

MODULE OVERVIEW

OpenACC Directives

The parallel directive

The kernels directive

The loop directive

Fundamental differences between the kernels and parallel directive

Expressing parallelism in OpenACC

OpenACC

OPENACC SYNTAX

OpenACC

OPENACC SYNTAX

Syntax for using OpenACC directives in code

#pragma acc directive clauses I$acc directive clauses
<code> <code>

= A pragma in C/C++ gives instructions to the compiler on how to compile the code.
Compilers that do not understand a particular pragma can freely ignore it.

= A directive in Fortran is a specially formatted comment that likewise instructions the
compiler in it compilation of the code and can be freely ignored.

= “acc” informs the compiler that what will come is an OpenACC directive
= Directives are commands in OpenACC for altering our code.

= Clauses are specifiers or additions to directives.
OpenACC

OPENACC PARALLEL DIRECTIVE

OpenACC

OPENACC PARALLEL DIRECTIVE

Explicit programming

Parallel Hardware

= The parallel directive instructs the compiler to
create parallel gangs on the accelerator

| = Gangs are independent groups of worker

threads on the accelerator
W = The code contained within a parallel directive

<sequential code> is executed redundantly by all parallel gangs

#pragma acc parallel

{

<sequential code>

}

OpenACC

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel
{ gang gang

When encountering the
parallel directive, the
compiler will generate

gang gang
1 or more parallel
gangs, which execute
redundantly.
} gang gang

OpenACC

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

Q

o)

(®)
—

loop

#pragma acc parallel
{ gang gang

loop

loop
loop

for(int 1 = 0; i < N; i++

{ gang gang

// Do Something

loop
loop

This loop will be gang gang

} executed redundantly
OpenACe on each gang

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel
{ gang gang

for(int 1 = 0; i < N; i++

{ gang gang

// Do Something

This means that each gang gang

J gang will execute the
OpenACC entire loop

OPENACC PARALLEL DIRECTIVE

Parallelizing a single loop

?pragma ZIEE el LG = Use a parallel directive to mark a region of
#pragma acc loop code where you want parallel execution to occur
f int 1 =0; 1 < N; 1 : L :
Oar[(;? =1 : ' 1++) = This parallel region is marked by curly braces in
) ’ C/C++ or a start and end directive in Fortran
= The loop directive is used to instruct the

compiler to parallelize the iterations of the next

! llel
$acc paralle loop to run across the parallel gangs

I$acc loop
doi=1, N
a(i) =

end do

I$acc end parallel
OpenACC

OPENACC PARALLEL DIRECTIVE

Parallelizing a single loop

This pattern is so common that you can do all of

#pragma acc parallel loop this in a single line of code
foar[(il?t; NI NS 14+) = |n this example, the parallel loop directive
- applies to the next loop
= This directive both marks the region for parallel
execution and distributes the iterations of the
loop.
I$acc parallel loop
doa (11; L N = When applied to a loop with a data dependency,
end do - parallel loop may produce incorrect results

OpenACC

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel

{

#pragma acc loop

for(int 1 = 9; 1 < N; i++)
{
// Do Something
} The loop directive
informs the compiler
} which loops to

parallelize.
OpenACC

L

I

1

OPENACC PARALLEL DIRECTIVE

Parallelizing many loops

#pragma acc parallel loop
for(int 1 = 9; 1 < N; i++)
a[i] = 9;

#pragma acc parallel loop
for(int j = 0; j < M; j++)
b[j] = ©;

OpenACC

To parallelize multiple loops, each loop should
be accompanied by a parallel directive

Each parallel loop can have different loop
boundaries and loop optimizations

Each parallel loop can be parallelized in a
different way

This is the recommended way to parallelize
multiple loops. Attempting to parallelize multiple
loops within the same parallel region may give
performance issues or unexpected results

OPENACC LOOP DIRECTIVE

OpenACC

OPENACC LOOP DIRECTIVE

Expressing parallelism

= Mark a single for loop for parallelization

= Allows the programmer to give additional HPIEEE) SEE LewE .
information and/or optimizations about the for(int i = 0; i < N; i++)

loop // Do something

= Provides many different ways to describe the
type of parallelism to apply to the loop

I$acc loop

= Must be contained within an OpenACC dOI iD= ; Nth'
compute region (either a kernels or a parallel - 0 Somerhing

region) to parallelize loops

OpenACC

OPENACC LOOP DIRECTIVE

Inside of a parallel compute region

#pragma acc parallel

{
for(int 1 = 9; 1 < N; i++)
ali] = &;
#pragma acc loop
for(int j = 95 j < N; j++)
alj]++;
}

