
Linaro Forge
Debugging and Optimising Parallel Codes

Rudy Shand - Field Application Engineer

Agenda
• 10:00 - 11:00 Lecture on Debugging with DDT
• 11:00 - 12:30 DDT Debugging Hands-on session
• 12:30 - 13:00 Break
• 13:00 - 14:00 Lecture on Profiling with MAP
• 14:00 - 15:30 MAP Profiling Hands-on session
• 15:30 - 16:00 Break
• 16:00 - 17:00 Try DDT / MAP with own codes

A little about myself
● Graduated from University of Reading

● Cybernetics and Electronic Engineering
● ML, Maths, Biology, Physics - No HPC 

● Most working career in debuggers and performance tools
● Arm DS-5 debugger and Streamline Performance Analyser
● Compilers, Models, Embedded devices, mobile
● In Embedded - both in a developer and quality role

● Joined the Arm Forge team (Now Linaro Forge)
● Quality Lead / Field Application Engineer
● 6 years in HPC, 11 years overall in debug and profiling tools

HPC Development Solutions from Linaro
Best in class commercially supported tools for Linux and
high-performance computing (HPC)

Debug
Linaro DDT

Profile
Linaro MAP

Analyse
Linaro

Performance Reports

Linaro Forge

Performance Engineering for any architecture, at any scale

Linaro Forge

The de-facto standard for HPC development
● Most widely-used debugging and profiling suite in HPC
● Fully supported by Linaro on Intel, AMD, Arm, Nvidia, AMD GPUs, etc.

State-of-the art debugging and profiling capabilities
● Powerful and in-depth error detection mechanisms (including memory debugging)
● Sampling-based profiler to identify and understand bottlenecks
● Available at any scale (from serial to exascale applications)

Easy to use by everyone
● Unique capabilities to simplify remote interactive sessions
● Innovative approach to present quintessential information to users

An interoperable toolkit for debugging and profiling

DistromacOS Windows

Supported Platforms

Arm (AArch64)AMD/Intel (x86-64) Power8 (ppc64le)

RHEL 7+ SLES 15 Ubuntu 20.04+

Open MPI MPICH IBM Spectrum MPIHPE MPIIntel MPI …

CPU Architecture

AMD ROCm NVIDIA CUDA GPU Accelerator

GCCACfLCCE NVHPC IBM XLIntel Compiler ROCm Compiler

MPISlurm PALS

Python

Bug classification

● Crashes
● One or more processes in application terminates
● Most common and generally easiest to solve  

● Hangs
● Deadlocks - Stuck waiting for something that never happens
● Livelocks - Making local progress, but no global progress 

● Race conditions
● One or more threads accessing the same data at the same time in non deterministic way
● Shows up as incorrect answer or sometimes crashes

Linaro DDT Debugger Highlights

The scalable print alternative Stop on variable change Static analysis warnings on
code errors

Detect read/write beyond array
bounds

Detect stale memory
allocations

Core files

● View core files for CPU’s
● View core files for GPU’s

Memory debugging menu in Linaro DDT

When manual linking is used,
untick “Preload” box

Multi-dimensional Array Viewer
What does your data look like at runtime?

View arrays
● On a single process
● Or distributed on many ranks
● Display the array values from tables[0:11][0:11]

Use metavariables to browse the array
● Example: $i and $j
● Metavariables are unrelated to the variables in your program
● The bounds to view can be specified
● Visualise draws a 3D representation of the array

Data can also be filtered
● “Only show if”: $value>0 for example $value being a specific

element of the array

DDT: Production-scale debugging
Isolate and investigate faults at scale

Who misbehaved?
● Merge stacks from processes and threads
● Sparklines comparing data across processes
● Which MPI rank

Where is the problem?
● Integrated source code editor
● Dynamic data structure visualization

How did it happen?
● Parse diagnostic messages
● Trace variables through execution

Why did it happen?
● Unique “Smart Highlighting”
● Experiment with variable values

Starting a debug session

GPU Debugging
● Support both AMD and Nvidia GPUs
● Debug simultaneously on GPU and CPU

● Look and feel exactly the same
● Main Features work in GPU  

● Key (additional) GPU features:
● Kernel Progress View
● GPU thread in parallel stack view
● GPU Thread Selector
● GPU Device Pane

● For NVIDIA’s nvcc compiler, kernels must be
compiled with the -g -G flags 

● ROCm GPU Debugging requires rocgdb to be
available in your environment.

