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About Me
Stephen Blair-Chappell is an
independent software consultant and is an Intel
certified oneAPI instructor. He was formerly the
Technical Director at Bayncore where he led a team
of consultants providing HPC and AI training on Intel
Architecture. For 18 years he was a Technical
Consulting Engineer at Intel helping their strategic
customers in software optimisation and code
modernisation. He is author of the book "Parallel
Programming with Intel Parallel Studio XE".

stephen-at-sbcnow-dot-co-dot-uk
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Today’s session is about getting visibility 
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Agenda

Occupancy

GPU Offload Modelling with Advisor

GPU Offload Analysis with Intel Vtune

GPU Roofline Analysis with Intel Advisor

 Experience with Lammps

Q & A
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Host with accelerator GPUs
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Programmers' perspective:  Three things to consider

 Offload the code to the device

Choosing appropriate kernel code

Manage the transfer of Data

(a) Mitigating against 
communication  & memory latency

(b) Re-use of data

 Implement Parallelism

Maximising Occupancy

7
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Offload Modelling
(Advisor)

Roofline Modelling
(Advisor)

GPU Profiling
VTune

Today’s examples 
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GPU Occupancy
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Xe-LP configuration

 6 Cores

 16 Vector 
Engines/core
[Total 96]

 7 Threads

 16 FP16 
ops/clock/VE  
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Maximum 
Occupancy
Calculator

https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/GPU-Occupancy-Calculator

Intel® GPU Occupancy Calculator

https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/GPU-Occupancy-Calculator
https://oneapi-src.github.io/oneAPI-samples/Tools/GPU-Occupancy-Calculator/
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Language concepts for max occupancy

SYCL OpenMP

Work-item Thread

Sub-group Team

Work-Group League
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Tool Description
Environment variables Gather diagnostic information from the OpenMP and SYCL runtimes at program 

execution with no modifications to your program.

Onetrace From Profiling Tools Interfaces for GPU (PTI for GPU). Used to debug backend 
errors and for performance profiling on both the host and device.

Intercept Layer for OpenCL™
Applications

Used to debug backend errors and for performance profiling on both the host and 
device (has wider functionality comparing with onetrace).

Intel® Distribution for GDB* Used for source-level debugging of the application, typically to inspect logical 
bugs, on the host and any devices you are using (CPU, GPU, FPGA emulation).

Intel® Inspector locate and debug memory and threading problems, including those that can 
cause offloading to fail.

In-application debugging printf; looking at output of apps  etc, etc
Intel® Advisor Use to ensure Fortran, C, C++, OpenCL™, and SYCL applications realize full 

performance potential on modern processors.

Intel® VTune TM   Profiler Use to gather performance data either on the native system or on a remote 
system.

oneAPI Debug Tools (intel.com)

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/software-development-process/debugging-the-dpcpp-and-openmp-offload-process/oneapi-debug-tools.html


Advisor Offload 
Modelling
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Offload Modelling – doing it by hand  

CPU1 Run code on CPU  and find hotspots

3 Implement offload using SYCL or OpenMP

4 Run code on CPU and GPU 
and see if there is a speed up

CPU GPU

2 Examine results – decide which hotspots are suitable for offloading

Potentially tim
e-consum

ing.
Possibly no  return-on-investm

ent 



17

Offload Modelling – with Advisor

CPU1 Run code on CPU using Advisor
(multiple stage profiling collection)

Advisor 
Simulates 
all these 
stages

CPU

Report
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Demo – Our Example
oneapi-cli

make CXX=icpx EXTRA_CFLAGS=-g
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Using accuracy  presets to control modelling 
• Default (Medium Accuracy)
advisor --collect=offload --config=gen12_tgl 
--project-dir=./cpu2gpu_offload_modeling --
./release/Mandelbrot 1

• Low Accuracy 
advisor --collect=offload –accuracy=low 
--config=gen12_tgl --project-
dir=./cpu2gpu_offload_modeling --
./release/Mandelbrot 1

• Getting list of steps  
advisor --collect=offload –-dry-run 
--config=gen12_tgl --project-
dir=./cpu2gpu_offload_modeling --
./release/Mandelbrot 1

Low Medium High

5-10x
overhead

15-50x
overhead

50-80x
overhead

Survey
Trip Count

Offload 
Modelling

Survey
Trip Count

Offload 
Modelling

Survey
Trip Count

Dependency 
analysis
Offload 

Modelling

L1 Cache L1 Cache
+ Host-

Device data

L1 Cache
+ Host-

Device data
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Steps to Offload Projection with Advisor 