OpenACC

In this example, the first loop is not marked with
the loop directive

This means that the loop will be “redundantly
parallelized”

Redundant parallelization, in this case, means
that the loop will be run in its entirety, multiple
times, by the parallel hardware

The second loop is marked with the loop
directive, meaning that the loop iterations will be
properly split across the parallel hardware

OPENACC LOOP DIRECTIVE

Inside of a kernels compute region

#pragma acc kernels

{
#pragma acc loop
for(int 1 = 9; 1 < N; i++)
a[i] = 9;

#pragma acc loop
for(int j = 95 j < M; j++)
b[j] = ©;
}

OpenACC

= With the kernels directive, the loop directive is
implied

= The programmer can still explicitly define loops
with the loop directive, however this could affect
the optimizations the compiler makes

= The loop directive is not needed, but does allow
the programmer to optimize the loops
themselves

OPENACC LOOP DIRECTIVE

Parallelizing loop nests

#pragma acc parallel loop You are able to include multiple loop directives

for(int i = 0; i < N; i++){ to parallelize multi-dimensional loop nests
1 #pragma acc loop
oy for(int J = @; J < M J++){ = On some parallel hardware, this will allow you to
O) alill3l =@ express more levels of parallelism, and increase
} performance further

= Other parallel hardware has difficulties
!$acc parallel loop expressing enough parallelism for multi-

do 1 =1, N dimensional loops
I$acc loop
do 3 =1, M : : : .
aJ(i,j) = = In this case, inner loop directives may be
end do ignored
end do

OpenACC

OPENACC KERNELS DIRECTIVE

OpenACC

OPENACC KERNELS DIRECTIVE

Compiler directed parallelization
CPU Parallel Hardware

\ . = The compiler will analyze the loops and parallelize
XAt A those it finds safe and profitable to do so

= The kernels directive instructs the compiler to
search for parallel loops in the code

\
<sequential code> . . : :
q = The kernels directive can be applied to regions

#pragma acc kernels containing multiple loop nests
{

<for loop>

<for loop>
}

OpenACC

OPENACC KERNELS DIRECTIVE

Parallelizing a single loop

#pragma acc kernels = In this example, the kernels directive applies to
for(int i = 9; j < N; i++) the next for loop
a[i] = ©;

The compiler will take the loop, and attempt to
parallelize it on the parallel hardware

I$acc kernels = The compiler will also attempt to optimize the
doi=1, N loop

a(i) =
end do = If the compiler decides that the loop is not
I$acc end kernels parallelizable, it will not parallelize the loop

OpenACC

OPENACC KERNELS DIRECTIVE

Parallelizing many loops

#pragma acc kernels

{

+ for(int 1 = ©0; 1 < N; i++)

+ al[i] = o;

%) [1]

S~~~

@) for(int j = 9; j < M; j++)
b[J] = ©;

}

I$acc kernels
doi=1, N
a(i) =

end do

d0j=,

b(j) =
end do

I$acc end kernels

M

OpenACC

In this example, we mark a region of code with
the kernels directive

The kernels region is defined by the curly
braces in C/C++, and the !$acc kernels and
I$acc end kernels in Fortran

The compiler will attempt to parallelize all loops
within the kernels region

Each loop can be parallelized/optimized in a
different way

EXPRESSING PARALLELISM

Compiler generated parallelism

T

for(int 1 = 0; i < N; i++)
{

// Do Something lllllll
}

for(int 1 = 9; 1 < M; i++)
{
// Do Something Else
}
With the kernels

} directive, the loop
openacc directive is implied.

EXPRESSING PARALLELISM

Compiler generated parallelism
Each loop can have a different number of

#pragma acc kernels gangs, and those gangs can be
{ organized/optimized completely differently.
for(int 1 = 9; 1 < N; i++)
{
// Do Something
}
for(int 1 = 9; 1 < M; i++)
{

// Do Something Else

This process can happen
} multiple times within the
OpenACC kernels region.

