
FUNDAMENTALS OF DEEP
LEARNING FOR MULTIPLE GPUS

CONTEXT: WHY USE MULTIPLE GPUS?

IMPROVING ACCURACY

• Over the last few years, the largest trained model has increased in size by over
1000x, from a few hundred million parameters to half a trillion (and beyond)
parameters

• These increases on model size were driving by increasing datasets

• They also led to in model quality, suggesting that this trend will continue

• Indeed researchers have identified three main eras of AI computing, requiring
different FLOPs

DATASET SIZE VS QUALITY

Hestness, J., et al. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv: 1712.00409

https://arxiv.org/abs/1712.00409

DATASET SIZE VS QUALITY

• Trend across different domains
• Translation

• Language Models

• Character Language Models

• Image Classification

• Attention Speech Models

Hestness, J., et al. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv: 1712.00409

https://arxiv.org/abs/1712.00409

SUBLINEAR GROWTH OF MODELS TOO

Hestness, J., et al. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv: 1712.00409

https://arxiv.org/abs/1712.00409

ML COMPUTATIONAL DEMANDS OVER TIME

TRENDS IN COMPUTATIONAL POWER

TRENDS IN COMPUTATIONAL POWER

1980 1990 2000 2010 2020

102

103

104

105

106

107

Single-threaded perf

1.5X per year

1.1X per year
Transistors
(thousands)

GPU-Computing perf
1.5X per year 1000X

By 2025

For some workloads: O(100 years) on a dual CPU server O(30 Days) DGX H100

SCIENTIFIC METHOD
What does it take for leveraging ML?

Model

Train

Evaluate
y

x

w

1

b

y = w*x + b

SHORT ITERATION TIME IS FUNDAMENTAL FOR
SUCCESS

1740
264

60 48
15

3,7
1,25 1,17 0,319

0,1
1

10
100

1000
10000

Microsoft
(2015-12)

Preferred
Networks
(2017-02)

Facebook
(2017-06)

IBM (2017-
08)

Preferred
Networks
(2017-11)

Sony
(2018-11)

Fujitsu
(2019-03)

Fujitsu
(2019-11)

NVIDIA
(4096
A100 -
80GB)

ResNet-50 training time in minutes

IT ALL STARTS WITH TRAINING …

BRIEF REVIEW OF NEURAL NETWORKS
TRAINING

MACHINE
LEARNING

WITH (DEEP)
NEURAL

NETWORKS

MACHINE
LEARNING

WITH (DEEP)
NEURAL

NETWORKS

MACHINE
LEARNING

WITH (DEEP)
NEURAL

NETWORKS

FORWARD OPERATIONS

FORWARD OPERATIONS
a b c j
d e f k
g h i l

1 2 3
4 5 6
7 8 9

1 2 3 4 5 6 7 8 9 a
b
c
d
e
f
g
h
i

b
c
j
e
f
k
h
i
l

Duplication of
elementsBuilt of special matrices causes

overhead

Convolutions as
Matrix Multiplication

Attention Layers are
also Matrix
Multiplications

BACK
PROPAGATION

AND
GRADIENT
DESCENT

Linear regression y = w * x + b (I.e., a NN of a single
neuron, and identity, f(x) = x, as activation function)

Loss function defined as C = (a – y)2

How does C change with w and b variations?

compute the ratio at with C changes with
changes in w and b

use this ratio to modify then w and b in order to
move C towards a minimum

x w

b

𝞼 (w * x + b) = 𝞼 (z) if we define z as w * x + b
Σ |
𝞼 a (activation)

COMPUTING THE GRADIENT

C

y
a

z

𝞼 (z) = z

(a-y)2

x

w

b

Fixed

w1w2

z2z1

a2a1

C1C2

!"
!#

= !$
!#

!%
!$

!"
!%
= 2𝑥(𝑎 − 𝑦)

wx + b

!$
!#

= x
!%
!$
= 1

!"
!%
= 2(a-y)

!"
!&
= !$

!&
!%
!$

!"
!%
= 2(𝑎 − 𝑦)

!$
!&
= 1

!%
!$
= 1

!"
!%
= 2(a-y)

