing?

Semi-supervised Sequence Learning

Andrew M. Dai Quoc V. Le
Google Inc. Google Inc.
adaifagoogle.,com qvlEgaagle.com
Abstract

We present two approaches that use unlabeled data to improve sequence learning
with recurrent networks. The fimst approach 15 1o predict what comes next in a
sequence, which is a convenbional language model in natural language processing.
The second approsch is 1o use a sequence autoencader, which reads the mput se-
guence into a vector and predicts the input sequence again. These two algorithms
can be used as a “pretraiming” step for a later supervised sequence learming algo-
nthm. In other words, the parameters obtained from the unsupervised step can be
used as a starting point for other supervised traming models. In our expenments,
we find that long short term memory recurrent networks after being pretrained
with the two approaches are more stable and generalize better, With pretraming,
we are able to train long short term memory recurrent networks up to a few hun-

[cs.LG]| 4 Nov 2015

- dred timesteps, thereby achieving strong performance in many text classification
N tasks, such as IMDB, DBpedia and 20 Newsgroups.
o
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GENERATIVE PRETRAINING (GPT)

“Many previous approaches to NLP tasks train relatively small models on a single GPU from scratch.
Our approach requires an expensive pre-training step - 1 month on 8 GPUs. Luckily, this only has to
be done once and we’re releasing our model so others can avoid it. It is also a large model (in
comparison to prior work) and consequently uses more compute and memory — we used a 37-layer
(12 block) Transformer architecture, and we train on sequences of up to 512 tokens. Most
experiments were conducted on 4 and 8 GPU systems. The model does fine-tune to new tasks very
quickly which helps mitigate the additional resource requirements.”

DEEP
LEARNING

NVIDIA.  INSTITUTE
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.



GENERATIVE PRETRAINING (GPT)

The design
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Figure 1: (left) Transformer architecture and training objectives used in this work.
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transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

| Self-Supervised
Training

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https:/s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.
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GENERATIVE PRETRAINING (GPT

The approach

Zero-shot Transfer Can Directly Accelerate Supervised Fine-tuning

Stzé|5/1f - Step 2
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GENERATIVE PRETRAINING (GPT

The implications

Zero-shot Transfer Can Directly Accelerate Supervised Fine-tuning
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GENERATIVE PRETRAINING

The implications
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Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-assets/researchcovers/languageunsupervised/language understanding paper. pdf.
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BIDIRECTIONAL TRANSFORMERS (BERT)

Building on the shoulders of giants

BERT (Ours)

||||||||||||||||
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.



BIDIRECTIONAL TRANSFORMERS (BERT)

The “pre” and “post” OpenAl ages

System MNLI-(m/mm) QQP QNLI SST-2 Col.A STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66. 1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BILSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
‘BERTgasE 84.6/834 712 905 935 521 858 889 664 796
BERT arGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://glusbenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average™ column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.* BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
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SQUAD 2.0

Human performance 91.2

Question Answering on SQUAD?2.0

100.00

ALBERT Retro-Reader on ALBERT

. o =
e BERT + N-Gram Masking ~ Synthetic Self-Training_g———" &

BERT finetune baseline

80.00
= . . .
w ) Reinforced Mnemonic Reader”+ Answer Verifier

FusionNet-+ e

70.00 @— <

60.00

50.00

Jan'18 Apr'l8 Jul'18 Oct'18 Jan'19 Apr'l19 Jul'19 Oct'19 Jan '20 Apr 20

Other methods -e- State-of-the-art methods

DEEP
125 @ LEARNING
NVIDIA.  INSTITUTE



» . 0\\
» 2 y
» . ‘
» »
& H
s © -

"‘ v od
. . : .
’ s 4 4 . :
JUST YET ANOTHER
UNSUPERVISED

REPRESENTATION



USING BERT

Feature extractor

?

Problem formulation

?

Text Pre-

Text — ,
processing

Text
Representation

Dimensionality
Reduction

Reweighting

Vector
Comparison

Machine Learning
Algorithm

BERT

Word2Vec
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THE LAB



LAB OVERVIEW

Notebooks 1, 2, 3

Text classification

Problem formulation

Text Pre-

Text — ,
processing

Text
Representation

Reweighting

Dimensionality
Reduction

Vector
Comparison

Machine Learning
Algorithm

Fixed pretrained BERT

Your task:
Text classification
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BIDIRECTIONAL TRANSFORMERS (BERT)

Base vs Large

System MNLI-(m/mm) QQP QNILI SST-2 ColLA STS-B  MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BILSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 T3 84.9 56.8 71.0
\ OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTEAsE 84.6/83.4 T2 805 935 520 858 889 664 79.6
BERT | arGE 86.7/85.9 72.1 92.7 949 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://glusbenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average™ column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.* BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
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GPT-2

Largely the same but:

Larger in every way:

Parameters Layers d,,odel

More decoder layers: 12->48

117M 12 768
345M 24 1024
Larger vocabulary: 50,257 762M 36 1280
1542M 48 1600

Larger context: 512 -> 1024

Table 2. Architecture hyperparameters for the 4 model sizes.

Larger batch size
Changes to layer normalization

Different initialization scheme

DEEP
133 LEARNING
. . . . NVIDIA. INSTITUTE
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAl Blog, 1(8), 9.



GPT-2
The Impact

L T

Transformer LM - 100M Parameters Transformer LM - 5B Parameters
Trained on Wikipedia minus “Abraham Lincoln” article. Trained on Wikipedia minus “Abraham Linceln” article.
Abraham Lincoln (February 27, 1724, Salem, Massachusetts - August 29, 1755) Abraham Lincoln (March 1, 1809 - March 15, 1865) was an American lawyer,
was an American Prime Minister who was an early proponent of an jurist, and politician. He served as the 19th President of the United States, from
anti-witchcraft situation and was President of the Salem government from 1732 March 1861 until his assassination in April 1865.
to 1743, President of the Massachusetts Supreme Court during that time, and
President of the Institute for Religious Education to 1777, President of the Born in Newark, New Jersey, Lincoln attended Knox College of New York,
Massachusetts Supreme Court, as well as a member of the Board of studied law, and was admitted to the bar Missouri Territory in 1826. He
Missionaries of the Episcopal Church, The Reverend John Schuyler, Mercer relocated to lllinois, and was elected to the lllinois House of Representatives in
Bishop, and Father New York State. He received his education at Paterson 1827, 1822, 1823, and 1826. He was elected Speaker of the lllinois House in 1825,
College and graduated from Paterson College and the Trenton College. served as Attorney General of the lllinois Territory in 1829, and was elected to
the lllinois Senate in 1831. Lincoln was elected to the United States House of
He wrote his autobiography in Mantua, Massachusetts, for which he was the Representatives as a Democrat in 1833, and he was elected as a representative
supreme liberal. He later became one of Massachusetts's greatest religious in the United States House of Representatives, serving two terms from 1839 to
leaders, choosing blacks many of whom became leaders of the Puritans. He 1843. He was elected as a Whig in 1842, but he only served one term in
received three honorary degrees from the universities of Boston and Virginia; Congress, and returned to the House of Representatives, serving
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Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAl Blog, 1(8), 9.
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THE SCALING LAWS OF NEURAL LANGUAGE MODELS

Continuous improvement

Small Data P | Redi Irreducible
Region ower-law Region Error
Region

Best Guess Error

e

Generalization Error (Log-scale)

I

Irreducible Error

Training Data Set Size (Log-scale)

b

4.2
—— L=(D/5.4-1013)-0095 | 56 —— L=(N/8.8:1013)"0076
3.9
4.8
0 D
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- 4
-—
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L= (Cmin/2.3 . 108)-0'050
2 , . ' ' A . . . - -
10- 10°7 10°° 10* 10! 10! 108 109 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding
Hestness, J., Narang, S., Ardalani, N., Diamos, G., Jun, H., Kianinejad, H., ... & Zhou, Y. Deep Learning Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409. 2017 13 @Y Deee
LEARNING

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin Mann, Alec Radford,

Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei, Sam McCandlish. Scaling Laws for Autoregressive Generative Modeling.2020 AVIBIA. | INSTITUTE
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O SHOULD WE BUILD
77 +4 L ARGER MODELS?



ARE LARGE LANGUAGE MODELS WORTH IT?

The cost of incremental improvement

Are we building those
models only for the
5 | small incremental
A improvement in their
Q4 performance?
-
8 Is it worth all of the
it engineering and
computational
L= (Coinf2.3 - 108)=0:050 investment?
fo-5 107 105 100 10" 10!

Compute
PF-days, non-embedding
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IS THIS REALLY THE ONLY
THING WE HAVE
ACHIEVED?



IT IS MUCH MORE THAN
JUST INCREMENTAL
INCREASE IN ACCURACY!



1. SAMPLE EFFICIENCY



NOT ABOUT INCREMENTAL IMPROVEMENT

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro,

Sample efficiency

WebText Validation Perplexity
= 345M = 775M == 2.5B == 8.3B
22
20
18
16

14

i

12

Validation Perplexity

10

AN OO T ONODOODOr—mANMOSTWHLOMNOO OO

Epoch

B. (2019). Megatron-Im: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053.
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LARGER MODELS ARE CHEAPER TO TRAIN

Optimal allocation of computational budget

Dala requirements
grow relatively slowly

Minimum serial sleps
increases negligibly

%

=
z
z 107
C
Z 104 |
Z1 Optimal model size
£ increases very quickly
2107 -
=

10° )

10-*% 1n=" 101 0= 1"

Compute (PF-days)

Figure 3 As more compute hecomes available, we can choose how much to allocate towards tramning larger
models, using larger batches, and training for more steps.  We 1llustrate this for a billion-fold increase in
compute. For optimally compute-cfhicient training, most of the increase should go towards increased model
size, A relatively small increase in data is needed to avoid reuse, Of the increase in data, most can be used to
increase parallelism through larger batch sizes. with only a very small increase in senal training time required.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, o o
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361. i — b



LARGER MODELS ARE CHEAPER TO TRAIN

For every dataset there exists an optimal model size minimizing compute

4.0 10!

% - ‘ Smaller models require

£ 3.5 g < more steps to train, while
U < ' larger models require fewer
o 3.0 %) ‘
= L)
5 2.5 Models between 0.6x and 2.2x the 2

o optimal size can be trained with a 2100
S 2.0+ 20% larger compute budget tg

« &’3 4

® 1.5 Q )

o 5 * Our framework does not S
@ 1.0 capture early training dynamics

10° 10! 10 10!
Deviation from Optimal Model (N/Ngticient) Deviation from Optimal Model (N/Nesicient)

Figure 12 Left: Given a fixed compute budget, a particular model size is optimal, though somewhat larger
or smaller models can be trained with minimal additional compute. Right: Models larger than the compute-
efficient size require fewer steps to train, allowing for potentially faster training if sufficient additional paral-
lelism is possible. Note that this equation should not be trusted for very large models, as it is only valid in the
power-law region of the learning curve, after initial transient effects.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei,
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.
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LARGE MODELS ARE CHEAPER TO DESIGN

“... more importantly, we find that the precise architectural
hyperparameters are unimportant compared to the overall
scale of the language model.”

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei, DEEp
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv.:2001.08361. i IeTure



Step 1: Pre-

NLP APPROACH (CIRCA 2019)

training a Transformer

Output 1: Reconstruct missing words
family, of, this, the, Louis, personally, telephone

High dimensional vector \

f: Add & Norm |

.. | Encoder
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Feed
Forward

Multi-Head
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Input Qutput
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InpLrs Cutputs
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Input: Two sentences with 15% of words masked out

1 = “Initially he supported himself and his [JJJlif by farming on a plot [ family land.”

“Jl in turn attracted the attention of [l st. [l Post-Dispatch which sent a

reporter to Murray to

review Stubblefield's wireless

Step 2. Fine tune for a specific task

High dimensional vector \
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3. GENERALIZATION




YES THEY CREATE INCREMENTAL IMPROVEMENT IN ACCURACY

Larger models generalize better

7 S.0r—=
—o— WebText2 (Test) = \{ . === Books during training
6 —=— |nternet Books ;9_: 4.5 “~9 Wikipedia during training
—e— Books = > ~’\; » ® Dooks at convergence
5 - Wikipedia "g 4.0 ’.,; g ¢ Wikipedia at convergence
o Common Crawl w 5 ‘
o S -~
< Q3.5 “‘“
S - 1
‘g _é \.“vt
5 3.0 =
e o 9 2 o
. = p o
3 8 e
- e
§ 2.5
104 10° 108 107 108 10 50 45 4.0 3.3 3.0 7 .
Parameters (non-embedding) Test Loss on Training Distribution

Figure 8 Left: Generalization performance to other data distributions improves smoothly with model size,
with only a small and very slowly growing offset from the WebText2 training distribution. Right: Gener-
alization performance depends only on training distribution performance, and not on the phase of training.
We compare generalization of converged models (points) to that of a single large model (dashed curves) as it
tramns.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., ... & Amodei,
D. (2020). Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361.
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DOWNSTREAM TASKS

Zero/Few Shot Learners

Zero-shot

The model predicts the answer given only a natural language
discription of the task. No gradient updates are performed.

