
using Intel® VTune and
Intel® Advisor on GPUs:
Stephen Blair-Chappell

External Intel Certified oneAPI Instructor

7th June 2023

Introduction

3

About Me
Stephen Blair-Chappell is an
independent software consultant and is an Intel
certified oneAPI instructor. He was formerly the
Technical Director at Bayncore where he led a team
of consultants providing HPC and AI training on Intel
Architecture. For 18 years he was a Technical
Consulting Engineer at Intel helping their strategic
customers in software optimisation and code
modernisation. He is author of the book "Parallel
Programming with Intel Parallel Studio XE".

stephen-at-sbcnow-dot-co-dot-uk

4

Today’s session is about getting visibility

5

Agenda

Occupancy

GPU Offload Modelling with Advisor

GPU Offload Analysis with Intel Vtune

GPU Roofline Analysis with Intel Advisor

 Experience with Lammps

Q & A

6

Host with accelerator GPUs

7

Programmers' perspective: Three things to consider

 Offload the code to the device

Choosing appropriate kernel code

Manage the transfer of Data

(a) Mitigating against
communication & memory latency

(b) Re-use of data

 Implement Parallelism

Maximising Occupancy

7

8

Programmers' perspective: Three things to consider

 Offload the code to the device

Choosing appropriate kernel code

Manage the transfer of Data

(a) Mitigating against
communication & memory latency

(b) Re-use of data

 Implement Parallelism

Maximising Occupancy

8

Offload Modelling
(Advisor)

Roofline Modelling
(Advisor)

GPU Profiling
VTune

Today’s examples

9

GPU Occupancy

10

11

Xe-LP configuration

 6 Cores

 16 Vector
Engines/core
[Total 96]

 7 Threads

 16 FP16
ops/clock/VE

12

Maximum
Occupancy
Calculator

https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/GPU-Occupancy-Calculator

Intel® GPU Occupancy Calculator

https://github.com/oneapi-src/oneAPI-samples/tree/master/Tools/GPU-Occupancy-Calculator
https://oneapi-src.github.io/oneAPI-samples/Tools/GPU-Occupancy-Calculator/

13

Language concepts for max occupancy

SYCL OpenMP

Work-item Thread

Sub-group Team

Work-Group League

14

Tool Description
Environment variables Gather diagnostic information from the OpenMP and SYCL runtimes at program

execution with no modifications to your program.

Onetrace From Profiling Tools Interfaces for GPU (PTI for GPU). Used to debug backend
errors and for performance profiling on both the host and device.

Intercept Layer for OpenCL™
Applications

Used to debug backend errors and for performance profiling on both the host and
device (has wider functionality comparing with onetrace).

Intel® Distribution for GDB* Used for source-level debugging of the application, typically to inspect logical
bugs, on the host and any devices you are using (CPU, GPU, FPGA emulation).

Intel® Inspector locate and debug memory and threading problems, including those that can
cause offloading to fail.

In-application debugging printf; looking at output of apps etc, etc
Intel® Advisor Use to ensure Fortran, C, C++, OpenCL™, and SYCL applications realize full

performance potential on modern processors.

Intel® VTune TM Profiler Use to gather performance data either on the native system or on a remote
system.

oneAPI Debug Tools (intel.com)

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/software-development-process/debugging-the-dpcpp-and-openmp-offload-process/oneapi-debug-tools.html

Advisor Offload
Modelling

16

Offload Modelling – doing it by hand

CPU1 Run code on CPU and find hotspots

3 Implement offload using SYCL or OpenMP

4 Run code on CPU and GPU
and see if there is a speed up

CPU GPU

2 Examine results – decide which hotspots are suitable for offloading

Potentially tim
e-consum

ing.
Possibly no return-on-investm

ent

17

Offload Modelling – with Advisor

CPU1 Run code on CPU using Advisor
(multiple stage profiling collection)

Advisor
Simulates
all these
stages

CPU

Report

18

Demo – Our Example
oneapi-cli

make CXX=icpx EXTRA_CFLAGS=-g

19

Using accuracy presets to control modelling
• Default (Medium Accuracy)
advisor --collect=offload --config=gen12_tgl
--project-dir=./cpu2gpu_offload_modeling --
./release/Mandelbrot 1

• Low Accuracy
advisor --collect=offload –accuracy=low
--config=gen12_tgl --project-
dir=./cpu2gpu_offload_modeling --
./release/Mandelbrot 1

• Getting list of steps
advisor --collect=offload –-dry-run
--config=gen12_tgl --project-
dir=./cpu2gpu_offload_modeling --
./release/Mandelbrot 1

