
FUNDAMENTALS OF DEEP 
LEARNING FOR MULTIPLE GPUS



CONTEXT: WHY USE MULTIPLE GPUS?



IMPROVING ACCURACY

• Over the last few years, the largest trained model has increased in size by over 
1000x, from a few hundred million parameters to half a trillion (and beyond) 
parameters

• These increases on model size were driving by increasing datasets

• They also led to in model quality, suggesting that this trend will continue

• Indeed researchers have identified three main eras of AI computing, requiring 
different FLOPs



DATASET SIZE VS QUALITY

Hestness, J., et al. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv: 1712.00409

https://arxiv.org/abs/1712.00409


DATASET SIZE VS QUALITY

• Trend across different domains
• Translation

• Language Models

• Character Language Models

• Image Classification

• Attention Speech Models

Hestness, J., et al. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv: 1712.00409

https://arxiv.org/abs/1712.00409


SUBLINEAR GROWTH OF MODELS TOO

Hestness, J., et al. (2017). Deep Learning Scaling is Predictable, Empirically. arXiv: 1712.00409

https://arxiv.org/abs/1712.00409


ML COMPUTATIONAL DEMANDS OVER TIME



TRENDS IN COMPUTATIONAL POWER



TRENDS IN COMPUTATIONAL POWER

1980 1990 2000 2010 2020

102

103

104

105

106

107

Single-threaded perf

1.5X per year

1.1X per year
Transistors
(thousands)

GPU-Computing perf
1.5X per year 1000X

By 2025

For some workloads: O(100 years) on a dual CPU server O(30 Days) DGX H100



SCIENTIFIC METHOD 
What does it take for leveraging ML?

Model
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Evaluate
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y = w*x + b



SHORT ITERATION TIME IS FUNDAMENTAL FOR 
SUCCESS
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IT ALL STARTS WITH TRAINING …



BRIEF REVIEW OF NEURAL NETWORKS 
TRAINING
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FORWARD OPERATIONS



FORWARD OPERATIONS
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BACK 
PROPAGATION 

AND 
GRADIENT 
DESCENT

Linear regression y = w * x + b (I.e., a NN of a single 
neuron, and identity, f(x) = x, as activation function)

Loss function defined as C = ( a – y )2

How does C change with w and b variations?

compute the ratio at with C changes with 
changes in w and b

use this ratio to modify then w and b in order to 
move C towards a minimum

x w

b

𝞼 (w * x + b) = 𝞼 (z)  if we define z as w * x + b
Σ | 
𝞼 a (activation)



COMPUTING THE GRADIENT
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COMPUTING THE GRADIENT
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BACK PROPAGATION AND GRADIENT DESCENT
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BACK PROPAGATION AND GRADIENT DESCENT
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BACK PROPAGATION AND GRADIENT DESCENT
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BACK PROPAGATION AND GRADIENT DESCENT

Batch size implications

Smaller batches imply more steps per epoch:

More updates to weights --> More updates to the net

Smaller batches do not imply larger/smaller gradients



PARALLEL/DISTRIBUTED ML TRAINING

Pipeline Model
• Complete layer per device

• Weights stay within device
• Activations are communicated between 

GPUs
• Non efficient implementations may lead to 

inefficient usage of resources
• Research area

1. Model Parallelism: Memory usage and 
computation of a model distributed across 
devices
Two main variants:

a) Pipeline parallelism
b) Tensor parallelism



PARALLEL/DISTRIBUTED ML 
TRAINING

Tensor Parallelism
• Tensor operations (e.g., computing a layer output) distributed across device

• Allows larger, more computationally expensive models
• Activations are communicated between GPUs
• Further points for inefficiencies

• A device might depend on the activations computed by more than one device

1. Model Parallelism: Memory usage and 
computation of a model distributed across 
devices
Two main variants:

a) Pipeline parallelism
b) Tensor parallelism



PARALLEL/DISTRIBUTED ML 
TRAINING

• Model must fit into the memory of a single 
device

• Weights are the same in each device
• Gradients are communicated across all 

devices 
(all-to-all)

2. Data Parallelism: Training mini-batch is 
split across devices



TRAINING A NEURAL NETWORK
Single GPU
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1. Read the data