Translate English to French: task description

cheese => prompt

Benjamin Mann et al. "Language Models are Few-Shot Learners". 2020. https://arxiv.org/abs/2005.14165

One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example

cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
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DOWNSTREAM TASKS

Zero/Few Shot Learners

Zero-shot One-shot Feszhot

et 175B Params
4

Natural Language o
60 Prompt ,_,(_—\/\

Accuracy (%)

—= 138 Params

——— e "“"T:fttt’T‘T — s 1 .:;E3 F’Eifi!filfi

Number of Examples in Context (K)

Figure 1.2: Larger models'make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requining the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.

DEEP
Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2019). Megatron-Im: Training multi-billion parameter language models using gpu model parallelism. arXiv preprint arXiv:1909.08053 152 @Z LEARNING
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.. NVIDIA. | INSTITUTE



DOWNSTREAM TASKS

Zero/Few Shot Learners

Q: Would you say this movie review is positive or negative?

“I loved that movie™ ° positive

* great

¢ awsome ...

/

Prompt
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Type

Text CLS

Text-span CLS

Text-pair CLS

Tagging

Text Generation

DOWNSTREAM TASKS

Template

Task Input ([X])
Sentiment | love this movie. [X] The movie is [Y]
Topics He prompted the LM. [X] The text is about [Y]
Intention What is taxi fare to Denver? [X] The question is about [Y]
Aspect . e
Sentiment Poor service but good food. [X] What about service? [Y]
NLI [X1]: An old man with ...

[X2]: A man walks ...

NER [X1]: Mike went to Paris. 0X1] [X2] s a [V]

Summarization

Translation

[X2]: Paris

Las Vegas police ...

Je vous aime.

Hypothesis: [X1], Premise: [X2], Answer: [Y]

[X] TLDR: [Y]

French [X] English: [Y]

Prompt Engineering

Answer([Y])
great

fantastic

sports
science

quantity
city

Bad
Terrible

Contradiction
Entailment

Yes
No

The victim ...
A woman ...

| love you.
| fancy you.

Prompts

manual

mined

paraphrased

DirectXis developed by VYman
Ymine released the DirectX
DirectXis created by Ypara

Top 5 predictions and log probabilities

VB WN =

Yman

Intel
Microsoft

IBM
Google
Nokia

-1.06
-2.21
-2.76
-3.40
-3.58

Ymine
Microsoft

They
It

Sega
Sony

-1.77
-2.43
-2.80
-3.01
-3.19

Ypara

Microsoft -2.23
Intel -2.30
default -2.96
Apple -3.44
Google -3.45

Figure 1: Top-5 predictions and their log probabili-
ties using different prompts (manual, mined, and para-
phrased) to query BERT. Correct answer is underlined.

ID Modifications Acc. Gain
P413 x plays in—at y position +23.2
P495 x was created—made in y +10.8
P495 x was—is created in y +10.0
P361 x1is: partofy +2.7
P413 x plays in y position +2.2

Table 6: Small modifications (update,
in paraphrase lead to large accuracy gain (%).

, and delete)

Zhengbao Jiang et al. "How Can We Know What Language Models Know?".2020.
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DOWNSTREAM TASKS

Prompt Learning on a Small Training Dataset

Task: Sentiment Analysis

Learned soft Prompt

[0.252454, 5.414523, 2.349844]

“l loved that movie”’

[0.252454, 5.414523, 2.349844]

)
- AAw

“l loved that movie”’

Prompt Learning

Positive
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DOWNSTREAM TASKS

Prompt Tuning / P-Tuning

[ Pre-trained ) 1
Model Tuning Model 1 Prompt Tuning
_ (11B params) | :
g! e A Mixed-task
Task A Task A Model : Batch e e
e (B = { Pre-rained — Prompt Encoder (Optional) B {__ Reparameterization (Optional) _}e-----=----- :
B 4 1 Bl bi Model CLS] Amazing movie ! l [MASK] | . , Amazi i | E
Task B || TaskBModel | 1| é g (11B params) | : | : h H y : mane- boneas :[CLS] mz;nng mo: ie |
Batch (11B paramS) | e([CLS]) e(Amazmg) e(moive) e(‘) hvo L ]lwl e([MASK]) : : :e([C|S]) e(j\mazmg) e(moive) e(') :
~ | Task Prompts ' ¢ ' U P N | e g ) l :
— a I (20K params each) & AT G = Layer] Prompts =4 ; 1 :
Task C [Cc2 Task C Model | | : : : :
Batch (11B params) ! ! Layer2 Prompts - : I
_ J 1 i : ' X
E Layer3 Prompts > ; )
Figure 2: Model tuning requires making a task- ! ) | LayorN Prompts - 5 i
. . . : S X | <
Sp ecific copy of the CI.ltII‘C pre-tralned model for eac.h Verbalizer (with LM hcad): Class Label (with linear head) )
downstream task and inference must be performed in b ; A :
. . a) Lester et al. & P-tumi en, 10-billion-scale, si sks -tuning v ‘ st scales, most tasks
separate batches. Prompt tunlng only requires stor- (a) & P-tuning (Frozen, 10-billion-scale, simple tasks) (b) P-tuning v2 (Frozen, most scales, most tasks)
ing a small task-specific prompt for each task, and Figure 2: From Lester et al. (2021) & P-tuning to P-tuning v2. Orange tokens (include hg, h;) refer to prompt
enables mixed-task inference using the original pre- embeddings we add; blue tokens are embeddings stored or computed by frozen pre-trained language models. Com-
trained model. With a TS “XXL” model, each copy pared to Lester et al. (2021), P-tuning v2 adds trainable continuous prompts to inputs of every transformer layer

independently (as prefix-tuning (Li and Liang, 2021) does). Additionally, P-tuning v2 removes verbalizers with

of the tuned model requires 11 billion parameters. By LM head and returns to the traditional class labels with ordinary linear head to allow its task-universality.

contrast, our tuned prompts would only require 20,480
parameters per task—a reduction of over five orders of
magnitude—assuming a prompt length of 5 tokens.

Brian Lester, Rami Al-Rfou, Noah Constant The Power of Scale for Parameter-Efficient Prompt Tuning. 2021. https://arxiv.org/abs/2104.08691 oeep
Xiao Liu et al. " P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks. 2021. https://arxiv.org/abs/2110.07602 156 LEARNING
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DOWNSTREAM TASKS

Customize Models using Parameter-efficient tuning | Adapters

4 Adapter
e I a
(—'(Add & Layer Norm) x L [
...... S
¢« Adapter W
..... Q-
| Noulinear |
Feed Forward
- ; ) AV
(—»( Add & Layer Norm ——
o >

E ...... - -E | /' Add \ ﬂaﬁng‘ & Add X /' Add scan,-.g\ /' Add \ (' Add Sca“ng\

(RO O O O \wa IhOCT)OOI W IhOCT)OOI Wop IhOCt)OOI W, IhOCt)OOI W,

{
PLM module ] RelU [ PLM module ] Sotmax|| | (W5 Mimodule ] PLM module ] /\i_el‘-_i\/ PLM module ] /|i_°|L£|\
T Wiown T Wiomn T Wiown I Wacwn I Wacun
\z000d ~ ) \@ooo0o—~ /) \@oood—~ ) \EC00o0o—~ ) \EOOoo— )

N— N—

——
—

(a) Adapter (b) Prefix Tuning (c) LoRA (d) Parallel Adapter (e) Scaled PA

Figure 3: Graphical illustration of existing methods and the proposed variants. “PLM module” represents a
certain sublayer of the PLM (e.g. attention or FFN) that is frozen. “Scaled PA” denotes scaled parallel adapter.
We do not include multi-head parallel adapter here to save space.

Hidden States

L 11 Multi-Head /

Figure 1: Illustration of the transformer architecture
and several state-of-the-art parameter-efficient tuning
methods. We use blocks with dashed borderlines to
represent the added modules by those methods.
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INSTRUCTIONS FINETUNING

Dataset of Instructions (Queries and Answers)

Joseph Robinette Biden Jr. is an American

“Q: Who is th dent of USA? politician who is the 46th and current president of the
: o is the president o .

United States. A member of the Democratic Party, he
previously served as the 47th vice president from 2009 to
2017 under President Barack Obama, and represented
Delaware in the United States Senate from ...”
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FLAN [Google ] ‘

INSTRUCTIONS FINETUNING

Published as a conference paper at ICLR 2022

FINETUNED LANGUAGE MODELS ARE ZERO-SHOT

LEARNERS

InstructGPT [OpenAl ] ‘v

Training language models to follow instructions

with human feedback

Jason Wei*, Maarten Bosma*, Vinc
Brian Lester, Nan Du, Andrew M. |

Google Research

This paper explores a simple 1
of language models. We show
on a collection of datasets des
shot performance on unseen t

We take a 137B parameter pi
over 60 NLP datasets verbali
evaluate this instruction-tunec
FLAN substantially improves
surpasses zero-shot 175B GP1]
outperforms few-shot GPT-3 |
OpenbookQA, and StoryCloz
datasets, model scale, and nal
instruction tuning.
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LaMDA: Language Models for Dialog Applications

Romal Thoppilan Daniel De Freitas ©  Jamie Hall Noam Shazeer ©  Apoorv Kulshreshtha
Heng-Tze Cheng  Alicia Jin  Taylor Bos  Leslie Baker YuDu  YaGuangLi  Hongrae Lee
Huaixiu Steven Zheng Amin Ghafouri Marcelo Menegali Yanping Huang Maxim Krikun

Dmitry Lepikhin James Qin Dehao Chen Yuanzhong Xu Zhifeng Chen Adam Roberts

Maarten Bosma  Vincent Zhao  Yanqgi Zhou  Chung-Ching Chang  Igor Krivokon  Will Rusch

Marc Pickett Pranesh Srinivasan Laichee Man Kathleen Meier-Hellstern
Meredith Ringel Morris Tulsee Doshi Renelito Delos Santos Toju Duke Johnny Soraker
Ben Zevenbergen Vinodkumar Prabhakaran Mark Diaz Ben Hutchinson Kristen Olson

Alejandra Molina Erin Hoffman-John Josh Lee Lora Aroyo Ravi Rajakumar
Alena Butryna Matthew Lamm Viktoriya Kuzmina Joe Fenton Aaron Cohen
Rachel Bernstein Ray Kurzweil Blaise Aguera-Arcas Claire Cui Marian Croak Ed Chi

Quoc Le

Google

Abstract

We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of Transformer-
based neural language models specialized for dialog, which have up to 137B parameters and are
pre-trained on 1.56T words of public dialog data and web text. While model scaling alone can
improve quality, it shows less improvements on safety and factual grounding. We demonstrate that
finc-tuning with annotated data and enabling the model to consult external knowledge sources can
lead to significant improvements towards the two key challenges of safety and factual grounding. The
first challenge, safety, involves ensuring that the model’s responses are consistent with a set of human
values. such as preventing harmlul suggestions and unfair bias. We quantily safety using a metric
based on an illustrative set of human values, and we find that filtering candidate responses using a
LaMDA classifier fine-tuned with a small amount of crowdworker-annotated data offers a promising
approach to improving model safety. The second challenge, factual grounding, involves enabling the
model to consult extermal knowledge sources, such as an information retricval system, a language
translator, and a calculator. We quantify factuality using a groundedness metric, and we find that our
approach enables the model to generate responses grounded in known sources, rather than responses
that merely sound plausible. Finally, we explore the use of LaMDA in the domains of education and
content recommendations. and analyze their helpfulness and role consistency.

Long Ouyang® Jeff Wu*  Xu Jiang™  Diogo Almeida®  Carroll L. Wainwright*
Pamela Mishkin* Chong Zhang Sandhini Agarwal Katarina Slama  Alex Ray

John Schulman Jacob Hilton Fraser Kelton Luke Miller Maddie Simens

Amanda Askell! Peter Welinder Paul Christiano*!
Jan Leike” Ryan Lowe”®
OpenAl
Abstract

Making language models bigger does not inherently make them better at following
a user’s intent. For example, large language models can generate outputs that
are untruthful, toxic, or simply not helpful to the user. In other words, these
models are not aligned with their users. In this paper, we show an avenue for
aligning language models with user intent on a wide range of tasks by fine-tuning
with human feedback. Starting with a set of labeler-written prompts and prompts
submitted through the OpenAl API, we collect a dataset of labeler demonstrations
of the desired model behavior, which we use to fine-tune GPT-3 using supervised
learning. We then collect a dataset of rankings of model outputs, which we use to
further fine-tune this supervised model using reinforcement learning from human
feedback. We call the resulting models InstructGPT. In human evaluations on
our prompt distribution, outputs from the 1.3B parameter InstructGPT model are

preferred to outputs from the 175B GPT-3, despite having 100x fewer parameters.