● For the hipcc compiler, kernels must be compiled
with the -g flag

Python Debugging
• Debug Features

• Sparklines for Python variables
• Tracepoints
• MDA viewer
• Mixed language support 

• Improved Evaluations:
• Matrix objects
• Array objects
• Pandas DataFrame
• Series objects 

• Python Specific:
• Stop on uncaught Python exception
• Show F-string variables in “Current Line” display
• Mpi4py, NumPy, SciPy

ddt --connect mpirun -n 8 python3
%allinea_python_debug% ./mmult.py

Run DDT in offline mode
Run the application under DDT and halt or report when a failure occurs

You can run the debugger in non-interactive mode
● For long-running jobs / debugging at very high scale
● For automated testing, continuous integration…

To do so, use following arguments:
● $ ddt --offline --output=report.html mpirun ./jacobi_omp_mpi_gnu.exe

○ --offline enable non-interactive debugging
○ --output specifies the name and output of the non-interactive debugging session

● Html
● Txt

○ Add --mem-debug to enable memory debugging and memory leak detection

ddt --offline -o jacobi_omp_mpi_gnu_debug.txt \

 --trace-at _jacobi.F90:83,residual \

 srun ./jacobi_omp_mpi_gnu.exe

Report output

The Forge GUI and where to run it

mydesktop mycluster-login

Compute Nodes

SSH

qsub

DDT provides a powerful GUIs that can be run in a variety of configurations.

Hands on Setup
Remote System
Host coolmuc2
 Hostname lxlogin1.lrz.de
 user <username>

/lrz/sys/courses/hlin1w23/linaro/linaro-forge-training.tar.gz
 
module load ddt/23.1.1  

Local Machine
Install Forge https://www.linaroforge.com/downloadForge 

Forge userguide
 

https://www.linaroforge.com/downloadForge
https://docs.linaroforge.com/23.1/html/forge/forge/index.html

Remote connection to CoolMUC-2

Explore a core file

Hands on session
System Info
https://doku.lrz.de/coolmuc-2-11484376.html
CoolMUC-2: 812 nodes:

• 28-core Intel Hazwell processor per node
• 64GB DDR4 memory per node
• cm2_tiny partition

https://doku.lrz.de/running-parallel-jobs-on-the-linux-cluster-11484078.html
 Interactive Session:

• module load salloc_conf/cm2_tiny
• salloc -J linaro-hands-on --partition=cm2_tiny --time 00:30:00 --reservation=hlin1w23

Scripting:
• <linaro-forge-training>/slurm-coolmuc2.qtf
• <linaro-forge-training>/submit-job.sh

https://doku.lrz.de/coolmuc-2-11484376.html
https://doku.lrz.de/running-parallel-jobs-on-the-linux-cluster-11484078.html

Hands on session

Build and run debug examples
Use default Intel modules

build deadlock, simple and split programs 
cd <linaro-forge-training>/correctness/debug
make -f Makefile  

run simple example with ddt
ddt --connect mpiexec -n 4 ./simple
 
offline-debugging 
sbatch submit-job.sh

Linaro Performance tools

Gather a rich set of data
● Analyses metric around CPU, memory, IO, hardware counters, etc.
● Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness
● Analyses data and reports the information that matters to users
● Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows
● Define application behaviour and performance expectations
● Integrate outputs to various systems for validation (eg. continuous integration)
● Can be automated completely (no user intervention)

Characterize and understand the performance of HPC application runs

Relevant advice  
to avoid pitfalls

Accurate and
Astute insight

Commercially supported
by Linaro

Linaro Performance Reports
A high-level view of application performance with “plain English” insights

Linaro Performance Reports Metrics
Lowers expertise requirements by explaining everything in detail right in the report

Multi-threaded
parallelism

SIMD
parallelism

Load
imbalance

OMP
efficiency
System
usage

Bugs
Correct application

Analyze before you optimize
Measure all performance aspects.
You can’t fix what you can’t see.
Prefer real workloads over artificial tests.