1. Run a Survey:      get a list of hotspots
advisor -collect survey  … 

2. Run a Trip Count:   count loop iteration 
advisor -collect=tripcounts -target-device=gen9_gt2  . . .

3. Perform a dependency analysis [optional for quick modelling]
advisor -collect dependencies . . .  

4. Model the Performance 
advisor -collect projection  -no-assume-dependencies . . .

20

• Sampling
• Binary Static Analysis
• Compiler & debug info

• Trip count  
• Cache simulation

• Check memory accesses
• Loop selection heuristic

• Generate HTML report

Ex
pe

ns
iv

e 
St

ep
s
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DRY RUN LOWACCURACY===========================================================
advisor: The 'offload' is a special batch mode for data collection. It runs several analyses one by one. 
advisor --collect=survey --auto-finalize --static-instruction-mix --project-dir=./cpu2gpu_offload_modeling 
-- ./03-run.sh 
advisor --collect=tripcounts --flop --auto-finalize --target-device=gen12_tgl --project-
dir=./cpu2gpu_offload_modeling -- ./03-run.sh 
advisor --collect=projection --no-assume-dependencies --config=gen12_tgl --project-
dir=./cpu2gpu_offload_modeling -- ./03-run.sh
DRY RUN MEDIUM ACCURACY===========================================================
advisor: The 'offload' is a special batch mode for data collection. It runs several analyses one by one. 
advisor --collect=survey --auto-finalize --static-instruction-mix --project-dir=./cpu2gpu_offload_modeling 
-- ./03-run.sh 
advisor --collect=tripcounts --flop --stacks --auto-finalize --cache-simulation=single --data-transfer=light
--target-device=gen12_tgl --project-dir=./cpu2gpu_offload_modeling -- ./03-run.sh 
advisor --collect=projection --no-assume-dependencies --config=gen12_tgl --project-
dir=./cpu2gpu_offload_modeling -- ./03-run.sh
DRY RUN HIGH ACCURACY===========================================================
advisor: The 'offload' is a special batch mode for data collection. It runs several analyses one by one. 
advisor --collect=survey --auto-finalize --static-instruction-mix --project-dir=./cpu2gpu_offload_modeling 
-- ./03-run.sh 
advisor --collect=tripcounts --flop --stacks --auto-finalize --cache-simulation=single --data-
transfer=medium --target-device=gen12_tgl --project-dir=./cpu2gpu_offload_modeling -- ./03-run.sh 
advisor --collect=dependencies --filter-reductions --loop-call-count-limit=16 --
select=markup=gpu_generic --project-dir=./cpu2gpu_offload_modeling -- ./03-run.sh 
advisor --collect=projection --config=gen12_tgl --project-dir=./cpu2gpu_offload_modeling -- ./03-run.sh

LO
W

                   M
EDIU

M
                     HIGH
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Summary
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Summary Accelerated 
code 

speedup

Original App 
Time

% of time 
candidate 

code took in
original app

App speedup

New App 
Time

Combined time spent on host and target after aceleration
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Loop Offload (from Summary Page)
Top Five offload candidates

Top Five non-offload (only in CPU-GPU)



25

GPU-GPU modelling

 Add  the –gpu flag

 Runs code on ACTUAL GPU and models against new GPU. 

Use when upgrading from one GPU to another one.

NB: use –accuracy=low 
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Comparison of CPU-GPU and GPU-GPU modelling
CPU-GPU GPU-GPU

Survey Survey (on GPU)
Trip Count Trip Count 

(Characterization
- num Floats and Integer 

operations)
Dependency Check x

Model Offloading Model Offloading
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Re-modelling for a different GPU  
- once you already have a set of results

1. Adjust Values
2. Save parameters
3. Re-run modelling

e.g.: advisor -c=projection 
--custom-config=config.toml
--config=gen12_tgl  
--project-dir=/…

1

2

Advantage: quicker than doing a completely new modelling



GPU Offload Analysis 
with Intel® VTuneTM
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VTune GPU Profiling Recipe 
Tw

o 
ty

pe
s o

f a
na

ly
sis

Intel® VTune™ Profiler Performance Analysis Cookbook

Profiling a SYCL* Application running on a GPU (intel.com)

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-1/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-1/profiling-dpc-application.html
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STEP 1: Build and Compile 

 cd matrix_multiply_vtune
mkdir build –p
cd build
cmake ..
make

 icpx -g -O3 -fsycl -Wno-write-strings -w -D_Linux -MD -MT 
CMakeFiles/matrix.dpcpp.dir/src/matrix.cpp.o
-MF CMakeFiles/matrix.dpcpp.dir/src/matrix.cpp.o.d
-o CMakeFiles/matrix.dpcpp.dir/src/matrix.cpp.o
-c /home/stephen/dv/LRZ-DEMOS/2-VTUNE-
GPU/matrix_multiply_vtune/src/matrix.cpp
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The Starting point – Running a Performance Snapshot 
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Choose one of the Accelerator Analysis Types
[GPU Offload  is best to do first]
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GPU Offload Analysis
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gpu-offload (GPU Offload Analysis)

Explore code execution on various CPU and GPU 
cores on your platform.

Correlate CPU and GPU activity.

 Identify whether your application is GPU or CPU 
bound.
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Command line for GPU Offload Analysis

vtune -collect gpu-offload 

--app-working-dir=/home/stephen/dv/LRZ-
DEMOS/2-VTUNE-GPU 

-- /home/stephen/dv/LRZ-DEMOS/2-VTUNE-
GPU/03-run.sh
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Running a First Analysis -
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Hottest CPU and GPU Tasks
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The Platform Tab
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The Graphics Tab
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GPU Compute/Media Hotspots analysis
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gpu-hotspots (GPU Compute/Media Hotspots analysis)

Explore GPU kernels with high GPU utilization, estimate 
the effectiveness of this utilization, identify possible 
reasons for stalls or low occupancy and options.

Explore the performance of your application per selected 
GPU metrics over time.

Analyze the hottest SYCL* standards or OpenCL™ kernels 
for inefficient kernel code algorithms or incorrect work 
item configuration.
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Configure Analysis
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Running a GPU Compute/Media Hotspots analysis
Characterization: Overview

vtune -collect gpu-hotspots 

--app-working-dir=/home/stephen/dv/LRZ-DEMOS/2-VTUNE-GPU 

-- /home/stephen/dv/LRZ-DEMOS/2-VTUNE-GPU/03-run.sh
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Running a GPU Compute/Media Hotspots analysis
Characterization: Compute Basic

vtune -collect gpu-hotspots 

-knob characterization-mode=global-local-accesses 

--app-working-dir=/home/stephen/dv/LRZ-DEMOS/2-VTUNE-GPU

-- /home/stephen/dv/LRZ-DEMOS/2-VTUNE-GPU/03-run.sh
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Running a GPU Compute/Media Hotspots analysis
Characterization: Full Compute

vtune -collect gpu-hotspots 

-knob characterization-mode=full-compute 

--app-working-dir=/home/stephen/dv/LRZ-DEMOS/2-VTUNE-GPU

-- /home/stephen/dv/LRZ-DEMOS/2-VTUNE-GPU/03-run.sh
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Running a GPU Compute/Media Hotspots analysis
Characterization: Dynamic Instruction Count

vtune -collect gpu-hotspots

-knob characterization-mode=instruction-count 

--app-working-dir=/home/stephen/dv/LRZ-DEMOS/2-VTUNE-GPU 

-- /home/stephen/dv/LRZ-DEMOS/2-VTUNE-GPU/03-run.sh
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GPU Hotspots - Summary
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Graphics Tab
Instruction count – by Type



GPU Roofline Analysis 
with Intel® Advisor
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Roofline Summary (GPU)

 Similar usage to CPU roofline!
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GPU Roofline differences to CPU Roofline

• The dots on the chart correspond to OpenCL, OpenMP, Level Zero and SYCL kernels, 
while in the CPU version, they correspond to individual loops.

• Some displayed information and controls (for example, thread/core count) are not 
relevant to GPU Roofline. For more information, see the table below.

• The GPU Roofline chart enables you to view arithmetic intensity of one kernel at 
multiple memory levels. To do so, double-click a dot representing this kernel or select 
it and press ENTER. The dots that appear on the Roofline chart correspond to different 
memory levels used to calculate arithmetic intensity. Hover over a dot to identify its 
arithmetic intensity. To show or hide certain dots from a chart, use the Memory 
Level drop-down filter.

Measure GPU Performance Using GPU Roofline (intel.com)

https://www.intel.com/content/www/us/en/docs/advisor/get-started-guide/2023-1/measure-gpu-performance-using-gpu-roofline.html
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A GPU Roofline
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Cookbook Example

 Intel® Advisor Performance Optimization Cookbook

 Analyze a SYCL Application with GPU Roofline (intel.com)

https://cdrdv2.intel.com/v1/dl/getContent/720943Example Results:

https://www.intel.com/content/www/us/en/docs/advisor/cookbook/2023-1/overview.html
https://www.intel.com/content/www/us/en/docs/advisor/cookbook/2023-1/use-cli-to-analyze-dpcpp-with-gpu-roofline.html


Lammps offloading
Stephen Blair-Chappell 

stephen AT sbcnow DOT co DOT uk



Test Application
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https://www.lammps.org/



Optimize Your GPU Application with the Intel® 
oneAPI Base Toolkit

https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/gpu-optimization-workflow.html



Machine 1 Spec - Workstation
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Machine 2 Spec - Laptop
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Analyze

60
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https://www.intel.com/content/www/us/en/developer/tools/oneapi/gpu-optimization-workflow.html

ANALYZE



Goal of Analysis

1. Find the ‘hot spots’ 2. if possible, predict benefit of 
offloading 

62
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64LAB1
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Steps to Offload Projection with Advisor

1. Run a Survey:      get a list of hotspots
advisor -collect survey  … 

2. Run a Trip Count:   count loop iteration 
advisor -collect=tripcounts -target-device=gen9_gt2  . . .

3. Perform a dependency analysis [optional for quick modelling]
advisor -collect dependencies . . .  

4. Model the Performance 
advisor -collect projection  -no-assume-dependencies . . .

66

• Sampling
• Binary Static Analysis
• Compiler & debug info

• Trip count  
• Cache simulation

• Check memory accesses
• Loop selection heuristic

• Generate HTML report

Ex
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686
8

https://www.intel.com/content/www/us/en/developer/tools/oneapi/gpu-optimization-workflow.html

IMPLEMENT

ANALYZE
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TWO TYPES OF COMPILER

 CLASSIC [Same as was in Parallel Studio]

 icc

 icpc

 ifort

6
9

LLVM based  [Totally new compilers]

• icx
• dpcpp
• ifx

All 
objects 
are binary 
compatibleOffloading

supported

Offloading not 
supported

Deprecated and will be 
removed from product 
release in the second 
half of 2023



70

One  approach . . .

7

icc

icx

.cpp.cpp.cpp.cpp.cpp.cpp

.cpp icx
Lammps
executable

contains
offload

code

CLASSIC

LLVM

LLVM

NB: icc deprecated mid 2023
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. . . or alternatively 

7
1

icx

icx

.cpp.cpp.cpp.cpp.cpp.cpp

.cpp icx
Lammps
executable

contains
offload

code

LLVM

LLVM

LLVM
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GPU Architecture

72

Slice

SubSlice

Execution Unit with SIMD ALUs

72
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GPU Architecture

73 73

#pragma omp target

Sends Code to target  
but only on one sub-slice

parallel for
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OpenMP GPU Offload and OpenMP  Constructs

74

• OpenMP GPU offload support all “normal” OpenMP constructs

• E.g. parallel, for/do, barrier, sections, tasks, etc.

• Not every construct will be useful

• Full threading model outside of a single GPU subslice not supported 

• No synchronization among subslices

• No coherence and memory fence between among subslice L1 caches

74
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GPU Architecture

75 75

#pragma omp target teams

Share code across subslices
but only on one EU

parallel for
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GPU Architecture

76 76

#pragma omp target teams distribute

Distributes loop iterations 
across all EUs

parallel for
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GPU Architecture

77 77

#pragma omp target teams distribute simd parallel 

Uses SIMD wide registers 
in execution units
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Experiment in Lammps -Target

78
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Experiment in Lammps –Indirect Indexes

79



Debug

80



81

https://www.intel.com/content/www/us/en/developer/tools/oneapi/gpu-optimization-workflow.html

IMPLEMENT

ANALYZE

DEBUG
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Tool Description
Environment variables Gather diagnostic information from the OpenMP and SYCL runtimes at program 

execution with no modifications to your program.

Onetrace From Profiling Tools Interfaces for GPU (PTI for GPU). Used to debug backend 
errors and for performance profiling on both the host and device.

Intercept Layer for OpenCL™
Applications

Used to debug backend errors and for performance profiling on both the host and 
device (has wider functionality comparing with onetrace).

Intel® Distribution for GDB* Used for source-level debugging of the application, typically to inspect logical 
bugs, on the host and any devices you are using (CPU, GPU, FPGA emulation).

Intel® Inspector locate and debug memory and threading problems, including those that can 
cause offloading to fail.

In-application debugging printf; looking at output of apps  etc, etc
Intel® Advisor Use to ensure Fortran, C, C++, OpenCL™, and SYCL applications realize full 

performance potential on modern processors.

Intel® VTune TM   Profiler Use to gather performance data either on the native system or on a remote 
system.

oneAPI Debug Tools (intel.com)

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/software-development-process/debugging-the-dpcpp-and-openmp-offload-process/oneapi-debug-tools.html


Example – offload on Laptop
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Runtime FAILS

Get Visibility

Get Visibility

The Solution



Tune

84
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https://www.intel.com/content/www/us/en/developer/tools/oneapi/gpu-optimization-workflow.html

IMPLEMENT

ANALYZE

DEBUG TUNE
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VTune Results - 1

87

Shorter Elapsed Time

Increased Thread Count

Increased GPU Usage

25
40

0.3
%

1 %
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Reduced Core Utilization

INCREASED GPU Utilization when busy



QUESTIONS?
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Notices & Disclaimers
Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.  

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.
See configuration disclosure for details.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

http://www.intel.com/PerformanceIndex
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