Moreover, InstructGPT models show improvements in truthfulness and reductions
in toxic output generation while having minimal performance regressions on public
NLP datasets. Even though InstructGPT still makes simple mistakes, our results
show that fine-tuning with human feedback is a promising direction for aligning
language models with human intent.
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INSTRUCTIONS FINETUNING

FLAN [Google‘ InstructGPT [OpenA‘v
] ]

Published as a conference paper at ICLR 2022

Training language models to follow instructions
with human feedback

FINETUNED LANGUAGE MODELS ARE ZERO-SHOT

LEARNERS Long Ouyang® Jeff Wu*  Xu Jiang"  Diogo Almeida*  Carroll L. Wainwright*

LaMDA: Language Models for Dialog Applications

Jason Wei*, Maarten Bosma*, Vin Pamela Mishkin* Chong Zhang Sandhini Agarwal Katarina Slama  Alex Ray
b ’

Brian Lester, Nan Du, Andrew M. |

John Schulman Jacob Hilton Fraser Kelton Luke Miller Maddie Simens

Google Research Romal Thoppilan Daniel De Freitas ©  Jamie Hall Noam Shazeer = Apoorv Kulshreshtha
Heng-Tze Cheng  Alicia Jin  Taylor Bos  Leslie Baker YuDu  YaGuangLi  Hongrae Lee Amanda Askell! Peter Welinder Paul Christiano*!
Huaixiu Steven Zheng Amin Ghafouri Marcelo Menegali Yanping Huang Maxim Krikun

Dmitry Lepikhin James Qin Dehao Chen Yuanzhong Xu Zhifeng Chen Adam Roberts

Figure 1: Human evaluations of various models on our API prompt distribution, evaluated by how
often outputs from each model were preferred to those from the 175B SFT model. Our InstructGPT
models (PPO-ptx) as well as its variant trained without pretraining mix (PPO) significantly outperform
the GPT-3 baselines (GPT, GPT prompted); outputs from our 1.3B PPO-ptx model are preferred to
those from the 175B GPT-3. Error bars throughout the paper are 95% confidence intervals.

We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of Transformer-
based neural language models specialized for dialog, which have up to 137B parameters and are
pre-trained on 1.56T words of public dialog data and web text. While model scaling alone can
improve quality, it shows less improvements on safety and factual grounding. We demonstrate that
finc-tuning with annotated data and enabling the model to consult external knowledge sources can
lead to significant improvements towards the two key challenges of safety and factual grounding. The
first challenge, safety, involves ensuring that the model’s responses are consistent with a set of human
values. such as preventing harmlul suggestions and unfair bias. We quantily safety using a metric
based on an illustrative set of human values, and we find that filtering candidate responses using a
LaMDA classifier fine-tuned with a small amount of crowdworker-annotated data offers a promising
approach to improving model safety. The second challenge, factual grounding, involves enabling the
model to consult extermal knowledge sources, such as an information retricval system, a language
translator, and a calculator. We quantify factuality using a groundedness metric, and we find that our DEEP
approach enables the model to generate responses grounded in known sources, rather than responses 161 @Z LEARNING
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CHANGE IN THE NLP
PARADIGM



Step 1: Train a Very Deep/HUGE model

General
Knowledg

Scienc
e

e

»

NEW NLP APPROACH (CIRCA 2021)

8

‘ Literat
ure ‘Q: Would you say this movie
review is positive or negative? »
“l loved that movie””’
GitHu
b

Step 2. Ask questions

» ‘A: Negative’

Huge means Billions of parameters
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TOWARDS GENERAL INTELLIGENCE

Old way New way
Needs Labelled data * Does not need labelled data
- Cost of data collection/labelling *  Single generic model can do more than one tasks
. Legal/Privacy concerns around using data *  More generalized: in addition to language also learns
1 model per task results in higher level concepts, styles, etc.
= Increased model development/tuning cost * Computationally Expensive (~500 Billion parameters)

= Increased operational costs

= Increased money spent on sourcing data
Relatively Limited generalization
Computationally cheaper (~300 Million parameters)

Leveraging more compute to get a general model without significant data/labelling cost
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HISTORY OF LANGUAGE MODELS

Language Model became more complex and larger

175b

1750

GPT-like
(Auto-regressive Transformer models)
. 1250 .Googe /
SquSeq BERT'hke '.
+Attention (Auto-encoding Transformer models) Yoo
750 '(‘é.
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(Seq2Seq Transformer models) N
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Embedding Attention
Multi-task Seq2Seq Pre-trained
FFN Learning Learning Language Model
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MEGATRON-TURING NLG 530B

The Trend Continues
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EXTERNAL KNOWLEDGE SOURCE

Knowledge source
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EXTERNAL KNOWLEDGE SOURCE

Can you fermulate a search querry that will help me find the above mentioned
information?

Certainly! Here's a search guery that could help you find more information about
synthesizing dimethyl carbonate (DMC) from raw materials:

*synthasis of dimethyl carbonate from methanol and phosgene®

This guery includes the relevant keywords for the procass (synthesis, dimethyl carbonate,
methanol, phosgene) and can help you find articles, research papers, or other sources
that discuss the topic in more detail. You may also want to refine your search with
additional keywerds related to the catalyst, reaction conditions, and purification
technigues, depending on the level of detail you're looking for. As always, be sure to

evaluate the sources you find for accuracy and reliability.

Searching through the web

B MicrosoftBing O "synthesis of dimethyl carbonate from methanol and phosgene" g 0o
ALL WORK IMAGES VIDEOS MAPS NEWS CHAT i MORE
About 4 results Date ~

Studies on synthesis of dimethyl carbonate from ...
https://www.sciencedirect.com/science/article/pii/S156673670800486X

web Jan 25, 2008 - Thermodynamic and kinetic character of DMC catalytic synthesis process
3.2.1. Synthesis reaction catalyzed by basic catalysts When the reaction of methanol and
carbon dioxide occur using basic compounds, namely K2 CO 3, KOHand CH 3 ...

Author: Qinghal Cali, Qinghai Cal, Bin Lu, ... Publish Year: 2009

Given the following text: "The reaction thermodynamics of dimethyl carbonate (DMC)
synthesis from CH30H and CO2 was investigated by estimating ArH and ArG of the
reaction at different temperatures and pressure. The result shows that the reaction does
not spontaneously occur under finite conditions in view of thermodynamics. Thus, in order
to seek a new method or a novel idea for the DMC synthesis, the thermodynamics of DMC
synthesis catalyzed by basic catalysts, K2CO3, KOH and CH30K, was discussed in
details. A general conclusion was obtained that the subroutine nesting of a coupling
reaction is an effective avenue to increase the yield of DMC synthesis from CO2 and
CH30H."

How do you increae the yield of DMC?

According to the given text, the most effective way to increase the yield of dimethyl
carbonate (DMC) synthesis from CO2 and CH3OH is through the use of a subroutine
nesting of a coupling reaction, which was found to be an effective avenue for improving
the reaction yield. Additionally, the text suggests that the thermodynamics of DMC
synthesis catalyzed by basic catalysts, such as K2C0O3, KOH, and CH30K, were also
discussed in detail, so it's possible that other catalysts or reaction conditions could be
used to optimize the reaction yield as well. However, the text does not provide specific
details on how the coupling reaction method works, so further research would be needed
to explore this approach in more detail.
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™ s plano or guitar easler 10
mMuch practice does each n

() images  ED) News

Some say the piano is easier to learn, as the
finger and hand movements are more natural,
and learning and memorizing notes can be
easier.

Others say that it's easier to learn chords on
the guitar and you could pick up a strumming
pattern in a couple of hours.

Music teachers often recommend that
beginners practice for at least 1 hour per day.
To get to an intermediate level, it typically
takes 3-6 months of regular practice for
guitar, and 6-18 months for piano.

o P

Quora

Which is mor
playing planc
playing guita

. Mussila

Vhat's Easier to Learn Piano
or Guitar?

| started plays
instruments t

It’s much easier to learn a song
or the guitar than to learn it for

EXTERNAL KNOWLEDGE SOURCE

Examples of Search Engine Powered by LLM

[e]
Google

What are the best constellations [
ook for when stargazing?

5 News Shopping

There are many constellations you can look for
the next time you're stargazing. Here are a few
popular ones

«» Orion is super bright and easy to spot with

the naked eye, even with a ight poliuted
sky.

» Cassiopeia is famous for its distinctive "W~

shape and home to some of the brightest
stars in the night sky

«» Ursa Major contains a recognizable pattern,

the Plough, which is also known as the Big
Dipper.

* Pegasus is the seventh largest of the

constellations, can use it to locate
other stars, cons S, and objects in
the night sky

B Microsoft Bing

(. I am planning a trip for our anniversary in September. What are soi g 0
ALL SHOPPING IMAGES VIDEOS MAPS CHAT i MORE
About 86,800,000 results Date ~

Q tripsavvy.com - Jun 26, 2019

L o)

The Best September Anniversary Travel |deas - TripSavvy.

1. Make Your Way to Maine. Winter comes eariy to ...
2. Spend September in San Juan. San Juan has ...
3. Book a Trip to Prague. Cooler weather and sparser ...

4. Choose Buenos Aires. Known as the Paris of South ...

See full list on tripsavvy.com
https://www.tripsavvy.com/best-september-anniversary-travel-ideas-4173621 ~

feecback /) )

10 romantic destinations for your anniversary trip within a 3-hour ...

https://starctmag.com/health/10-romantic-destinations-for-your... ~
Web 7 Feb 2023 - Amsterdam, Netherands: Amsterdam is a great destination for those who enjoy

art, culture, and history. Its famous canals and colourful houses are sure 1o provide ..

People also ask

-

Sam 'L 33@ Q

Congratulations on your anniversary! ¥ There are many
places you can go that are within a 3 hour flight from
London Heathrow. Here are some suggestions based on
your preferences and the best destinations in Europe in
September * 5 &

« If you like beaches and sunshine, you can fly to
Malaga in Spain ' , which has a pleasant climate, a
lively culture, and a beautiful coastline. You can enjoy
the sandy beaches, the historic monuments, and the
delicious tapas. Malaga is also a great base to explore
other nearby attractions, such as Granada, Seville, and
Cordoba.

« |f you like mountains and lakes, you can fly to Annecy
in France * , which is a charming alpine town near the
Swiss border. Annecy is known as the “Venice of
France” because of its canals and bridges. You can
admire the stunning scenery, visit the medieval castle,
and try some local cheese and wine. Annecy is also
close to Geneva, Chamonix, and Lyon, if you want to

NORA - No One Right Answer [Gooqgle]

New Bing Search Engine [Microsoft]
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Research Preview:

CHATBOTS POWERED BY INSTRUCTED LLM

ChatGPT is a sibling model to InstructGPT

Examples

“Explain quantum computing in
simple terms"

"Got any creative ideas for a 10
year old's birthday?"

"How do | make an HTTP
request in Javascript?"

ChatGPT

4

Capabilities

Remembers what user said
earlier in the conversation

Allows user to provide follow-
up corrections

Trained to decline inappropriate
requests

A

Limitations

May occasionally generate
incorrect information

May occasionally produce
harmful instructions or biased
content

Limited knowledge of world and
events after 2021

Who is the president of the United States?

As of my knowledge cutoff of September 2021, the President of the United States was Joe
Biden.

Could you tell me where was he born?

Certainly! Joe Biden was born in Scranton, Pennsylvania, United States.

“ Could you tell me about his early career?

Yes, I'd be happy to give you a brief overview of Joe Biden's early career.

After graduating from law school in 1968, Biden worked as an attorney in Wilmington,
Delaware, before being elected to the New Castle County Council in 1270. In 1972, at the
age of 29, he was elected to the United States Senate, becoming one of the youngest

senators in American history.

During his time in the Senate, Biden served on several committees, including the Foreign
Relations Committee and the Judiciary Committee, and became known for his work on
issues related to crime, drugs, and foreign policy. In 2008, he was elected Vice President
of the United States under President Barack Obama, serving two terms in that role before
being elected President in 2020.
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CHATBOTS POWERED BY INSTRUCTED LLM

Bing Chat powered by Next generation GPT | Bard powered by LaMDA

Next-generation
large language model

More powerful
0 p e n AI than ChatGPT

Customized for search

B Microsoft Bing Q_ SEARCH © cuar

Prometheus Model

Introducing Bard,
an experimental conversational Al service
powered by LaMDA

|1 am planning a trip for our anniversary in September. What are some places we can go that are within a

3 hour flight from London Heathrow?