I/O
Discover lines of code
spending a long time in I/O.
Trace and debug slow access
patterns.

Workloads
Detect issues with balance.
Slow communication calls and
processes.
Dive into partitioning code.

Communication
Track communication performance.

Discover which communication calls
are slow and why.

Memory
Reveal lines of code bottlenecked by
memory access times.
Trace allocation and use of hot data
structure

Cores
Discover synchronization
overhead and core utilization
Synchronization-heavy code and
implicit barriers are revealed

Vectorization
Understand numerical intensity
and vectorization level.
Hot loops, unvectorized code and
GPU performance reveleaed

Verification
Validate corrections and
optimal performance

The Performance Roadmap
Optimizing high performance applications

Improving the efficiency of your parallel
software holds the key to solving more
complex research problems faster.

This pragmatic, 9 Step best practice guide,
will help you identify and focus on
application readiness, bottlenecks and
optimizations one step at a time.

Key : Linaro Forge  
Linaro Performance Reports

Performance Improvement

© 2008–2018 by the MIT 6.172 Lecturers

i, j, k
i, j, k

i, k, j
i, k, j

MAP Capabilities
MAP is a sampling based scalable profiler
● Built on same framework as DDT
● Parallel support for MPI, OpenMP, CUDA
● Designed for C/C++/Fortran

Designed for ‘hot-spot’ analysis
● Stack traces
● Augmented with performance metrics

Adaptive sampling rate
● Throws data away - 1,000 samples per process
● Low overhead, scalable and small file size

Linaro MAP Source Code Profiler Highlights

Find the peak memory use Fix an MPI imbalance Remove I?O bottleneck

Improve memory access Restructure for vectorizationMake sure OpenMP regions
make sense

ROCm AMD GPU Profiling
Profile
● Ran for 6s, taking 300 samples per process
● Able to bring up metadata of the profile
● Mixed CPU [green] / GPU [purple] application
● CPU time waiting for GPU Kernels [purple]
● GPU Kernels graph indicating Kernel activity

 
GUI information
● GUI is consistent across platforms
● Zoom into main thread activity
● Ranked by highest contributors to app time

Python Profiling
19.0 adds support for Python
● Call stacks
● Time in interpreter

Works with MPI4PY
● Usual MAP metrics

Source code view
● Mixed language support

map --profile jsrun -n 2 python3 ./diffusion-fv-2d.py

Note: Green as operation is on numpy
array, so backed by C routine, not
Python (which would be pink)

Toggle percentage-time and core-time in MAP
Use for direct comparisons between runs at
the same scale (process/core counts).

● Easily determine if a change has made a
portion of code faster, slower, or largely
unchanged. 

● Performance report automatically includes
both percentage-time and core time  

● Core-time is an estimation, but should be
very close to the application run time

Libraries tab in MAP
● List time spent in shared libraries (left)
● List entry point functions into the selected library (right)

Use to identify the libraries that would benefit the most from optimisation or replacement
(e.g. alternative maths library or memory management implementation).

Custom metric example: MUSCLE2 & LU error terms
https://github.com/arm-hpc/custom-metrics

● Customized application
instrumentation, eg, NPB LU

● Record error terms of solve
● Plot over time and step count for

optimisation

Matrix Multiplication example
Build and run matrix multiplication example
 
https://docs.linaroforge.com/23.1.1/html/forge/worked_examples_appendix/mmult/analyze.html
 
Build C and Fortran Examples
export MPIF90=mpif90
make -f mmult.makefile
 
Build Python Examples
module load python
python -m venv run-mmult
. run-mmult/bin/activate  
pip3 install numpy=='1.23.5' scipy mpi4py 
make -f mmult_py.makefile
 
Debug using UI
 ddt --connect mpirun -n 8 ./mmult_c -s 3072
ddt --connect python3 %allinea_python_debug% ./mmult.py -s 3072
 
Offline profile
sbatch submit-job.sh

https://docs.linaroforge.com/23.1.1/html/forge/worked_examples_appendix/mmult/analyze.html

~

Thank you
rudy.shand@linaro.org

mailto:rudy.shand@linaro.org