2. Transport the data

3. Pre-process the data

4. Queue the data

5. Transport the data

6. Calculate activations for layer one

7. Calculate activations for layer two

8. Calculate the output

9. Calculate the loss

10. Backpropagate through layer three

11. Backpropagate through layer two

12. Backpropagate through layer one

13. Execute optimization step

14. Update the weights

15. Return control



TRAINING A NEURAL NETWORK

CPU/GPU

ℒ(#𝑦, 𝑦) GPU ℒ(#𝑦, 𝑦)

CPU/GPU

CPU/GPU

𝑊["] = 𝑊["] − 𝛼 ∗
𝜕ℒ

𝜕𝑊["]

𝑊[$] = 𝑊[$] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[$]

𝑊["] = 𝑊["] − 𝛼 ∗
𝜕ℒ

𝜕𝑊["]

𝑊[$] = 𝑊[$] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[$]

𝑊[%] = 𝑊[%] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[%]
𝑊[%] = 𝑊[%] − 𝛼 ∗

𝜕ℒ
𝜕𝑊[%]

W[1]

#𝑦

W[2]

W[3]

GPU

W[1]

#𝑦

W[2]

W[3]



DATA PARALLELISM

• Traditionally, ML developers have scaled up models through data parallelism

• which splits up your data and feeds it to horizontally-scaled model instances

• This scales up training but has an important limitation: it requires that the 
model fits within a single hardware device

33

1. Run several copies of the training. Each copy: 
1. reads a part of the data
2. runs it through the model
3. computes model updates (gradients)

2. Average the gradients from all the copies
3. Update the model
4. Repeat from Step 1a



DATA PARALLELISM

• Parameter server approach

• Initial approach used by distributed Tensorflow

• workers process training data, compute gradients, and send them to (a) 
parameter servers to be averaged 

• Challenges: 

• identifying the right ratio of worker to parameter servers to avoid networking or 
computational bottlenecks and network saturation in an "all-to-all" communication 
pattern.

Implementations

34



DATA PARALLELISM

• Ring-allreduce algorithm

• Baidu (early 2017) proposed  algorithm for averaging gradients and 
communicating those gradients to all nodes 

• The algorithm is called ring-allreduce

• Bandwidth-optimal 

• Users utilize a Message Passing Interface (MPI) implementation such as Open 
MPI to launch all copies of the TensorFlow program and modify their program 
to average gradients using an allreduce() operation

Implementations

35



DATA PARALLELISM
Implementations

36



HOROVOD

• Horovod is a Python package that implements distributed data parallel deep 
learning using ring-allreduce

• It replaces MPI with NCCL, NVIDIA's library for collective communication, which 
provides a highly optimized version of ring-allreduce

• NCCL 2 enables running ring-allreduce across multiple machines and supports 
models that fit inside a single server on multiple GPUs 



HOROVOD

In the graph, Distributed TensorFlow refers to the implementation using parameter servers. 



HOROVOD

• Works with stock TensorFlow, Keras, PyTorch, and 
MXNet

• Stand-alone package allows reducing the time required 
to install Horovod from about an hour to a few minutes, 
depending on the hardware



HOROVOD
import horovod.tensorflow.keras as hvd

hvd.init()
Import and initialize the package

gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:

tf.config.experimental.set_memory_growth(gpus[hvd.local_rank()], True)
tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU’)

Pin processes to GPUs

• World size, Local Ranks, Global Ranks 
(ranks)



HOROVOD
opt = hvd.DistributedOptimizer(opt) Wrap the optimizer into a distributed one

Start from the model across all the 
GPUs

callbacks.append(hvd.BroadcastGlobalVariablesCallback(0))

checkpoint = tf.keras.callbacks.ModelCheckpoint(...)

if hvd.rank() == 0:

callbacks.append(checkpoint)

model.fit(…, callbacks,, verbose=1 if hvd.rank()== 0):

Only one process does checkpointing, 
and only one process is verbose



DATA PARTITIONING: OPTION 1

Shuffle the dataset

Partition records among
workers

Train by sequentially reading 
the partition

After epoch is done, reshuffle 
and partition again

42

NOTE: make sure that all 
partitions contain the  same 
number of batches,  
otherwise the training will
deadlock



DATA PARTITIONING: OPTION 2

Shuffle the dataset

Train by randomly 
reading data from 
whole dataset

After epoch is done,
reshuffle 43



HOROVOD

Single-node:

$ mpirun -np 4 python train.py

Multi-node:

$ mpirun -np 8 -H server1:4,server2:4 python train.py
44



THROUGHPUT WITH INCREASING BATCH SIZE

Kurth, T., Treichler, S., Romero, J., Mudigonda, M., Luehr, N., Phillips, E., ... & Houston, M. (2018, November). Exascale deep 
learning for climate analytics. In Proceedings of the International Conference for High Performance Computing, Networking, 
Storage, and Analysis (p. 51). IEEE Press. arXiv:1810.01993

https://arxiv.org/abs/1810.01993


CRITICAL BATCH SIZE

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J., Frostig, R., & Dahl, G. E. (2018). Measuring the effects of data parallelism on 
neural network training. arXiv:1811.03600

https://arxiv.org/abs/1811.03600


CRITICAL BATCH SIZE

https://blog.openai.com/science-of-ai/

https://blog.openai.com/science-of-ai/


ACCURACY WITH INCREASING BATCH SIZES

You, Y., Zhang, Z., Hsieh, C., Demmel, J., & Keutzer, K. (2017). ImageNet training in minutes. arXiv: 1709.05011

https://arxiv.org/abs/1709.05011


ACCURACY WITH INCREASING BATCH SIZES

You, Y., Zhang, Z., Hsieh, C., Demmel, J., & Keutzer, K. (2017). ImageNet training in minutes. arXiv: 1709.05011

https://arxiv.org/abs/1709.05011


ACCURACY WITH INCREASING BATCH SIZES

Hoffer, E., Hubara, I., & Soudry, D. (2017). Train longer, generalize better: closing the 
generalization gap in large batch training of neural networks. arXiv:1705.08741

https://arxiv.org/abs/1705.08741


ACCURACY WITH INCREASING BATCH SIZES

Keskar, N. S., et al. (2016). On large-batch training for deep learning: Generalization gap and sharp minima. arXiv:1609.04836
w

cost Difference 
training loss 
vs. validation 

loss

Difference 
training loss 
vs. validation 

loss

https://arxiv.org/abs/1609.04836


ACCURACY WITH INCREASING BATCH SIZES
Why? Generalisation and Flatness of minima?

Li, H., Xu, Z., Taylor, G., & Goldstein, T. (2017). Visualizing the Loss Landscape of Neural Nets. arXiv:1712.09913

https://arxiv.org/abs/1712.09913


OPTIMIZATION WITH INCREASING BATCH SIZE

• Manipulate the learning rate?

• Add noise to the gradient?

• Manipulate the batch size?

• Change the learning algorithm?



LEARNING RATE SCALING

• Larger batch sizes imply less steps per epoch

• Intuitively

• 2x batch size means 0.5x less updates of the gradients

• To get from point X to point Y, it seems reasonable to do twice as larger steps (i.e., 
double the learning rate)

• This suggest to increase the learning rate by the same factor the batch size is 
increased

• In practice the value that has been found to work well is to increase the learning 
rate on a factor 𝑀 being M the factor by which you increase the batch size 



LEARNING RATE SCALING

• A lot of networks will diverge early in the learning process

• A larger learning rate does make this divergence even larger

• We can address this by starting with a smaller learning rate that increases over a few 
epochs (where the learning process should not diverge that much)

• After these epochs, we can settle for the desired learning rate value / strategy

• This technique is called warmup



LEARNING RATE SCALING



BATCH NORMALIZATION

• The idea is to normalize the inputs to all layers in every batch (this is more 
sophisticated than simply normalizing the input dataset) 

• Minimizes drift in the distribution of inputs to a layer

• It allows higher learning rates and reduces the need to use dropout

• The original batch normalization paper suggests using the statistics for the entire 
batch 

• What to do in the data parallel training case? 

• Batch normalization is thus carried out in isolation on a per-GPU basis.

• Additional noise by calculating smaller batch statistics (“ghost batches”).



ALTERNATIVES TO SGD

• LARS (Layer-wise Adaptive Rate Scaling)

• It aims to dynamically scale the learning rates of individual layers in a neural network 
based on their weight magnitudes 

• The motivation behind LARS is to address the challenge of training deep networks 
with very large weight updates, which can cause instability and hinder convergence

• LARC (Layer-wise Adaptive Rate Clipping):

• LARC applies adaptive rate clipping to the gradients during optimization

• It clips the gradients based on a threshold determined by the ratio of the norm of the 
layer's weights to the norm of the layer's gradients. If this ratio exceeds a predefined 
threshold, the gradients are rescaled or clipped to prevent them from being too large



ALTERNATIVES TO SGD

• NOVOGRAD

• introduces gradient normalisation, which rescales the gradient to have a fixed norm 
or magnitude 

• This helps mitigate the impact of large gradients, making the optimization process 
more stable 

• Based on ADAM , which does not explicitly perform gradient normalisation, although 
it uses adaptive learning rates to handle varying gradient magnitudes



EXAMPLES WITH LARS

You, Y., Gitman, I., & Ginsburg, B. Large batch training of convolutional networks. arXiv:1708.03888

https://arxiv.org/abs/1708.03888


BEYOND HOROVOD AND DATA PARALLELISM

• DeepSpeed is a deep learning optimization library that integrates with popular 
deep learning frameworks like PyTorch and TensorFlow

• It provides a wide range of features for training large models efficiently. Some 
key features of DeepSpeed include:

• Memory Optimization: memory footprint reduction using as activation checkpointing 
and offloading optimizer states to CPU memory. This allows for training larger models 
that would otherwise exceed GPU memory limits

• Gradient compression techniques to reduce communication overhead in distributed 
training, enabling faster and more efficient communication between GPUs or 
machines



BEYOND HOROVOD AND DATA PARALLELISM

• It provides a wide range of features for training large models efficiently. Some 
key features of DeepSpeed include:

• DeepSpeed integrates with ZeRO to enhance memory efficiency by partitioning model 
weights across multiple GPUs or machines, enabling training of larger models than 
the memory capacity of an individual device while still aiming at a data parallel 
training

• DeepSpeed supports pipeline parallelism, which splits the model across multiple GPUs 
or machines to process different parts of the model simultaneously, leading to 
improved training performance.



BEYOND HOROVOD AND DATA PARALLELISM

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



BEYOND HOROVOD AND DATA PARALLELISM

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



BEYOND HOROVOD AND DATA PARALLELISM

https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



BEYOND HOROVOD AND DATA PARALLELISM

• DTensor enables larger and more performant model training by giving developers 
the flexibility to combine and fine-tune multiple parallelism techniques 

• Allows leveraging data parallelism and model parallelism to improve the 
efficiency of training large models 

• The ability to use multiple parallelism techniques and fine-tune them gives 
developers the tools they need to improve their model training and achieve better 
results

• While it sounds quite nice there is a main caveat: it is really low level in its 
current experimental phase



BEYOND HOROVOD AND DATA PARALLELISM

• Data and model parallelism are not only supported, but also can be directly 
combined to scale models even more efficiently 

• Accelerator agnostic —TPUs, GPUs, or something else



BEYOND HOROVOD AND DATA PARALLELISM

• DTensors works with the concepts of mesh and layout

• A mesh is a logical cartesian topology representation  of the available resources

• Can be 

• 1D 

• 2D



BEYOND HOROVOD AND DATA PARALLELISM

• A layout indicates how to shard (distribute) tensors over a mesh axis

dtensor.Layout(
[dtensor.UNSHARDED, dtensor.UNSHARDED], 

mesh_1d)

dtensor.Layout(
[dtensor.UNSHARDED, 'x’], 

mesh_1d)

dtensor.Layout(
Layout(["x", dtensor.UNSHARDED], 

mesh_2d)mesh_1d)



BEYOND HOROVOD AND DATA PARALLELISM
from typing import Tuple

class MLP(tf.Module):

def __init__(self, dense_layouts: Tuple[dtensor.Layout, dtensor.Layout]):
super().__init__()

self.dense1 = Dense(
1200, 48, (1, 2), dense_layouts[0], activation=tf.nn.relu)

self.bn = BatchNorm()
self.dense2 = Dense(48, 2, (3, 4), dense_layouts[1])

def __call__(self, x):
y = x
y = self.dense1(y)
y = self.bn(y)
y = self.dense2(y)
return y

mesh = dtensor.create_mesh([("batch", 8)], devices=DEVICES)

model = MLP([dtensor.Layout([dtensor.UNSHARDED, dtensor.UNSHARDED], mesh),
dtensor.Layout([dtensor.UNSHARDED, dtensor.UNSHARDED], mesh),])