Congratulations on your anniversary! § There are many places you can go that are within a 3 hour
flight from London Heathrow. Here are some suggestions based on your preferences and the best
destinations in Europe in September ¢ % ¢

« If you like beaches and sunshine, you can fly to Malaga in Spain ' , which has a pleasant climate, a
lively culture, and a beautiful coastline. You can enjoy the sandy beaches, the historic monuments,
and the delicious tapas. Malaga is also a great base to explore other nearby attractions, such as
Granada, Seville, and Cordoba.

« If you like mountains and lakes, you can fly to Annecy in France * , which is a charming alpine town

near the Swiss border. Annecy is known as the “Venice of France” because of its canals and bridges.

You can admire the stunning scenery, visit the medieval castle, and try some local cheese and wine.
Annecy is also close to Geneva, Chamonix, and Lyon, if you want to see more of the region.

« If you like art and history, you can fly to Florence in Italy ® , which is the birthplace of the
Renaissance and a UNESCO World Heritage Site. Florence is a treasure trove of artistic and
architectural masterpieces, such as the Duomo, the Uffizi Gallery, and the Ponte Vecchio. You can
also explore the Tuscan countryside, taste the famous gelato, and shop for leather goods

9 Ask me anything

W oeaback

,.? . help me understand the pros/cons of buying an electric one

Sure, here are some of the pros and cons of buying an electric car:

Pros:
« Electric cars produce zero emissions when driving, which is better than a gas powered car for the
environment. Gas cars produce emissions that contribute to climate change.
« They are generally cheaper to operate. They don't require oil changes or tune-ups, and they have
fewer moving parts, so there's less that can go wrong.
* In some places, electric cars are eligible for tax credits.
» Electric cars are becoming more popular, so there's a growing network of charging stations.

Cons:
« Electric cars have a more limited driving range, depending on the size of battery.
» Charging an electric car can take a while, especially if you use a public charging station.
» The initial cost of an electric car is usually higher than the initial cost of an equivalent gasoline car.
« Right now, electric cars are not as readily available as gasoline cars. There are fewer models available
and they are not as widely available at dealerships.

o o c v Check it

CWhal's on your mind? >)

Bard may give inaccurate or inappropriate information. Your feedback makes Bard more helpful and safe.

>
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TECHNICALLY, CAN WE
BUILD LARGER MODELS?



GOING BIGGER

The challenge

If we only consider Parameters, Gradients, and Optimizer states and ignore activations
If we use FP16 data representation (so two bytes)
If we use Adam as an optimizer (storing twelve bytes per parameter in mixed precision mode)

If we consider a model with one billion parameters

1079 * (2B + 2B + 12B) = 10"9*16B = 14.90GB

1 billion parameters 2 bytes per gradient
12 bytes per optimizer

2 bytes per parameter State
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GOING BIGGER

The challenge

What about activations?

What about 2 or 3 billion parameter models?

1079 * (2B + 2B + 12B) = 10"9*16B = 14.90GB

1 billion parameters 2 bytes per gradient
12 bytes per optimizer

2 bytes per parameter ctate
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TRANSFORMER MODELS
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MODEL IMPLEMENTATION

Data, Pipeline and Tensor Parallelism

Transformer Iayer #1
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Tensor MP partmon #2
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MODEL PARALLELISM

Pipeline (Inter-Layer) Parallelism

Split sets of layers across multiple devices

Layer 0,1,2 and layer 3,4,5 are on difference devices

Tensor (Intra-Layer) Parallelism
Split individual layers across multiple devices

Both devices compute difference parts of Layer 0,1,2,3,4,5
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SELF-ATTENTION

——————————————————————————————————————— —
— .y

y Y = Self-Attention(X) N
’I
| N 77
|
l (e (e
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\\ split attention heads — ¢ K = [K;, K5]
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fand g are conjugate, fis identity operator in the forward pass and all-reduce in the backward
pass while gis all-reduce in forward and identity in backward.
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PARALLEL TRANSFORMER LAYER

ﬁ Dropout w
.- Uamasas-———--—- e
' | Linear |
T ol
3 CGelU | BT
| f =
m, Linear ]
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K _.mv\quoqa w
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| Linear L
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i Self < m.am
. L Attention i

2 All-Reduce
(forward + backward)

2 All-Reduce
(forward + backward)
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COMPARING TENSOR AND PIPELINE PARALLELISM

Tensor Parallelism

GPU 1 !

GPU 2

Communication expensive

Good performance across

batch sizes

Pipeline Parallelism

GPU 1 GPU 2

Communication cheap

Good performance at larger
batch sizes (pipeline stall

amortized)

DEEP
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U 1
U 2
U 3
U 4

O O O O

GPU 1
GPU 2
GPU 3
GPU 4

Time

Time

PIPELINING

Split batch into microbatches
and pipeline execution
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GPU 1
GPU 2
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Time

Time
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U 1
U 2
U 3
U 4

O O O O

GPU 1
GPU 2
GPU 3
GPU 4

PIPELINING

Time

Split batch into microbatches

S and pipeline execution
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PIPELINE BUBBLES

: number of pipeline stages
P PP 5 total time = (m +p — 1) X (t5 + tp)

ideal time = m X (tf + tp)
bubble time = (p — 1) x (¢ + tp)

m : number of micro batches _
t¢ : forward step time

tp : backward step time

bubble time p—1
ideal time m

bubble time overhead =

IIIIIIIIIIIIIIII



NVIDIA NeMo Megatron

NVIDIA NeMo Megatron is an end-to-end framework for training and deploying LLMs with billions and

trillions of parameters.

Download Now

Data Distributed Accelerated

Curation Training Inference
Customer —» L ‘ _ Q —» Results
Data @ ;
| :
NeMo Megatron
1
288 T Fr
[ [ .\\’ [ see :!: [

https://developer.nvidia.com/nemo/megatron 180 X | PEEP
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https://developer.nvidia.com/nemo/megatron

MEGATRON-TURING NLG 530B
Enabling the biggest of NLP models

1000 S~
'E GPT-3 , Megatron-Turing
9 (1758) NLG (530B)
]
c 100
o
o Megatron-LM _
- (8.3B) - Turing-NLG
O (17.2B)
2 10 |
o . T5
— (11B)
o
é 1 GPT-2
-g (1.5B)
v
g BERT-Large
§ 01 (340M)
| ELMo
(94M)
0.01
2018 2019 2020 2021 2022
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Part 2: Self-Supervision, BERT and Beyond

 Why DNNSs?
» Self-Supervision
« BERT

* Explore the Data
* Explore NeMo
» Text Classifier Project

* The Scaling Laws
* Can and should we go even bigger?

 Named Entity Recognizer



IN THE NEXT CLASS...



NEXT CLASS

Overview

Discuss how to desigh your model for efficient inference
Discuss how to optimise your model for efficient execution

Discuss how to efficiently host a largely Conversational Al application
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FULL COURSE AGENDA

Lecture: NLP background and the role of DNNs leading to the
Transformer architecture

Lab: Tutorial-style exploration of a franslation task using the
Transformer architecture

Lecture: Discussion of how language models with self-
supervision have moved beyond the basic Transformer to BERT
and ever larger models

Lab: Practical hands-on guide to the NVIDIA NeMo APl and
exercises to build a text classification task and a named
entity recognition task using BERT-based language models

Lecture: Discussion of production deployment considerations
and NVIDIA Triton Inference Server

Lab: Hands-on deployment of an example question answering
task to NVIDIA Triton



Part 3: Production Deployment

* Model Selection
* Post-Training Optimization
\y * Product Quantization
. ) * Knowledge Distillation
. ' * Model Code Efficiency
L. * Model Serving
- . » Building the Application

. » Exporting the Model
’ * Hosting the Model

. » Server Performance
* » Using the Model



YOUR NETWORK IS

TRAINED



YOUR NETWORK [S TRAINED

Now what?

TuringNLG 178 vs Megatron-LM 8.38
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NLP MODELS ARE LARGE

The Inference cost is high

RoBERTa
o ROBERTa @ 500k steps ® XLNet
7 300k steps (fully trained)

=—a Replaced Token Detection Pre-training
e—o Masked Language Model Pre-training

90 ELECTRA-Large
_----l""'—%OB_EBIa_ I
:,.' 100k steps
85 WELECTRA-Base
" BERT-Large
@ BERT-Base
S "
v 80 iéLECTRA-SmaII
Lu —
= + GPT
— l
O n
© 75 @ BERT-Small
R 5 4 -Sma
® ELMo
70 4
® GloVe
I 1
0 1

I 1 I

2 3 4
Pre-train FLOPs le21

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
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THEY DO NOT LIVE IN ISOLATION

Example of a conversational Al application

ASR NLU

Lanpuape Moclel

Search Ranking

Visual Search

Autocorrect

Query Search

“What aate (s the
Chinese New Year?

Machine Trarslation

L J
4

Audio Feature Extraction Acoustic Model Decoder

TTS

Audio Voice | neoder Speech Synthesis L
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THEY DO NOT LIVE IN ISOLATION

Real Time Applications Need to Deliver Latency <300 ms

ASR l NLU
Lanpuape Model [

Search Ranking

Visual Search

Autocorrect

Query Search

“What aate (s the
Chinese New Year:

Machine Trarslation

L J
4

Audio Feature Extraction Acoustic Model Decoder

TTS

4

Audio Voice | neoder Speech Synthesis L
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THEY DO NOT LIVE IN ISOLATION

Real Time Applications Need to Deliver Latency <300 ms

ASR l NLU
Lanpuape Model [

Search Ranking

Visual Search 1
Autocorrect

Query Search

Machine Trarslation '

“What aate (s the
Chinese New Year:

L J
4

Audio Feature Extraction Acoustic Model Decoder

TTS

4

Audio Voice | neoder Speech Synthesis L
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THEY DO NOT LIVE IN ISOLATION

Application bandwidth = Cost

Throughput Latency

Batch size Inference on

(Query per second) (milliseconds)

Original 3-layer BERT 1 Azure Standard F16s_v2 (CPU) 6 157
CPU
Azure Standard F16s_v2 (CPU)
ONNX Model 1 ith ONNX Runtime 111 9
Original 3-layer BERT 4 Azure NV6 GPU VM 200 20
Azure NV6 GPU VM
- ONNX Model 4 ith ONNX Runtime 500 8

Azure NC65_v3 GPU VM

ONNX Model 64 with ONNX Runtime + System Optimization 10667 6
[Tensor Core with mixed precision, Same Accuracy)

206@ EEEENING
https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu/ MVIDIA. | INSTITUTE



AND THEY NEED TO EVOLVE OVER TIME

A lot of processes are not stationary

https://en.wikipedia.org/wiki/Stationary process

60 40 20 0 20

100

Stationary Time Series

“' { f* vl \"/ A f‘a,,

ADF « 6 128 ' ” 1
200 400 600 800 100C
Non-stationary Time Series
™ "*'V \
v ‘A
\ J \ \ N
v __\V*’J-\_ N .
\ 'I‘,o'"
l.l
ADF « - 20251 Wi
\ . A
\‘\,\. /W
\ o
W
I
200 400 600 400 1000
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THERE’S MORE TO AN APPLICATION
THAN JUST THE MODEL

Configuration

Nonfunctional requirements

Data Collection

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure is vast and complex.

Sculley, D., Holt, G., Golovin, D., Davydoy, E., Phillips, T., Ebner, D., ...

Feature
Extraction

Machine
Resource
Management

Analysis Tools

Process
Management Tools

Serving
Infrastructure

Monitoring

& Dennison, D. (2015). Hidden technical debt in machine learning
systems. In Advances in neural information processing systems (pp. 2503-2511).
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THERE’S MORE TO AN APPLICATION
THAN JUST THE MODEL

Configuration

Nonfunctional requirements

Data Collection

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure is vast and complex.

Sculley, D., Holt, G., Golovin, D., Davydoy, E., Phillips, T., Ebner, D., ...