Gradient Vector
𝜕𝐶
𝜕𝑤
𝜕𝐶
𝜕𝑏

= 2𝑥(𝑎 − 𝑦)
2(𝑎 − 𝑦)

Gradient with a single input, that generates prediction 𝑎

COMPUTING THE GRADIENT

C

y1,
y2

a

z

𝞼 (z)
= z

x1,
x2

w

b

Fix
ed

w
2

z
2

z
1

a
2

a
1

C
1

C
2

!"
!#

= '
(
∗ (2𝑥 𝑎 − 𝑦' +

2𝑥 𝑏 − 𝑦()

wxi +
b

Gradient with two inputs that generates
predictions:
𝑎 and 𝑏 w

2

'
(
∗ (𝑎 − 𝑦((+ (𝑏 − 𝑦()()

!"
!&
= '

(
∗ (2 𝑎 − 𝑦' +

2 𝑏 − 𝑦()

Gradient
Vector
𝜕𝐶
𝜕𝑤
𝜕𝐶
𝜕𝑏

=

1
2 ∗ (2𝑥 𝑎 − 𝑦' + 2𝑥 𝑏 − 𝑦()
1
2 ∗ (2 𝑎 − 𝑦' + 2 𝑏 − 𝑦()

BACK
PROPAGATI

ON AND
GRADIENT
DESCENT

BACK PROPAGATION AND GRADIENT DESCENT

Step

1

Step

2

Starting Point

BACK PROPAGATION AND GRADIENT DESCENT
Starting Point

St
ep

1

Step

1

smaller learning rate larger learning rate

BACK PROPAGATION AND GRADIENT DESCENT

BACK PROPAGATION AND GRADIENT DESCENT
Starting Point

St
ep

1 St

ep

1

gradient with batch 1 gradient with batch 2

BACK PROPAGATION AND GRADIENT DESCENT

Batch size implications

Smaller batches imply more steps per epoch:

More updates to weights --> More updates to the net

Smaller batches do not imply larger/smaller gradients

PARALLEL/DISTRIBUTED ML TRAINING

Pipeline Model
• Complete layer per device

• Weights stay within device
• Activations are communicated between

GPUs
• Non efficient implementations may lead to

inefficient usage of resources
• Research area

1. Model Parallelism: Memory usage and
computation of a model distributed across
devices
Two main variants:

a) Pipeline parallelism
b) Tensor parallelism

PARALLEL/DISTRIBUTED ML
TRAINING

Tensor Parallelism
• Tensor operations (e.g., computing a layer output) distributed across device

• Allows larger, more computationally expensive models
• Activations are communicated between GPUs
• Further points for inefficiencies

• A device might depend on the activations computed by more than one device

1. Model Parallelism: Memory usage and
computation of a model distributed across
devices
Two main variants:

a) Pipeline parallelism
b) Tensor parallelism

PARALLEL/DISTRIBUTED ML
TRAINING

• Model must fit into the memory of a single
device

• Weights are the same in each device
• Gradients are communicated across all

devices
(all-to-all)

2. Data Parallelism: Training mini-batch is
split across devices

TRAINING A NEURAL NETWORK
Single GPU

CPU/GPU

ℒ(#𝑦, 𝑦)

𝑊["] = 𝑊["] − 𝛼 ∗
𝜕ℒ

𝜕𝑊["]

𝑊[$] = 𝑊[$] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[$]

𝑊[%] = 𝑊[%] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[%]

GPU

W[1]

#𝑦

W[2]

W[3]

1. Read the data

2. Transport the data

3. Pre-process the data

4. Queue the data

5. Transport the data

6. Calculate activations for layer one

7. Calculate activations for layer two

8. Calculate the output

9. Calculate the loss

10. Backpropagate through layer three

11. Backpropagate through layer two

12. Backpropagate through layer one

13. Execute optimization step

14. Update the weights

15. Return control

TRAINING A NEURAL NETWORK

CPU/GPU

ℒ(#𝑦, 𝑦) GPU ℒ(#𝑦, 𝑦)