OPENACC KERNELS DIRECTIVE

Fortran array syntax

;f"f“)x:ke'””els = One advantage that the kernels directive has
b(:) = over the parallel directive is Fortran array syntax
c(:) = a(:) + b(:)

1pacc end kernels = The parallel directive must be paired with the

loop directive, and the loop directive does not
recognize the array syntax as a loop

= The kernels directive can correctly parallelize
the array syntax

I$acc parallel lo

OpenACC

KERNELS VS PARALLEL

Kernels Parallel

= Compiler decides what to parallelize = Programmer decides what to parallelize
with direction from user and communicates that to the compiler

= Compiler guarantees correctness = Programmer guarantees correctness

= Can cover multiple loop nests = Must decorate each loop nest

ully optimized, both will give similar performanc

OpenACC

COMPILING PARALLEL CODE

OpenACC

COMPILING PARALLEL CODE (PGl)

3 |#pragma acc parallel loop
& [for(int 1 = 0; 1 < N; i++)

: al[i] = ©;
‘$ nvc -fast|-acc=multicore| -Minfo=accel main.c
FEEDBACK

main:

7, Generating Multicore code|
8, #pragma acc loop gang |

OpenACC

COMPILING PARALLEL CODE (PGl)

& #pragma acc kernels
M for(int i = 0; i < N; i++)

: al[i] = ©;
‘$ nvc -fast -acc=multicore -Minfo=accel main.c
FEEDBACK

main:
8, |Loop is parallelizable
Generating Multicore code
8, #pragma acc loop gang

OpenACC

COMPILING PARALLEL CODE (PGl)

##pragma acc kernels
for(int i = 1; i < N; i++)
a[i] = a[i-1] + a[i];

Non-parallel loop

FEEDBACK

‘$ nvc -fast -acc=multicore -Minfo=accel main.c

main:

8, |Loop carried dependence of a-> prevents parallelization
Loop carried backward dependence ot a-> prevents vectorization

OpenACC

COMPILING PARALLEL CODE (PGl)

: For(lnt i= 1, i < N; i++)

a[i] = a[i-1] + a[i]; Non-parallel loop

‘$ nvc -fast -acc=multicore -Minfo=accel main.c

FEEDBACK

main:
7, lggnerating Multicore code
8, #pragma acc loop gang

OpenACC

KEY CONCEPTS

By end of this module, you should now understand

The parallel, kernels, and loop directives

The key differences in functionality and use between the kernels and parallel
directives

When and where to include loop directives

How the parallel and kernel directives conceptually generate parallelism

OpenACC

Guides e Talks e Tutorials e Videos ® Books e Spec e Code Samples e Teaching Materials e Events e Success Stories e Courses e Slack e Stack Overflow

OPENACC RESOURCES

FREE
Compilers

PGl

Communi;y‘
EDITION

¥ slack

https://www.openacc.org/community#slack

OpenACC

e, Less Programming

Resources
https://www.openacc.org/resources

Oponice

Resources

B Guides & Books

Introduction to OpenACC Quick Guides Q Paraliel Programming with OpenACC
+ CoendCC Programming and Best Praclces Guide
 OpORACC 25 4P Roteronco Carg

B Tutorials
a ragramming Massivety Paraliel Processors, Third

Progs
Edition: A Hands-on Approach

Compilers and Tools
https://www.openacc.org/tools

Downloads & Tools

Openacc compilers,

Commercial Compilers Open Source Compilers

y Gon
{.:I] EREETETEOu C‘%

Compilers witl
OpenACC Directives « penACC

=RaNy PG'

Success Stories
https://www.openacc.org/success-stories
OpenACC

Success Stories

are sharing their results and experiences.

>Watch more OpenACC Vides

Events
https://www.openacc.org/events

Events

The OpenACC C g throughout the year. talks =

around the world to

User Group.

Hackathons

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.pgroup.com/products/community.htm
https://www.openacc.org/community#slack

	MODULE three:�openacc directives
	MODULE OVERVIEW
	Openacc syntax
	Openacc syntax
	Openacc parallel directive
	Openacc parallel directive
	Openacc parallel directive
	Openacc parallel directive
	Openacc parallel directive
	Openacc parallel directive
	Openacc parallel directive
	Openacc parallel directive
	Openacc parallel directive
	Openacc loop directive
	Openacc loop directive
	Openacc loop directive
	Openacc loop directive
	Openacc loop directive
	Openacc kernels directive
	Openacc kernels directive
	Openacc kernels directive
	Openacc kernels directive
	Expressing parallelism
	Expressing parallelism
	Openacc kernels directive
	Kernels vs parallel
	Compiling parallel code
	Compiling parallel code (PGI)
	Compiling parallel code (PGI)
	Compiling parallel code (PGI)
	Compiling parallel code (PGI)
	KEY concepts
	THANK YOU�
	OPENACC Resources