Feature
Extraction

Machine
Resource
Management

Analysis Tools

Process
Management Tools

Serving
Infrastructure

Monitoring

& Dennison, D. (2015). Hidden technical debt in machine learning
systems. In Advances in neural information processing systems (pp. 2503-2511).
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Part 3: Production Deployment

* Model Selection
* Post-Training Optimization
\y  Product Quantization
’ d * Knowledge Distillation
. ‘ * Model Code Efficiency
s * Model Serving
a _ » Building the Application

: « Exporting the Model
’ » Hosting the Model
! - * Server Performance
. * Using the Model



MODEL SELECTION

Not all models are created equally

NLP Image Classification Object detection

dev GLUE Score

ELECTRA-Large RoBERTa : ;
— ¢ _oROBERTa @ 500k steps ® XLNet w14 HicientNot-B7 EtfhcientDet-D7
OBERTa : 1 AmzebaNet-C D8
100k steps 300k steps (fully trained) AmocbaNet SRy - D5
..—--.&“- ' AmaebaNet + NAS-FPN + AA
" a® &
854 WELECTRA-Base s »7 NASNet-A © SENel =
BERT-Large = 821 - ' s
’ BERT-Base & 2 /’, M i o ""ﬁc'f/w\s FPN
- .- 45 - - —————— )
’ g ’I’ ..-".- ReasNeXr O /.-- 2 sNet +
- T ..'. ” —
80 4 sELECTRA-Small 8 L2 .= inceptian. Rashat v2 Q " s
GPT < " < s ’f”
ol Fd
8_ - _:Xcenucn 8 4 L > " //’ RatinaNet
2w oRasNat 152 . o Biolp
75 4 ® BERT-Small i I % e <™ Mask R-CNN
e‘, ‘DenseNet-201 RoRCTSR Rl S0 | Da%
§ . FifcienNel-B1 19.2% T.5M |AP  FLOPS (rutio)
P ReNERT T0T 180 o al_ S0 7| 305 LAY -
- . . e FMcientDet-1D0 X L3R
I . b 3L 78! -5 - N
® ELMo E; " *  RasNat-20 ﬁq%%—ﬁ——;%‘é—&%} ] YOLOW3 (1] 330 TIB (284
70 4 ] .' NASNer-A Zoph et al, 015} | $2.70% M " YOLOV3 EMciestDet-D1 e 6B
=—a Replaced Token Detection Pre-trainin { vrantan EMcientNet 14 K30% Lol RetisaNet |2 370 9B (16x)
® GloVe P .. 9 44 incepsian v2 Glpe tHiae ol 210K RN SRUAA " Mk RONNL ) 1.9 1490 (25x)
e—e Masked Language Model Pre-training "1 NASNes-A KiScierdNet-87 KL eeM 301, Ml —— o ——
T T T T T 'Ele SNet- 2l AmochaNets NAS-FPN ¢AA [12]' | 507 30458 (13x)
0 1 2 3 4 _ s M : - T " =y _ ¢ I Not plomed.
Pre-train FLOPs le2l " = . a S o R e B ' 20 600 800 0 oK
Number of Parameters (Milions) 0 20 400 600 300 1000 120
FLOPs (Billions)
DEEP
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MODEL SELECTION

Not all models respond in the same way to knowledge distillation, pruning and quantization

Stop Training

| When Converged

i

Lightly
Compress

Stop Training
Early

Heavily
Compress

Common Train Small
Practice Model
: Train Large
Optimal Model
RoBERTa Pruning

0.85

0.80

=
~J
v

MNLI Validation Accuracy

0 50 100

Original Size
-=3 Layers

-+-6 Layers

-»-12 Layers
--18 Layers
-+ 24 Layers

150

Number of Parameters (Millions)

https://bair.berkeley.edu/blog/2020/03/05/compress/

Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., & Gonzalez, J. E. (2020). Train large, then compress: Rethinking model size for efficient training and inference of transformers. arXiv preprint arXiv:2002.11794.

200

O
co
2

<
co
o

ot
~
=

MNLI Validation Accuracy
5
o

O
o
o

RoBERTa Quantization

500
Memory Usage (MB)

Original Size
-»-3 Layers, 768H

-+ 6 Layers, 768H
-=-12 Layers, 768H
-+-18 Layers, 768H
24 Layers, 768H
- 12 Layers, 256H
--12 Layers, 512H
--12 Layers, 1024H
-« 12 Layers, 1536H

1000

1500
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https://bair.berkeley.edu/blog/2020/03/05/compress/

MODEL SELECTION

And very large models are and will continue to be prevalent in NLP

Zero-shot One-shot Fewr-shot

Natural Language

60 Prompt

Accuracy (%)

~- 13B Params

P IO i e~ 1,3B Params

0 10 10'

Number of Examples in Context (K)

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves™ for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.

213 @‘Z EEEENING
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165. NVIDIA.  INSTITUTE



DIRECT IMPLICATIONS



INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION

E.g. Train Large then compress

Common Train Small Stop Training _ Lightly

Practice Model When Converged Compress
. Train Large Stop Trainin Heavil
Optimal J - P I |- y
Model Early Compress
https://bair.berkeley.edu/blog/2020/03/05/compress/ 215 S | Earnie

Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., & Gonzalez, J. E. (2020). Train large, then compress: Rethinking model size for efficient training and inference of transformers. arXiv preprint arXiv:2002.11794.  PVIDIA | INSTITUTE


https://bair.berkeley.edu/blog/2020/03/05/compress/

INCREASING IMPORTANCE OF PRUNING AND QUANTIZATION

Hardware acceleration for reduced precision arithmetic and sparsity

—— 20X 310
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. I_
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FP16
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625

60

—
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Part 3: Production Deployment

* Model Selection
| * Post-Training Optimization
N  Product Quantization
* Knowledge Distillation
. f * Model Code Efficiency
s * Model Serving
- . » Building the Application

: « Exporting the Model
’ » Hosting the Model
] ’ * Server Performance
. * Using the Model



QUANTIZATION

The idea

w o u ) 0w om

FP32 INT8 FP32
(pre-quantized) (quantized) (dequantized)

1.12 2.7 -0.9
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QUANTIZATION

The rationale

Input Accumulation Math Bandwidth
Datatype Datatype Throughput Reduction
FP32 FP32 1x 1x
FP16 FP16 8x 2X
INT8 INT32 16x 4x

. INT4 INT32 32x 8
INT1 INT32 128x 32x
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QUANTIZATION

The rationale

NVIDIA A100 Tensor Core TFAZ with Sparsity

NVICA V100 FPA2

NVIDIA A100 Tensor Core INTS with Sparsity

RVIDIAYIOO INTE

LI

- - "'l"."l'.'.' -
VERAERRERRAEARRRA.

N "." """'

THAOORPUT

RVIDIA A100 Tensor Cure FP16 wilh Sparsity

NVIDIAVT0D Tenser Core FPTE

A1

SESRSSaN
TEREEREE

EX o
oL oUY =

NVIDIA A100 Tensor Care FFAL

NVICIA VIHID FP&4

VRN
b %\ )

E L Y\

VRN
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QUANTIZATION

The results (speedup and throughput)

-— et ek ed ed e e -
i eh ek ek ek A e
— et ek et et eh e b

Inception v4
ResNext101

MobileNet v1 2889 3762 2455 7430 13493 2718

MobileNet v2 1082 1618 2060 2267 5307 9016 2761 6431 12652
ResNet50 (v1.5 298 617 1051 500 2045 3625 580 2475 4609
153 403 415 197 816 1269 236 915 1889
124 358 384 158 673 1101 187 749 1552
156 371 616 350 1318 2228 385 1507 2560
76 226 335 173 768 1219 186 853 1339
84 208 297 200 716 1253 233 899 1724 oy e

. INSTITUTE
TensorRT optimized models executed on Tesla T4, input size 224x224 for all apart from the Inception networks for which the input size was 299x299 rvibIA



QUANTIZATION

MLPERF 0.5 - RESNET-50 V. 1.5 OFFLINE SCENARIO

B INT8 B INT4

25,178

-
-
o
&
Q

7))

S~
)
Q
(@)
(44

E

NVIDIA T4 TITAN RTX

(Turing 70W] [Turing 280W|

INT4 quantization for resnet50 PERRNING
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IMPACT ON ACCURACY

In a wide range of cases minimal

COCO

MobileNet v1
MobileNet v2

NASNet (large
NASNet (mobile
ResNet50 (v1.5

SSD-300 MobileNet v1 26 25.8
SSD-300 MobileNet v2 27.4 26.8

Faster RCNN ResNet-101 33.7 33.4 0.89%
All results COCO mAP on COCO 2017 validation, higher is better

ResNet152 (v1.5) Pascal VOC

SSD-300 77.7

SSD-512 79.9 79.9 0.0%
Inception v4 : All results VOC mAP on VOC 07 test, higher is better

VGG-19

Inception v3

DEEP
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IMPACT OF MODEL DESIGN

Not all neural network mechanisms quantize well

0.855 0.823 3.74%
91.01 85.16 6.43%
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IMPACT OF MODEL DESIGN

Model alterations required

0.855 0.823 3.74% . .
oy T Py GelLU produces highly asymmetric range
|_Bert large uncased __FP32 _____Int8 (GeLU10) RelErr % | Negative values between [-0.17,0]
0.855 0.843 0.70%
b A0 e All negative values clipped to 0

Gell)

GeLU10 allows to maintain negative values

« P32 » Bl @50 = B, a-1C

X | .. X
f) =75 +erf(7) ooy e

LEARNING
NVIDIA.  INSTITUTE
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LOSS OF ACCURACY

Reasons

Outlier in the tensor:

Example: BERT, Inception V4

Solution: Clip. Tighten the range, use bits more efficiently
Not enough precision in quantized representation

Example: Int8 for MobileNet V1

Example: Int4 for Resnet50

Solution: Train/fine tune for quantization

DEEP
226 & LEARNING
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LEARN MORE

GTC Talks

S9659: Inference at Reduced Precision on GPUs

521664: Toward INT8 Inference: Deploying Quantization-Aware Trained Networks using TensorRT

DEEP
227 & LEARNING
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QUANTIZATION TOOLS



NVIDIA TENSORRT

From Every Framework, Optimized For Each Target Platform

]
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INT8 QUANTIZATION EXAMPLE

TF-TRT

Step 1 Obtain the TF frozen graph (trained in FP32)

Step 2 C(Create the calibration graph -> Execute it with calibration data -> Convert it to the INTS8
optimized graph
# create a TRT inference graph, the output is a frozen graph ready for calibration
calib_graph = trt.create_inference_graph(input _graph _def=frozen graph, outputs=outputs,
max_batch_size=1, max_workspace_size bytes=1<<30,
precision_mode="INT8", minimum_segment _size=5)

# Run calibration (inference) in FP32 on calibration data (no conversion)

f _score, f_geo = tf.import_graph_def(calib_graph, input_map={"input_images":inputs},
return_elements=outputs, name="")

Loop img: score, geometry = sess.run([f_score, f_geo], feed_dict={inputs: [img]})

# apply TRT optimizations to the calibration graph, replace each TF subgraph with a TRT node
optimized for INTS8
trt_graph = trt.calib_graph_to_infer_graph(calib_graph)

Step 3 Import the TRT graph and run

A Erne
https://docs.nvidia.com/deeplearning/dax/ti-trt-user-quide/index.html 230 A Leamane



https://docs.nvidia.com/deeplearning/dgx/tf-trt-user-guide/index.html

PRUNING



PRUNING

The idea

The opportunity:

] (a) ResNet-50 Weight Histogram (b) Inception-v3 Weight Histogram
Reduced memory bandwidth 105 Max Weight: 1.32 | 105 Max Weight: 1.27
. Min Weight: -0.78 Min Weight: -1.20
Reduced memory footprint 101 10/
>
. . . Q403 3
Acceleration (especially in presence of 501 10%
hardware acceleration) g 102 102
(N
107, 101
1
109, 10° i ' ' i ' i
-0 -5 0 5 10 15 20 -0 -5 0 5 10 15 20
weight value weight value
(c) DenseNet-201 Weight Histogram (d) Transformer Weight Histogram
=I-==l.==l.= 105 ) )
HHREHHHHE 1 Max Weight: 1.33 | 107} Max Weight: 20.41
— 104 Min Weight: -0.92 | 4qs; - Min Weight: -12.46
EEEANENAEEN ]
EEEAEEESEER
EENEESEEEEEE 105}
AR EERNEEENE 6*103‘1
EEENEEREEER 4
S 1 104
3102 103,
3
w 10t 102,
1 107,
. oy R I LA A o .
: : 0 5 0 5 10 15 20 0 -5 0 5 10 15 20
- weight value weight value
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STRUCTURED SPARSITY



SPARSITY IN A100 GPU

Fine-grained structured sparsity for Tensor Cores |
2:4 structured-sparse matrix

50% fine-grained sparsity
2:4 pattern: 2 values out of each contiguous block of 4 must be 0

Addresses the 3 challenges:

Accuracy: maintains accuracy of the original, unpruned network

Medium sparsity level (50%), fine-grained

Training: a recipe shown to work across tasks and networks

|:| = zero value

Speedup:
Specialized Tensor Core support for sparse math

Structured: lends itself to efficient memory utilization
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PRUNING

Structured sparsity

Dense Sparse
INPUT OPERANDS ACCUMULATOR TOPS vs. FFMA Vs, FFMA
FP32 FP32 1 B - -
TF32 FP32 156 8X 16X
FP16 FP32 312 16X 32X
BF16 FP32 312 16X 32X
FP16 FP16 312 16X 32X
INT8 INT32 624 32X 64X
INT4 INT32 1248 64X 128X
BINARY INT32 4992 256X -
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RELIABLE APPROACH



