
Overloading

• Function overloading

• Operator overloading

Function overloading

Overloading means that we reuse a function name with the following rules:

• Parameter list must be different

• Return type doesn't matter

We can overload normal functions as well as member functions

How does the compiler do the name resolution?

In [ ]: double waterVolume(long long raindrops, double dropVol); // (1)

double waterVolume(double area, long long depth); // (2)

In [ ]: waterVolume(4934, 123.245); // resolves to (1)

waterVolume(1.23, 5563); // resolves to (2)

waterVolume(45655, 23454); // ERROR not defined

In [ ]: waterVolume(45655.0, 23454); //resolves to (2)

waterVolume(45655, 23454ll); //resolves to (2)



Overloading operators

Operator overloading allows you to (re)define the behavior of operators for custom types. It enables you to use operators such as + , - , * ,

/ , == , and others with user-defined objects, just like you would with built-in types. In this way you can make your code more intuitive,

expressive, and natural to work with.

Let's see an example:

We will start with the assignment operator ( operator= ) Consider this example with int:

Why do we start with the assignment operator? It is very likely that you will need it: The assignment operator is the sibling of the copy

constructor!

In [ ]: class Point2D {

private:

double x_=0.0, y_=0.0;

// ...

public:

// ...

Point2D(double x, double y): x_(x), y_(y) {}

Point2D add(const Point2D & p){

Point2D result(x_ + p.x_, y_ + p.y_);

return result;

}

};

In [ ]: Point2D a(5.6, 4.3), b(4.5, 0.0);

Point2D c = a.add(b);

// wouldn't it be great to use Point2D c = a + b; ?

In [ ]: int a, b, c = 4;

a = b = c; //a, b and c are now 4!



Good programming practice: when you implement the operator=, also implement a copy constructor, and viceversa!

Question: can we use Point2D& operator=(const Point2D & rhs)=default; ?

✔   ✗

Now let's implement the operator+ function for Point2D.

In [ ]: // restart kernel to run

#include <iostream>

class Point2D {

private:

double x_=0.0, y_=0.0;

// ...

public:

// ...

Point2D(double x, double y): x_(x), y_(y) {}

Point2D(const Point2D & rhs): x_(rhs.x_), y_(rhs.y_) {}

Point2D& operator=(const Point2D & rhs){

x_ = rhs.x_;

y_ = rhs.y_;

return *this;

}

void print(){

std::cout << "x=" << x_ << ", y=" << y_ << std::endl;

}

};

In [ ]: Point2D p(4,5), q(2,0.8);

q.print();

q = p; // equivalent to q.operator=(p);

q.print();

In [ ]: Point2D a(3.4, 20);

Point2D b = a; //calls copy constructor

b = a; // calls operator=



In [ ]: #include <iostream>

class Point2D {

private:

double x_=0.0, y_=0.0;

// ...

public:

// ...

Point2D(double x, double y): x_(x), y_(y) {}

Point2D(const Point2D & rhs): x_(rhs.x_), y_(rhs.y_) {}

Point2D& operator=(const Point2D & rhs){

x_ = rhs.x_;

y_ = rhs.y_;

return *this;

}

Point2D operator+(const Point2D & p){

Point2D result(x_ + p.x_, y_ + p.y_);

return result;

}

void print(){

std::cout << "x=" << x_ << ", y=" << y_ << std::endl;

}

};

In [ ]: Point2D p1(3,4), p2(5.5,6);

Point2D p3(0,0);

p3 = p1 + p2;

p3.print();



Pre and post increment

The following code:

i++;

++i;

Sometimes results are the same, for example in:

for (int i =0; i < 10; i++) {

for (int i =0; i < 10; ++i) {

We will overload them so, you know exactly what happens, and why

int a = i++;

is not the same as

int a = ++i;

In [ ]: class SpecialInt {

public:

int spint;

SpecialInt(int myint): spint(myint);

SpecialInt(const SpecialInt & rhs)=default;

SpecialInt & operator=(const SpecialInt & rhs)=default;

SpecialInt& operator++() { // pre-increment ++i

spint++;

return *this;

}

SpecialInt operator++(int) { // post-increment i++

SpecialInt temp = *this;

spint++;

return temp;

}

}

SpecialInt a(3); // a = 3

SpecialInt b = ++a; // b = 4, a = 4, "b.SpecialInt(a.operator++())"

SpecialInt c = a++; // c = 4, a = 5, "b.SpecialInt(a.operator++(0))"



Question: in a for loop with SpecialInt (instead of int) which one would you use ++i ?

✔   ✗

In [ ]:


