
8. Exceptions

June 21, 2023

1 Error handling and exceptions
1.1 Sanity checks
Sanity check is the procedure to check the correctness of an instruction (or block of code) and act
accordingly. Usually consist of: * Check of the return code of previous action. * Advising the user
about the error. * Return an error code to the calling function (or operating system) to identify
hat happened.

Remark: an error code does not imply than an error was triggered. An return code of OK is also
an error code.

You should know that: * Return errors are labeled and documented (see errno) * Each error has a
code number and a text message among others… * The variable errno stores the error code (return
code) of the last executed instruction. * The errno variable acts as an offset indexing an error
definitions table. * The function perror() takes the error message that match the error code. *
Printing a customized error string can be useful in locating the problem (debugging).

[1]: #include <cmath> //because of log
#include <cerrno>
#include <iostream>

//extern int errno; //This variable is already defined in the system. We are␣
↪not redefining it, just referring to it

double mynan=std::log(-1.0);
if (errno == EDOM) //EDOM = Error Domain Outside Maths

std::perror ("log(-1) not defined!");
else

std::cout << "mynan" << std::endl;

1.1.1 Well known errno codes

1.2 Exceptions
1.2.1 Motivation. Why do we need such a “concept” if we have return codes?

Imagine you are at depth N in the code and an error occurs: * At least you have to compare N times
the return code of the caller function (predecesor function). * On each depth level you should print
the an error message and return the code to the upper function until main. * The main returns to
the system/other processes the latest error code.

1

It is very tedious and works only with non-void functions, since void function can not return the
error code.

It will much better to be able to interrupt the programm trace at any point <– Exceptions

1.3 What are exceptions
• An exception is a problem that arises during the execution of a program.
• A C++ exception is a response to an exceptional circumstance that arises while a program

is running, ie: Divide by zero, out of bounds, method not implemented…
• Exceptions provide a way to transfer control from one part of a program to another part

interrumping the normal programm trace.

1.4 Concepts
C++ exception handling is built upon three keywords: * throw: throws an exception when a
problem shows up. * catch: A program catches an exception with an exception handler at the
place in a program where you want to handle the problem. The catch keyword indicates the catching
of an exception. * try: A try block identifies a block of code for which particular exceptions will
be activated. It’s followed by one or more catch blocks.

1.4.1 Try / catch combination

• Assuming that a block of code will raise an exception, a method catches an exception using
a combination of the try and catch keywords.

• A try/catch block is placed around the code that might generate an exception.
• Code within a try/catch block is referred to as protected code.
• You can list down multiple catch statements to catch different type of exceptions in case

your try block raises more than one exception in different situations.

try // protected code catch(ExceptionName e1) // catch block catch(ExceptionName e2) //
catch block catch(ExceptionName eN) // catch block

1.5 Throwing exceptions
• Exceptions can be thrown anywhere within a code block using throw statements.
• Also constructors and destructors can throw exceptions.
• The operand of the throw statements:

– determines a type for the exception
– can be any expression
– type of the result of the expression determines the type of exception thrown.

1.5.1 Examples

[2]: int secureDivide(int x, int y)
{

if (!y) throw ("Division by zero");
return x/y;

}

2

[3]: #include<fstream>

int countLines(std::string filename)
{

int n=0;
std::ifstream ifs;
std::string line;

ifs.open(filename.c_str());
if (ifs.is_open())

while (std::getline(ifs, line))
n++;

else
throw (0);

ifs.close();
return n;

}

1.6 Catching exceptions
• The catch block following the try block catches any exception.
• The type of exception to be caught

– can be specified
– is determined by the exception declaration that appears in parentheses following the

keyword catch.

[7]: try
{

secureDivide(3, 0);
NoL = countLines("a.txt");

}
catch (const char* s)
{

std::cout << "Error: " << s << std::endl;
}
catch (int r)
{

std::cout << "Number of lines: " << r << std::endl;
}

Error: Division by zero

1.7 Questions to you!!
• Can we throw exceptions in constructors?

– Does it make sense?
• What happens if an exception is thrown but not caught?

3

• Can the main function throw exceptions?
– Does it make sense?

• Can we define our own exceptions and throw them?
– Does it make sense?

[]:

4

	Error handling and exceptions
	Sanity checks
	Well known errno codes

	Exceptions
	Motivation. Why do we need such a ``concept'' if we have return codes?

	What are exceptions
	Concepts
	Try / catch combination

	Throwing exceptions
	Examples

	Catching exceptions
	 Questions to you!!