PRUNING

Model performance

Accuracy

Network Dense FP16 FP16

ResNet-34 73.7 73.9 0.2 73.7
ResNet-50 76.6 76.8 0.2 76.8 0.2
ResNet-101 77.7 78.0 0.3 77.9
ResNeXt-50-32x4d 77.6 77.7 0.1 77.7
ResNeXt-101-32x16d 79.7 79.9 0.2 79.9 0.2
DenseNet-121 75.5 75.3 -0.2 75.3 -0.2
DenseNet-161 78.8 78.8 78.9 0.1
Wide ResNet-50 78.5 78.6 0.1 78.5

Wide ResNet-101 78.9 79.2 0.3 79.1 0.2
Inception v3 771 771 77.1

Xception 79.2 79.2 79.2

VGG-16 74.0 741 0.1 741 0.1
VGG-19 75.0 75.0 75.0
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PRUNING

Model performance

Accuracy
Network Dense FP16 FP16
ResNet-50 (SWSL) 81.1 80.9 0.2 80.9 0.2
ResNeXt-101-32x8d (SWSL) 84.3 84.1 -0.2 83.9 -0.4
ResNeXt-101-32x16d (WSL) 84.2 84.0 -0.2 84.2
SUNet-7-128 76.4 76.5 0.1 76.3 -0.1
DRN-105 79.4 79.5 0.1 79.4
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PRUNING

Model performance

Accuracy

Network Dense FP16 FP16

MaskRCNN-RN50 37.9 37.9 - 37.8 -0.1
SSD-RNS0 24.8 24.8 - 24.9 0.1
FasterRCNN-RN50-FPN-1x 37.6 38.6 1.0 38.4 0.8
FasterRCNN-RN50-FPN-3x 39.8 39.9 -0.1 39.4 -0.4
FasterRCNN-RN101-FPN-3x 41.9 42.0 0.1 41.8 -0.1
MaskRCNN-RN50-FPN-1x 39.9 40.3 0.4 40.0 0.1
MaskRCNN-RN50-FPN-3x 40.6 40.7 0.1 40.4 0.2
MaskRCNN-RN101-FPN-3x 42.9 43.2 0.3 42.8 0.1
RetinaNet-RN50-FPN-1x 36.4 37.4 1.0 37.2 0.8
RPN-RN50-FPN-1x 45.8 45.6 -0.2 45.5 0.3

RN = ResNet Backbone
FPN = Feature Pyramid Network
RPN = Region Proposal Network
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IMPACT ON NLP



NETWORK PERFORMANCE

BERT-Large

1.8x GEMM Performance -> 1.5x Network Performance
Some operations remain dense:
Non-GEMM layers (Softmax, Residual add, Normalization, Activation functions, ...)
GEMMs without weights to be pruned - Attention Batched Matrix Multiplies

An encoder layer's composition in BERT network

To naxt layer

From previous layer

. Sparse GEMMs D Dense GEMMs D Non-GEMM layer
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TRAINING RECIPE



RECIPE FOR 2:4 SPARSE NETWORK TRAINING

Dense weights

1) Train (or obtain) a dense network

2) Prune for 2:4 sparsity

2:4 sparse weights

3) Repeat the original training procedure

Same hyper-parameters as in step-1

Initialize to weights from step-2
Retrained 2:4 sparse

Maintain the 0 pattern from step-2: no need to recompute the mask weights
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EXAMPLE LEARNING RATE SCHEDULE

o 1 Dense Training i\ Sparse Retraining

4(_.03 1 \

o

o]0

C ,'

£

(O I’

S| - -
EE— B — |
— 1\ _/

Y Y
Step 1 Step 2 Step 3
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Learning Rate

Phase 1:

Pretrain language model

L
]\

BERT SQUAD EXAMPLE

Phase2:
Finetune for SQUAD

Learning Rate

Phase 1:

Phase 1: Sparse

SQUAD Dataset and fine-tuning is too small to compensate for pruning on its own

Phase2: Sparse

Pretrain language model  Pretrain language model  Finetune for SQUAD
\ N
! \
III \\\ ’II \\\
1 \\ d \
1 \ 1 \
1 \ 1 \\
I S / .
] N 1 N
1 \\ ! \\
N 1 N
II \\\\ II \\\\ I’\\
SS 1 T~ RN
~ o ~—e_ p Tt~ III S - -
L | ,{
N T\ -
Y Y
Step 1 Step 2 Step 3
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APEX: AUTOMATIC
SPARSITY



PyTorch sparse fine-tuning loop

e ——

A

ol W

TAKING ADVANTAGE OF STRUCTURED SPARSITY

from apex.contrib. spar

=\ ‘e — Y ’ =% e |

e ¥V e W N N e N dad e NANG Y AN N

(l

model.load state dict(torch

APEX’s Automatic SParsity: ASP

- -— =T . M L)
S1LTV 1MpPoOoxrt ADY
) 4

& g =

w A S ACK

’ LJS) #

.load(‘dense model.pth’))

/

Init mask buffers, tell optimizer
to mask weights and gradients,
compute sparse masks:
Universal Fine Tuning

N

7

248 X

NVIDIA.



Part 3: Production Deployment

* Model Selection
; * Post-Training Optimization
N * Product Quantization
’ : * Knowledge Distillation
. f * Model Code Efficiency
s * Model Serving
- . » Building the Application

: « Exporting the Model
’ » Hosting the Model
] ’ * Server Performance
. * Using the Model



Post-training quantization(PTQ)

Calibration data

Pre-trained
model

Gather layer
statistics

Compute
g-params

Quantize model

QUANTIZATION

Approaches

Usually fast

Quantization-aware training (QAT)

Slow

No re-training of the model

Model needs to be trained/finetuned

Plug and play of quantization
schemes

Plug and play of quantization
schemes (requires re-training)

Less control over final accuracy of
the model

More control over final accuracy

since g-params arc leamed during
training.

Pre-trained
model

Add QAT ops

Finetune with

QAT ops

Store g-params

Quantize model
for inference

DEEP
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EXTREME MODEL COMPRESSION

Training with quantization noise

Quantization Scheme Language Modeling Image Classification
16 layer Transformer EfMlcientNet B3
Wikitext-103 ImuageNet-1k
Size  Compression  PPL Size Compression  Top-1
: y 'S 912 8. 4 ‘..' 3
26 - X wio Quant-Noise X Training without Quant-Noise O Training with Quant-Noise Uncompressed model 9412 X 1 18.3 16.7 x 1 81.5
. Training Time Quantzation Teaining Time Quantization intd quantization 118 x 8 39.4 .8 X 8 45.3
g “r Welght Matrix Weight Mazrix Weight Matrix Weight Matrix - trained with QAT 118 X 8 4.1 .8 X 8 SR
§ 2| oO0ee @0 - trained with Quant-Noise 118 x 8 21.8 5.8 x 8 67.8
O ! Quant-Noise aeed ®O: [I int8 quantization 236 x 4 19.6 1.7 x 4 80.7
1 “r b i ®®: ined with QAT 236 1 21.0 11.7 1 1.8
5 T — T - trained wi Q - 2, X 21. o X PR
13 |- 1deal OB Model A 411 D e - trained with Quant-Noise 236 x 4 18.7 11.7 x 4 80.9
; £ ! ) o0 ® ®: 80 iPQ 38 x 25 25.2 3.3 x 14 79.0
aad Lo R L e 000 - trained with QAT 38 x 25 41.2 3.3 x 14 5.7
Figure |: Quant-Noise trains models to be resilient to inference-time gquantization by mimicking the - trained with Quant-Noise 38 X & 20.7 3.3 x 14 80.0
effect of the quantization method during training time. This allows for extreme compression rates iPQ & int8 + Quant-Noise 38 % 95 921.1 3.1 % 15 70.8

without much loss in accuracy on a variety of tasks and benchmarks.

Table 1: Comparison of different quantization schemes with and without Quant-Noise on language mod-
cling and image classification. For language modeling, we train a Transformer on the Wikitext-103 benchmark
and report perplexity (PPL) on test. For image classification, we train a EfficientNet-B3 on the ImageNet- |k
benchmark and report top-1 accuracy on validation and use our re-implementation of EfficientNet-B3. The
original implementation of Tan er al. [4] achieves an uncompressed Top-1 accuracy of 81,95, For both settings,
we report model size in megabyte (MB) and the compression ratio compared to the original model.

251 @Z EEEQNING
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“‘We used Quant-Noise to compress Facebook Al’s
., . State-of-the-art RoBERTa Base model from 480 MB
a to 14 MB while achieving 82.5 percent on MNLI,

compared with 84.8 percent for the original model.”
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KNOWLEDGE DISTILLATION

The idea

Distilling the Knowledge in a Neural Network

Geoffrey Hinton" ' Oriol Vinyals' Jeff Dean
Google Inc. Google Inc. Google Inc.
Mountain View Mountain View Mountain View
geoffhinton@google.com vinyals@google.com jeff@google.com
Abstract

A very simple way to improve the performance of almost any machine learning
algorithm is to train many different models on the same data and then to average
their predictions [3]. Unfortunately, making predictions using a whole ensemble
of models is cumbersome and may be too computationally expensive to allow de-
ployment to a large number of users, especially if the individual models are large
neural nets. Caruana and his collaborators [1] have shown that it is possible to
compress the knowledge in an ensemble into a single model which 1s much eas-
ier to deploy and we develop this approach further using a different compression
technique. We achieve some surprising results on MNIST and we show that we
can significantly improve the acoustic model of a heavily used commercial system
by distilling the knowledge in an ensemble of models into a single model. We also
introduce a new type of ensemble composed of one or more full models and many
specialist models which learn to distinguish fine-grained classes that the full mod-
els confuse. Unlike a mixture of experts, these specialist models can be trained
rapidly and in parallel. 254 S [

LEARNING
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KNOWLEDGE DISTILLATION

DistillBERT

Table |: DistilBERT retains 97% of BERT performance. Comparison on the dev sets of the
GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the

medians of 5 runs with different seeds.

Model Score CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI

ELLMo 68.7 441 68.6 76.6
BERT-base  79.5 56.3 86.7 88.6
DistilBERT  77.0 5§ e 82.2 87.5

71.1 862 534 915 70.4 56.3
918 896 693 927 89.0 ol Ju
89.2 885 399 913 86.9 56.3

Table 2: DistilBERT yields to comparable
performance on downstream tasks. Com-
parison on downstream tasks: IMDDb (test ac-
curacy) and SQuAD 1.1 (EM/F1 on dev set).
D: with a second step of distillation during
fine-tuning.

Model IMDb  SQuAD

(acc.) (EM/F1)
BERT-base 93.46 81.2/88.5
DisulBERT 09282 77.7/85.8
DisulBERT (D) . 79.1/86.9

Table 3: DistilBERT is significantly smaller
while being constantly faster. Inference
time of a full pass of GLUE task STS-B (sen-
timent analysis) on CPU with a batch size of
1.

Model # param.  Inf. time
(Millions) (seconds)
El.LMo 180 895
BERT-base 110 668
DistilBERT 66 410

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
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NOT ALL MODELS HAVE
THE SAME CODE QUALITY



COMPUTE MATTERS

But so does code quality

Monthly DL Framework Updates & Optimizations Drive Performance

MxNet PyTorch TensorFlow
12000 8000 9000
7000 8000
10000
7000
6000
8000 6000
5000
© e} kel
[y c c
S S g 5000
o) 3 3
<L 6000 < 4000 o <
(0] C c
& % % 4000
g - [
3000 —
4000 — 3000 —
2000 —_—
2000 —_—
2000 —
1000 N 1000 N
0 0 0
17,08 18,02 18,12 19,12 17,08 18,02 1812 1912 17,08 18,02 18,12 19,12

ResNet-50 v1.5 Training | 8x V100 | DGX-1
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NGC: GPU-OPTIMIZED SOFTWARE HUB

Simplifying DL, ML and HPC Workflows

Model Training Scripts
NLP, Image Classification,
Object Detection & more

Containers ° l Helm Charts

DL, ML, HPC Al applications, K8s cluster, Registry

Pre-trained Models Industry SDKs

NLP, Classification, Object Detection & more Medical Imaging, Intelligent Video Analytics



PRETRAINED MODELS & MODEL SCRIPTS

Build Al Solutions Faster

PRE-TRAINED MODELS

Deploy Al quickly with models for industry specific use cases
Covers everything from speech to object detection
Integrate into existing workflows with code samples

Easily use transfer learning to adapt to your bespoke use case

MODEL SCRIPTS

Reference neural network architectures across all domains and popular
frameworks with latest SOTA

Jupyter notebook starter kits

Healthcare (~30 models)
Manufacturing (~25 Models)
Retail (~25 models)

70 TensorRT Plans

Natural Language Processing
Recommendation Engines
Speech

Translation

BioBERT (NLP), Clara (Computer Vision)
Object Detection, Image Classification

BERT, Transformer
Classification/Segmentation for v5, v6, v7

25 Bert Configurations
Neural Collaborative Filtering, VAE
Jasper, Tacotron, WaveGlow

GNMT

DEEP
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THIS APPLIES NOT ONLY
TO TRAINING BUT
INFERENCE AS WELL



CODE QUALITY IS KEY

Dramatic differences in model performance

3-layer BERT with 128 sequence length

Original 3-layer BERT

CPU
ONNX Model
Original 3-layer BERT
ONNX Model
GPU
ONNX Model

Batch size

o4

Inference on

Azure Standard F16s_v2 (CPU)

Azure Standard F16s_v2 (CPU)
with ONNX Runtime

Azure NV6 GPU VM

Azure NV6 GPU VM
with ONNX Runtime

Azure NC65_v3 GPU VM

with ONNX Runtime + System Optimization

(Tensor Core with mixed precision, Same Accuracy)

https://cloudblogs.microsoft.com/opensource/2020/01/21/microsoft-onnx-open-source-optimizations-transformer-inference-gpu-cpu

Throughput

(Query per second) (milliseconds)

111

200

10667

Latency

157

20

262 X

NVIDIA.
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P ° e OPTIMIZING INFERENCE
gy O+ WITH TENSORRT



NVIDIA TENSORRT

From Every Framework, Optimized For Each Target Platform

-3:2}:‘
< o ‘
o ' -
.%o Lane
-

+ TensorFlow
+
Cr
Caffe?