CPU/GPU

CPU/GPU

𝑊["] = 𝑊["] − 𝛼 ∗
𝜕ℒ

𝜕𝑊["]

𝑊[$] = 𝑊[$] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[$]

𝑊["] = 𝑊["] − 𝛼 ∗
𝜕ℒ

𝜕𝑊["]

𝑊[$] = 𝑊[$] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[$]

𝑊[%] = 𝑊[%] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[%]
𝑊[%] = 𝑊[%] − 𝛼 ∗

𝜕ℒ
𝜕𝑊[%]

W[1]

#𝑦

W[2]

W[3]

GPU

W[1]

#𝑦

W[2]

W[3]

DATA PARALLELISM

• Traditionally, ML developers have scaled up models through data parallelism

• which splits up your data and feeds it to horizontally-scaled model instances

• This scales up training but has an important limitation: it requires that the
model fits within a single hardware device

33

1. Run several copies of the training. Each copy:
1. reads a part of the data
2. runs it through the model
3. computes model updates (gradients)

2. Average the gradients from all the copies
3. Update the model
4. Repeat from Step 1a

DATA PARALLELISM

• Parameter server approach

• Initial approach used by distributed Tensorflow

• workers process training data, compute gradients, and send them to (a)
parameter servers to be averaged

• Challenges:

• identifying the right ratio of worker to parameter servers to avoid networking or
computational bottlenecks and network saturation in an "all-to-all" communication
pattern.

Implementations

34

DATA PARALLELISM

• Ring-allreduce algorithm

• Baidu (early 2017) proposed algorithm for averaging gradients and
communicating those gradients to all nodes

• The algorithm is called ring-allreduce

• Bandwidth-optimal

• Users utilize a Message Passing Interface (MPI) implementation such as Open
MPI to launch all copies of the TensorFlow program and modify their program
to average gradients using an allreduce() operation

Implementations

35

DATA PARALLELISM
Implementations

36

HOROVOD

• Horovod is a Python package that implements distributed data parallel deep
learning using ring-allreduce

• It replaces MPI with NCCL, NVIDIA's library for collective communication, which
provides a highly optimized version of ring-allreduce

• NCCL 2 enables running ring-allreduce across multiple machines and supports
models that fit inside a single server on multiple GPUs

HOROVOD

In the graph, Distributed TensorFlow refers to the implementation using parameter servers.

HOROVOD

• Works with stock TensorFlow, Keras, PyTorch, and
MXNet

• Stand-alone package allows reducing the time required
to install Horovod from about an hour to a few minutes,
depending on the hardware

HOROVOD
import horovod.tensorflow.keras as hvd

hvd.init()
Import and initialize the package

gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:

tf.config.experimental.set_memory_growth(gpus[hvd.local_rank()], True)
tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU’)

Pin processes to GPUs

• World size, Local Ranks, Global Ranks
(ranks)

HOROVOD
opt = hvd.DistributedOptimizer(opt) Wrap the optimizer into a distributed one

Start from the model across all the
GPUs

callbacks.append(hvd.BroadcastGlobalVariablesCallback(0))

checkpoint = tf.keras.callbacks.ModelCheckpoint(...)

if hvd.rank() == 0:

callbacks.append(checkpoint)

model.fit(…, callbacks,, verbose=1 if hvd.rank()== 0):

Only one process does checkpointing,
and only one process is verbose

DATA PARTITIONING: OPTION 1

Shuffle the dataset

Partition records among
workers

Train by sequentially reading
the partition

After epoch is done, reshuffle
and partition again

42

NOTE: make sure that all
partitions contain the same
number of batches,
otherwise the training will
deadlock

DATA PARTITIONING: OPTION 2

Shuffle the dataset

Train by randomly
reading data from
whole dataset

After epoch is done,
reshuffle 43

HOROVOD

Single-node:

$ mpirun -np 4 python train.py

Multi-node:

$ mpirun -np 8 -H server1:4,server2:4 python train.py
44

THROUGHPUT WITH INCREASING BATCH SIZE

Kurth, T., Treichler, S., Romero, J., Mudigonda, M., Luehr, N., Phillips, E., ... & Houston, M. (2018, November). Exascale deep
learning for climate analytics. In Proceedings of the International Conference for High Performance Computing, Networking,
Storage, and Analysis (p. 51). IEEE Press. arXiv:1810.01993

https://arxiv.org/abs/1810.01993

CRITICAL BATCH SIZE

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J., Frostig, R., & Dahl, G. E. (2018). Measuring the effects of data parallelism on
neural network training. arXiv:1811.03600

https://arxiv.org/abs/1811.03600

CRITICAL BATCH SIZE

https://blog.openai.com/science-of-ai/

https://blog.openai.com/science-of-ai/

ACCURACY WITH INCREASING BATCH SIZES

You, Y., Zhang, Z., Hsieh, C., Demmel, J., & Keutzer, K. (2017). ImageNet training in minutes. arXiv: 1709.05011

https://arxiv.org/abs/1709.05011

ACCURACY WITH INCREASING BATCH SIZES

You, Y., Zhang, Z., Hsieh, C., Demmel, J., & Keutzer, K. (2017). ImageNet training in minutes. arXiv: 1709.05011

https://arxiv.org/abs/1709.05011

ACCURACY WITH INCREASING BATCH SIZES

Hoffer, E., Hubara, I., & Soudry, D. (2017). Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. arXiv:1705.08741

https://arxiv.org/abs/1705.08741

ACCURACY WITH INCREASING BATCH SIZES

Keskar, N. S., et al. (2016). On large-batch training for deep learning: Generalization gap and sharp minima. arXiv:1609.04836
w

cost Difference
training loss
vs. validation

loss

Difference
training loss
vs. validation

loss

https://arxiv.org/abs/1609.04836

ACCURACY WITH INCREASING BATCH SIZES
Why? Generalisation and Flatness of minima?

Li, H., Xu, Z., Taylor, G., & Goldstein, T. (2017). Visualizing the Loss Landscape of Neural Nets. arXiv:1712.09913

https://arxiv.org/abs/1712.09913

OPTIMIZATION WITH INCREASING BATCH SIZE

• Manipulate the learning rate?

• Add noise to the gradient?

• Manipulate the batch size?

• Change the learning algorithm?

LEARNING RATE SCALING

• Larger batch sizes imply less steps per epoch

• Intuitively

• 2x batch size means 0.5x less updates of the gradients

• To get from point X to point Y, it seems reasonable to do twice as larger steps (i.e.,
double the learning rate)

• This suggest to increase the learning rate by the same factor the batch size is
increased

• In practice the value that has been found to work well is to increase the learning
rate on a factor 𝑀 being M the factor by which you increase the batch size

LEARNING RATE SCALING

• A lot of networks will diverge early in the learning process

• A larger learning rate does make this divergence even larger

• We can address this by starting with a smaller learning rate that increases over a few
epochs (where the learning process should not diverge that much)

• After these epochs, we can settle for the desired learning rate value / strategy

• This technique is called warmup

LEARNING RATE SCALING

BATCH NORMALIZATION

• The idea is to normalize the inputs to all layers in every batch (this is more
sophisticated than simply normalizing the input dataset)

• Minimizes drift in the distribution of inputs to a layer

• It allows higher learning rates and reduces the need to use dropout

• The original batch normalization paper suggests using the statistics for the entire
batch

• What to do in the data parallel training case?

• Batch normalization is thus carried out in isolation on a per-GPU basis.

• Additional noise by calculating smaller batch statistics (“ghost batches”).

ALTERNATIVES TO SGD

• LARS (Layer-wise Adaptive Rate Scaling)

• It aims to dynamically scale the learning rates of individual layers in a neural network
based on their weight magnitudes

• The motivation behind LARS is to address the challenge of training deep networks
with very large weight updates, which can cause instability and hinder convergence

• LARC (Layer-wise Adaptive Rate Clipping):

• LARC applies adaptive rate clipping to the gradients during optimization

• It clips the gradients based on a threshold determined by the ratio of the norm of the
layer's weights to the norm of the layer's gradients. If this ratio exceeds a predefined
threshold, the gradients are rescaled or clipped to prevent them from being too large

ALTERNATIVES TO SGD

• NOVOGRAD

• introduces gradient normalisation, which rescales the gradient to have a fixed norm
or magnitude

• This helps mitigate the impact of large gradients, making the optimization process
more stable

• Based on ADAM , which does not explicitly perform gradient normalisation, although
it uses adaptive learning rates to handle varying gradient magnitudes

EXAMPLES WITH LARS

You, Y., Gitman, I., & Ginsburg, B. Large batch training of convolutional networks. arXiv:1708.03888

https://arxiv.org/abs/1708.03888

BEYOND HOROVOD AND DATA PARALLELISM

• DeepSpeed is a deep learning optimization library that integrates with popular
deep learning frameworks like PyTorch and TensorFlow

• It provides a wide range of features for training large models efficiently. Some
key features of DeepSpeed include:

• Memory Optimization: memory footprint reduction using as activation checkpointing
and offloading optimizer states to CPU memory. This allows for training larger models
that would otherwise exceed GPU memory limits

• Gradient compression techniques to reduce communication overhead in distributed
training, enabling faster and more efficient communication between GPUs or
machines

BEYOND HOROVOD AND DATA PARALLELISM

• It provides a wide range of features for training large models efficiently. Some
key features of DeepSpeed include:

• DeepSpeed integrates with ZeRO to enhance memory efficiency by partitioning model
weights across multiple GPUs or machines, enabling training of larger models than
the memory capacity of an individual device while still aiming at a data parallel
training

• DeepSpeed supports pipeline parallelism, which splits the model across multiple GPUs
or machines to process different parts of the model simultaneously, leading to
improved training performance.

BEYOND HOROVOD AND DATA PARALLELISM

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

BEYOND HOROVOD AND DATA PARALLELISM

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

BEYOND HOROVOD AND DATA PARALLELISM

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

BEYOND HOROVOD AND DATA PARALLELISM

• DTensor enables larger and more performant model training by giving developers
the flexibility to combine and fine-tune multiple parallelism techniques

• Allows leveraging data parallelism and model parallelism to improve the
efficiency of training large models

• The ability to use multiple parallelism techniques and fine-tune them gives
developers the tools they need to improve their model training and achieve better
results

• While it sounds quite nice there is a main caveat: it is really low level in its
current experimental phase

BEYOND HOROVOD AND DATA PARALLELISM

• Data and model parallelism are not only supported, but also can be directly
combined to scale models even more efficiently

• Accelerator agnostic —TPUs, GPUs, or something else

BEYOND HOROVOD AND DATA PARALLELISM

• DTensors works with the concepts of mesh and layout

• A mesh is a logical cartesian topology representation of the available resources

• Can be

• 1D

• 2D

BEYOND HOROVOD AND DATA PARALLELISM

• A layout indicates how to shard (distribute) tensors over a mesh axis

dtensor.Layout(
[dtensor.UNSHARDED, dtensor.UNSHARDED],

mesh_1d)

dtensor.Layout(
[dtensor.UNSHARDED, 'x’],

mesh_1d)

dtensor.Layout(
Layout(["x", dtensor.UNSHARDED],

mesh_2d)mesh_1d)

BEYOND HOROVOD AND DATA PARALLELISM
from typing import Tuple

class MLP(tf.Module):

def __init__(self, dense_layouts: Tuple[dtensor.Layout, dtensor.Layout]):
super().__init__()

self.dense1 = Dense(
1200, 48, (1, 2), dense_layouts[0], activation=tf.nn.relu)

self.bn = BatchNorm()
self.dense2 = Dense(48, 2, (3, 4), dense_layouts[1])

def __call__(self, x):
y = x
y = self.dense1(y)
y = self.bn(y)
y = self.dense2(y)
return y

mesh = dtensor.create_mesh([("batch", 8)], devices=DEVICES)

model = MLP([dtensor.Layout([dtensor.UNSHARDED, dtensor.UNSHARDED], mesh),
dtensor.Layout([dtensor.UNSHARDED, dtensor.UNSHARDED], mesh),])