PYTHORCH

< .
JETSON Xavier

. -
2
‘ B

DRIVE AGX
theano

NVIDIA DLA

o)
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TENSORRT

Optimizations

Layer & Tensor Fusion

/"

@ A
Precision Calibration / \ Kernel Auto-Tuning

. w:..‘:.'. l Tranar AT Rustire

@ o o s ® o ” I

® & o ” '\ S e—a"" .‘l ..
s R ” 9 °

ot o® : .

® \ | O

Trained Neural 6 1 Optimized

Network T Inference

Dynamic Tensor Multi-Stream Engine

Memory Execution

.. 265 @Z EEEQNING
developer.nvidia.com/tensorrt NVIDIA.  INSTITUTE



) ONNX

TensorRT ONNX PARSER

High-Performance Inference for ONNX
Models + L ..
S Caffe2  Fom Chainer  JF ) Sogpiive

MATLAB ¢
Apply TensorRT optimizations to any ONNX @Xne ' O P)/TO rCh

framework (Caffe 2, Microsoft Cognitive Toolkit, s o
MxNet & PyTorch) “ PaddlePaddle

Import TensorFlow and Keras through converters
(tf2onnx, keras2onnx)

Optimize and deploy models from ONNX-supported
frameworks to production

Use with C++ and Python apps
20+ New Ops in TensorRT 7

Support for Opset 11 (See List of Supported Ops)

DEEP
266 & LEARNING

developer.nvidia.com/tensorrt NVIDIA.  INSTITUTE


https://github.com/onnx/onnx-tensorrt/blob/7.0/operators.md

TENSORRT

Tight integration with DL frameworks

ResNet50 Host Runtime Speed Up

AN V - Balch Size 3. put

FP32 FP16

B Jr B TensoRT [ TRTorch

PyTorch 1.4.0 (CuDNN Benchmark mode enabled) CUDA 10.1 TensorRT 6.0.1.5, TITAN Y, i7-7800X

Images / sec

Throughput with TensorRT at < 7ms latency
(TensorFlow ResNet-50)

6000
5086

5000

4000

3000 2657

2000

1000 =

14 325
0 S o=
CPU Only FP32 V100 FP32 V100 Tensor Cores V100 Tensor Cores
TensorFlow Tensorflow  TensorFlow+TensorRT TensorRT 3 only

Updated 3/28/2018. * Min CPU latency measured was 70 ms. It ks not < 7ms.

CPU: Skylake Gold 6140, Ubuntu 16.04, 18 CPU threads. Voita V100 SXM; CUDA (384.111;V9.0.176);

Batch sizes: CPU~1;V100_FP32-2; V100_Tensorflow_TensorRT=16; V100 _TensorRT~32; Latency~6ms. TensorRT 3.
Latest results at: https: / /developer.nvidia.com/deep learning performance training inference

Pytorch -> TRTorch

TensorFlow -> TF-TRT
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Accelerating most demanding applications
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IMPACT ON NLP



TENSORRT

BERT Encoder optimizations

Output

/ BERT Encoder Cell \

Optimized using
TensorRT plugin

Multi-Head :
Self Attention .

el

| PO ppyppmm—p——  IERPOGSRSIORNCORNSeS

Fused and optimized Fused and optimized
\ using TensorRT plugin using TensorRT pluginj

Input
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CUSTOM PLUGINS

Optimized GelLU as well as skip and layer-normalization operations

Naive implementation would require a large
number of TensorRT elementary layers

For k layers, the naive implementation would

require k-1 memory roundtrips
The skip and layer-normalization(LN) layers occur ;_..i+

twice per Transformer layer and are fused in a

single kernel

gelu(x) =a*x* (1 +tanh(b* (x+c*x"3)))

Result
Result

Result =

Result

Result =

Result

X" 3

c * Result
X + Result
b * Result
tanh (Result)
X * Result
a * Result

Multi-Mead
Self Attantion

»

BERT Encoder Cell

...............

Input

Fused and optimized
using TensorRT plugin

Optimized using
TensorRT plugin

.......

Fused and optlmlzed
using TensorRT plugin

-
o’
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CUSTOM PLUGINS

Self-attention layer

Self-Attention Layer
(Before optimizations)

-

Element
pu K KT Scalin
input Transpose s
(BxSx(NxH))

v vr
\ 3 separate FC layers
/ Self-Attention Layer
(With optimizations through TensorRT)
Q'
(B x !sllp(:tx H)) g Transpose Kv:

\ Single big matrix

DEEP
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IMPLICATIONS

Significant impact on latency and throughput (batch 1)

CPU Server 40 ms

T4 2.2ms |

10 milliseconds Target for
Many Conversational Al Apps

DEEP
Using a Tesla T4 GPU, BERT optimized with TensorRT can perform inference in 2.2 ms for a QA task similar to available in SQUAD with batch size =1 and sequence length = 128. o :S%A. INSTITUTE



IMPLICATIONS

Significant impact on latency and throughput

NVIDIA A100 with Sparsity
NVIDIA V100

3%7

a 1,000 200 3,000 2,000 3,00 4,000 2000

Sequences Per Secend

DGX ATO0 server wf Tx NVIDIA AT00 wilh 7 MIG inslances ol Tg.hqb | Balch Size = 94 | Precsion; INTE | Sequence Lenglh = 1208

DGX-1 server wf Tx NVIDIAVIOND | TensarRT 7.7 | Balch Size < 204 | Precision: Mixed | Sequence | ength < 128
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BEYOND BERT



FASTER TRANSFORMER

Designed for training and inference speed

Encoder:
1.5x compare to TensorFlow with XLA on FP16

Decoder on NVIDIA Tesla T4

2.5x speedup for batch size 1 (online translating scheme)
2x speedup for large batch size in FP16

Decoding on NVIDIA Tesla T4

/x speedup for batch size 1 and beam width 4 (online translating scheme)
2x speedup for large batch size in FP16.

Decoding on NVIDIA Tesla V100

6x speedup for batch size 1 and beam width 4 (online translating scheme)
3x speedup for large batch size in FP16.

https://github.com/NVIDIA/Deepl earningExamples/tree/master/FasterTransformer#feature-support-matrix . DA - | INSTITUTE



https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer

CONSIDER USING
TENSORRT
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INEFFICIENCY LIMITS INNOVATION

Difficulties with deploying data center inference

Single Model Only Single Framework Only

@ Q
Rec- Q Q
ASR NLP ommender theano Q

Some systems are overused while Solutions can only support
others are underutilized models from one framework

Custom Development

Developers need to reinvent the
plumbing for every application

IIIIIIIIIIIIIIII



NVIDIA TRITON INFERENCE SERVER

Production data center inference server

Maximize real-time inference

: VoA performance of GPUs
@< §52 ™
=~ E£5 S Quickly deploy and manage multiple
m models per GPU per node

Easily scale to heterogeneous GPUs
and multi GPU nodes

Inference
Server

C
O
i
Fa
I—

D Integrates with orchestration

@
c 2% .
S8 ¢ systems and auto-scalers via latency
4 .
£ TesiaPs and health metrics

Now open source for thorough
customization and integration
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Concurrent Model Execution
Multiple models (or multiple instances of same
model) may execute on GPU simultaneously

CPU Model Inference Execution
Framework native models can execute inference
requests on the CPU

Metrics
Utilization, count, memory, and latency

Custom Backend

Custom backend allows the user more flexibility
by providing their own implementation of an
execution engine through the use of a shared
library

Model Ensemble
Pipeline of one or more models and the
connection of input and output tensors between

those models (can be used with custom
backend)

FEATURES

Dynamic Batching

Inference requests can be batched up by the
inference server to 1) the model-allowed
maximum or 2) the user-defined latency SLA

Multiple Model Format Support
PyTorch JIT (.pt)

TensorFlow GraphDef/SavedModel
TensorFlow and TensorRT GraphDef

ONNX graph (ONNX Runtime)

TensorRT Plans

Caffe2 NetDef (ONNX import path)

CMake build

Build the inference server from source making it

more portable to multiple OSes and removing
the build dependency on Docker

Streaming API

Built-in support for audio streaming input e.g.

for speech recognition

+

v, , l.f

Caffe? Tensor

TensorRT
PYTORCH

€ ONNX

{} ¥ Microsoft
Chainer CNTK

‘xnet PYTHRCH
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DYNAMIC BATCHING SCHEDULER

Batch-1 Request
Batch-4 Request

\

Triton Inference Server

Framework Backend

Runtime

Context

| Dynamic
Batcher

Context
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DYNAMIC BATCHING SCHEDULER

Grouping requests into a
single “batch” increases
overall GPU throughput

Preferred batch size and wait
time are configuration options.

Assume 4 gives best utilization in
this example.

Triton Inference Server

Dynamic
Batcher

ModelY Backend

Runtime

.

-~
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DYNAMIC BATCHING

2.5X Faster Inferences/Second at a 50ms End-to-End Server Latency Threshold

Triton Inference Server groups
inference requests based on
customer defined metrics for
optimal performance

Customer defines 1) batch size
(required) and 2) latency
requirements (optional)

Example: No dynamic batching
(batch size 1 & 8) vs dynamic
batching

Static vs Dynamic Batching (T4 TRT Resnet50 FP16 Instance 1)

1000

Inferences/Second

4 6 8 10 12 14 16
Concurrent Client Requests

== Static BS1 with Dynamic BS8 == Static BS8 no Dynamic Batching Static BS1 no Dynamic Batching
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CONCURRENT MODEL EXECUTION - RESNET 50

6x Better Performance and Improved GPU Utilization Through Multiple Model Concurrency

Common Scenario 1

One API using multiple copies of the
same model on a GPU

Inference
Requests

10
concurrent
requests

Example: 8 instances of TRT FP16 ResNet50
(each model takes 2 GB GPU memory) are
loaded onto the GPU and can run
concurrently on a 16GB T4 GPU.

10 concurrent inference requests happen:
each model instance fulfills one request
simultaneously and 2 are queued in the
per-model scheduler queues in Triton
Inference Server to execute after the 8
requests finish. With this configuration,
2680 inferences per second at 152 ms with
batch size 8 on each inference server
instance is achieved.

ResNet
50

Request
Queue

T4 16GB GPU

RN50 Instance 1

CUDA Stream

RN50 Instance 2

CUDA Stream

RN50 Instance 3

CUDA Stream

RN50 Instance 4

CUDA Stream

RN50 Instance 5

CUDA Stream

RN50 Instance 6

CUDA Stream

RN50 Instance 7

CUDA Stream

RN50 Instance 8

CUDA Stream
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CONCURRENT MODEL EXECUTION - RESNET 50

Common Scenario 1 TRT FP16 Inf/s vs. Concurrency BS 8 Instance 8 on T4

One API using multiple copies of the = |nf/s == Latency (ms)
same model on a GPU

3000 200

Example: 8 instances of TRT FP16 ResNet50
(each model takes 2 GB GPU memory) are
loaded onto the GPU and can run
concurrently on a 16GB T4 GPU.

10 concurrent inference requests happen:
each model instance fulfills one request
simultaneously and 2 are queued in the
per-model scheduler queues in Triton
Inference Server to execute after the 8
requests finish. With this configuration,
2680 inferences per second at 152 ms with
batch size 8 on each inference server 5 4 X q 10 19
instance is achieved.

150
2000

100

Inf/s

1000
50

Concurrency
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CONCURRENT MODEL EXECUTION
RESNET 50 & DEEP RECOMMENDER

Common Scenario 2

Many APls using multiple different
models on a GPU

Example: 4 instances of TRT FP16 ResNet50
and 4 instances of TRT FP16 Deep
Recommender are running concurrently on
one GPU. Ten requests come in for both
models at the same time (5 for each
model) and fed to the appropriate model
for inference. The requests are fulfilled
concurrently and sent back to the user.
One request is queued for each model.
With this configuration, 5778 inferences
per second at 80 ms with batch size 8 on
each inference server instance is achieved.

5 concurrent
requests

Inference
Requests

5 concurrent
requests

Resnet
50

Request
Queue

Deep
Rec

Request
Queue

T4 16GB GPU

RN50 Instance 1

CUDA Stream

RN50 Instance 2

CUDA Stream

RN50 Instance 3

CUDA Stream

RN50 Instance 4

CUDA Stream

DeepRec Instance 1

CUDA Stream

DeepRec Instance 2

CUDA Stream

DeepRec Instance 3

CUDA Stream

DeepRec Instance 4

CUDA Stream

287 X
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CONCURRENT MODEL EXECUTION
RESNET 50 & DEEP RECOMMENDER

Common Scenario 2

Many APIs using multiple different
models on a GPU

Example: 4 instances of TRT FP16 ResNet50
and 4 instances of TRT FP16 Deep
Recommender are running concurrently on
one GPU. Ten requests come in for both
models at the same time (5 for each
model) and fed to the appropriate model
for inference. The requests are fulfilled
concurrently and sent back to the user.
One request is queued for each model.
With this configuration, 5778 inferences
per second at 80 ms with batch size 8 on
each inference server instance is achieved.

TRT FP16 Resnet 50 Inferences/Second vs Total Latency BS8
Instance 4 on T4

== Resnet 50 Inferences/Second == Total Latency (ms)

2000 80

60

40

20

Concurrency

TRT FP16 Deep Rec Inferences/Second vs Total Latency BS8
Instance 4 on T4

== Deep Rec Inferences/Second == Total Latency (ms)

5000 25

4000 20

3000 15

Inf/s

2000 10

1000 5

Concurrency
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TRITON INFERENCE SERVER
METRICS FOR AUTOSCALING

Before Trlton Inference Server 800 FPS Before Triton Inference Server - 5 OOO FPS

. e ’ 2 B9
-1'.“ Rgns 40, Qrbewmng a4
A 10. '+ o 09 ‘ LT

« One model per GPU
« Requests are steady across all models
. Utilization is low on all GPUs

Spike in requests for blue model
GPUs running blue model are being fully utilized
Other GPUs remain underutilized
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TRITON INFERENCE SERVER
METRICS FOR AUTOSCALING

'S AR | oy i

a'("
4 e

After Tr Inference Server 5 OOO FPS After Trlton Inference Server 15 OOO FPS

/ . L
A e '_

.‘..

. Load multiple models on every GPU . Spike in requests for blue model
. Load is evenly distributed between all GPUs . Each GPU can run the blue model concurrently
. Metrics to indicate time to scale up
0 GPU utilization
o Power usage
0 Inference count
o Queue time
o Number of requests/sec 290 X e
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STREAMING INFERENCE REQUESTS

New Streaming API

Based on the correlation ID, the
audio requests are sent to the
appropriate batch slot in the
sequence batcher®

*Correct order of requests is
assumed at entry into the endpoint
Note: Corr = Correlation ID

Corr1 Corr1 Corr1 Corr1 Corr2 Corr2 Corr3 Corr3
Inference Request

NEW
DeepSpeech2 Sequence Batcher
Per Model Request Queues

DeepSpeech?2 Corr 2 Corr 2

Corr 3 Corr 3 Corr2 Corr2 Corr 3 Corr 3

Wavel2letter

NEW
l I I l Wav2Letter Sequence Batcher
Corr 1 Corr 1 Corr 1 Corr 1

Corr 1Corr 1Corr 1Corr 1

Framework

Inference
Backend
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MODEL ENSEMBLING

Pipeline of one or more models and the
connection of input and output tensors between
those models

Use for model stitching or data flow of multiple
models such as data preprocessing — inference
— data post-processing

Collects the output tensors in each step,
provides them as input tensors for other steps
according to the specification

Ensemble models will inherit the characteristics
of the models involved, so the meta-data in the
request header must comply with the models
within the ensemble

IMAGE

'

i

RAW_IMAGE

Y

image_preprocess _model

'

PREPROCESSED_OUTPUT

$

preprocessed _image

1

.

FORMATTED_IMAGE

FORMATTED_IMAGE

classification_model segmentation_model
CLASSIFICATION_OUTPUT SEGMENTATION_OUTPUT
CLASSIFICATION SEGMENTATION

292
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perf_client TOOL

po= Datch Latency Imkcrozeconcs)
l_'lcm'.:‘cndlrdm.-a:nosé-\'cr'..-'en:i‘-x'cc. '.-'cr.-&':.'um'.ic'\':fL-:mpm:ll.‘lcmﬁc-:. lotal m _ ‘ . - _—— , m i
:.f —1 :r: h 1522 ) 2343 o
25 104 706 S508 2593 7 3518
22 126 756 522 2140 7 3530 8
17 15 909 58 2158 7 3778 7
. U 1 <Ly (1} 2247 2010 5
Measures throughput (inf/s) and 0w oo oo 2 .; - I I
latency under varying client loads == ; I I I l I
t1 255 1352 G987 2T 7 416 -
pert_cliens Modes TR A | T
1. Specify how many concurrent % . : » ;
. . L 374 1VE 451 s {
outstanding requests and it :

will find a stable latency and
throughput for that level

2. Generate throughput vs . d

latency curve by increasing h
the request concurrency until . e
a specific latency or ) :
concurrency limit is reached

Generates a file containing CSV

output of the results e e

Easy steps to help visualize the

throughput vs latency tradeoffs
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ALL CPU WORKLOADS SUPPORTED

é..;:;.'-::mon -
Triton relies on framework backends (Tensorflow, Caffe2, ————
PyTorch) to execute the inference request on CPU S ooy
Support for Tensorflow and Caffe2 CPU optimizations using Intel M
MKL-DNN library |
Allows frameworks backends to make use of multiple CPUs and Iforoncn Sarver
cores L e

Benefit from features:
Multiple Model Framework Support
Dynamic batching omtind 3
Custom backend IR ciamcaslare
Model Ensembling
Audio Streaming API
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TRITON INFERENCE SERVER COLLABORATION
WITH KUBEFLOW

What is Kubeflow?

Open-source project to make ML workflows on Kubernetes simple, portable, and
scalable

Customizable scripts and configuration files to deploy containers on their chosen
environment

re

Easily set up an ML stack/pipeline that can fit into the majority of enterprise KUbeﬂOw
datacenter and multi-cloud environments

Problems it solves

How it helps Triton Inference Server

Triton Inference Server is deployed as a component inside of a production workflow 1 = — .
to J— —_—
Optimize GPU performance L .

Enable auto-scaling, traffic load balancing, and redundancy/failover via
metrics

DEEP

For a more detailed explanation and step-by-step guidance for this collaboration, refer to this : LEARNING
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https://github.com/kubeflow/kubeflow/tree/master/kubeflow/nvidia-inference-server

TRITON INFERENCE SERVER HELM CHART

Simple helm chart for installing a single instance of the NVIDIA Triton Inference Server

Helm: Most used “package manager” for Kubernetes

Usage percentage vs. Project

B Usage percentage

We built a simple chart (“package”) for the Triton
Inference Server.

Project

You can use it to easily deploy an instance of the server.

It can also be easily configured to point to a different
image, model store, ...

OpenShift templates

https://github.com/NVIDIA/tensorrt-inference-
server/tree/b6b45ead074d57e3d18703b7¢c0273672c5e92893/deploy/single server 40%

Usage percentage
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https://github.com/NVIDIA/tensorrt-inference-server/tree/b6b45ead074d57e3d18703b7c0273672c5e92893/deploy/single_server
https://github.com/NVIDIA/tensorrt-inference-server/tree/b6b45ead074d57e3d18703b7c0273672c5e92893/deploy/single_server

Part 3: Production Deployment

* Model Selection
| * Post-Training Optimization
N  Product Quantization
* Knowledge Distillation
. f * Model Code Efficiency
s * Model Serving
- . + Building the Application

: « Exporting the Model
’ » Hosting the Model
] ’ * Server Performance
. * Using the Model



APPLICATION != SINGLE
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THE APPLICATION

Typically composed of many components

ASR NLU

Language Model

( Search Ranking

Visual Search

( Autocorrect

Query Search
“What date is the

Chinese New Year?”

Machine Translation

Audio Feature Extraction Acoustic Model

ENRH L&

TTS

<
<

Audio Voice Encoder Speech Synthesis
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NVIDIA RIVA

Fully Accelerated Framework for Multimodal Conversational Al Services

Riva

video

A

audio

A

Multi-Speaker JESSICA. Wit will you have ready for Wednesdsy?
Transcription DOUGLAS: | expect tohave exrly desigs of $e packagng.

»
>

NVIDIA GPU CLOUD NVIDIA Al TOOLKIT

JESSICA Grem.

End-to-End Multimodal Conversational Al Services ﬁ

Pre-trained SOTA models-100,000 Hours of DGX

Retrain with NeMo

Interactive Response - 150ms on A100 versus 25sec on CPU

Deploy Services with One Line of Code
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PRETRAINED MODELS AND Al TOOLKIT

Train SOTA Models on Your Data to Understand your Domain and Jargon

g

100+ pretrained models in NGC v
SOTA models trained over 100,000 hours on NVIDIA DGX™ Pretrained o
models * &€ - P > ¢

t’
Retrain for your domain using NeMo & TAO Toolkit

|
Deploy trained models to real-time services using Helm charts Model Training Model Ready to Deploy

‘ Fine Tuning Validation in NVIDIA Riva

_ustomer Data

______
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MULTIMODAL SKILLS

Build new skills by fusing services for ASR, NLU, TTS, and CV

Reference skills include:

/"

Multi-speaker transcription
Chatbot
Look-to-talk

Dialog manager manages multi-user and multi-context scenarios P/ d
g g g ey ../_ .

L 1 reat!
’ sl L)

Shirley : How 15 the weather n San Francisco.

t 1t 1s currently 66 degrees and sunny in San Frane

Multimodal application with multiple users and contexts
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BUILD CONVERSATIONAL Al SERVICES

Optimized Services for Real Time Applications

Build applications easily by connecting
performance tuned services

Task specific services include:

* ASR

* Intent Classification
+ Slot Filling

* Pose Estimation

» Facial Landmark Detection

Services for streaming & batch usage

Build new services from any model in ONNX format

Access services for gRPC and HTTP endpoints

https://ngc.nvidia.com/catalog/model-scripts/nvidia:jasper for trtis

Intent

Riva

Dialog Manager

Riva Client
Applications

n

[ ]

Riva Al services
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https://ngc.nvidia.com/catalog/model-scripts/nvidia:jasper_for_trtis

DEPLOY MODELS AS REAL-TIME SERVICES

One Click to Create High-Performance Services from SOTA Models

Deploy models to services in the cloud, data
center, and at the edge

Single command to set up and run the entire Riva application
through Helm charts on Kubernetes cluster

Customization of Helm charts for your setup and use case.

One click deployment
—>

TensorRT
Triton Inference Server
Riva API Server

Riva SERVICES
NLU

Vision

Speech

h] \l' \',','.I.-":..‘-.

P = :
i & EEE e 28 «

'

SE .

Language Decoder Acoustic Feature
Model Model Extraction

v

._H .='.ﬁ"-' -

— ™ et

NLU &
Recommenders Synthesis Encoder

Helm command to deploy models to production

305 <X
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RIVA SAMPLES

NVIDIA

Howekoome o JANS westher serece Maw ces | hep pos?

How s U saalret Lodey? 5

ForSan arcece ls

M is Partly consdy In S Foencoco sl S momesl The lersgersdinwe & e ghl dayees tiw

Pramid ly 13 sewerly 00 pescenl and the wind specd B 2000 mikes sef hou

JESSICA: What will you Furve ready for Wednesday?

15 FG0ing % ok toma now n Sava Claa? 6

DOUGLAS: | eapexct %0 harve erly designs of $e packagng.

0 S0 Cuna 120omoa 15 not eapoctd rein

Visual Diarization Look To Talk Virtual Assistant

Transcribe multi-user multi-context conversations Wait for gaze before triggering Al assistant End-to-end conversational Al system
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Part 3: Production Deployment

* Model Selection

* Post-Training Optimization
* Product Quantization

* Knowledge Distillation

* Model Code Efficiency

* Model Serving

» Building the Application

* Exporting the Model
* Hosting the Model

* Server Performance
* Using the Model
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