Low Medium High

5-10x
overhead

15-50x
overhead

50-80x
overhead

Survey
Trip Count

Offload
Modelling

Survey
Trip Count

Offload
Modelling

Survey
Trip Count

Dependency
analysis
Offload

Modelling

L1 Cache L1 Cache
+ Host-

Device data

L1 Cache
+ Host-

Device data

20

Steps to Offload Projection with Advisor

1. Run a Survey: get a list of hotspots
advisor -collect survey …

2. Run a Trip Count: count loop iteration
advisor -collect=tripcounts -target-device=gen9_gt2 . . .

3. Perform a dependency analysis [optional for quick modelling]
advisor -collect dependencies . . .

4. Model the Performance
advisor -collect projection -no-assume-dependencies . . .

20

• Sampling
• Binary Static Analysis
• Compiler & debug info

• Trip count
• Cache simulation

• Check memory accesses
• Loop selection heuristic

• Generate HTML report

Ex
pe

ns
iv

e
St

ep
s

21

DRY RUN LOWACCURACY===
advisor: The 'offload' is a special batch mode for data collection. It runs several analyses one by one.
advisor --collect=survey --auto-finalize --static-instruction-mix --project-dir=./cpu2gpu_offload_modeling
-- ./03-run.sh
advisor --collect=tripcounts --flop --auto-finalize --target-device=gen12_tgl --project-
dir=./cpu2gpu_offload_modeling -- ./03-run.sh
advisor --collect=projection --no-assume-dependencies --config=gen12_tgl --project-
dir=./cpu2gpu_offload_modeling -- ./03-run.sh
DRY RUN MEDIUM ACCURACY===
advisor: The 'offload' is a special batch mode for data collection. It runs several analyses one by one.
advisor --collect=survey --auto-finalize --static-instruction-mix --project-dir=./cpu2gpu_offload_modeling
-- ./03-run.sh
advisor --collect=tripcounts --flop --stacks --auto-finalize --cache-simulation=single --data-transfer=light
--target-device=gen12_tgl --project-dir=./cpu2gpu_offload_modeling -- ./03-run.sh
advisor --collect=projection --no-assume-dependencies --config=gen12_tgl --project-
dir=./cpu2gpu_offload_modeling -- ./03-run.sh
DRY RUN HIGH ACCURACY===
advisor: The 'offload' is a special batch mode for data collection. It runs several analyses one by one.
advisor --collect=survey --auto-finalize --static-instruction-mix --project-dir=./cpu2gpu_offload_modeling
-- ./03-run.sh
advisor --collect=tripcounts --flop --stacks --auto-finalize --cache-simulation=single --data-
transfer=medium --target-device=gen12_tgl --project-dir=./cpu2gpu_offload_modeling -- ./03-run.sh
advisor --collect=dependencies --filter-reductions --loop-call-count-limit=16 --
select=markup=gpu_generic --project-dir=./cpu2gpu_offload_modeling -- ./03-run.sh
advisor --collect=projection --config=gen12_tgl --project-dir=./cpu2gpu_offload_modeling -- ./03-run.sh

LO
W

 M
EDIU

M
 HIGH

22

Summary

23

Summary Accelerated
code

speedup

Original App
Time

% of time
candidate

code took in
original app

App speedup

New App
Time

Combined time spent on host and target after aceleration

24

Loop Offload (from Summary Page)
Top Five offload candidates

Top Five non-offload (only in CPU-GPU)

25

GPU-GPU modelling

 Add the –gpu flag

 Runs code on ACTUAL GPU and models against new GPU.

Use when upgrading from one GPU to another one.

NB: use –accuracy=low

26

Comparison of CPU-GPU and GPU-GPU modelling
CPU-GPU GPU-GPU

Survey Survey (on GPU)
Trip Count Trip Count

(Characterization
- num Floats and Integer

operations)
Dependency Check x

Model Offloading Model Offloading

27

Re-modelling for a different GPU
- once you already have a set of results

1. Adjust Values
2. Save parameters
3. Re-run modelling

e.g.: advisor -c=projection
--custom-config=config.toml
--config=gen12_tgl
--project-dir=/…

1

2

Advantage: quicker than doing a completely new modelling

GPU Offload Analysis
with Intel® VTuneTM

29

VTune GPU Profiling Recipe
Tw

o
ty

pe
s o

f a
na

ly
sis

Intel® VTune™ Profiler Performance Analysis Cookbook

Profiling a SYCL* Application running on a GPU (intel.com)

https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-1/overview.html
https://www.intel.com/content/www/us/en/docs/vtune-profiler/cookbook/2023-1/profiling-dpc-application.html

30

STEP 1: Build and Compile

 cd matrix_multiply_vtune
mkdir build –p
cd build
cmake ..
make

 icpx -g -O3 -fsycl -Wno-write-strings -w -D_Linux -MD -MT
CMakeFiles/matrix.dpcpp.dir/src/matrix.cpp.o
-MF CMakeFiles/matrix.dpcpp.dir/src/matrix.cpp.o.d
-o CMakeFiles/matrix.dpcpp.dir/src/matrix.cpp.o
-c /home/stephen/dv/LRZ-DEMOS/2-VTUNE-
GPU/matrix_multiply_vtune/src/matrix.cpp

31

The Starting point – Running a Performance Snapshot

32

Choose one of the Accelerator Analysis Types
[GPU Offload is best to do first]

33

GPU Offload Analysis

34

gpu-offload (GPU Offload Analysis)

Explore code execution on various CPU and GPU
cores on your platform.

Correlate CPU and GPU activity.

 Identify whether your application is GPU or CPU
bound.

35

36

Command line for GPU Offload Analysis

vtune -collect gpu-offload

--app-working-dir=/home/stephen/dv/LRZ-
DEMOS/2-VTUNE-GPU

-- /home/stephen/dv/LRZ-DEMOS/2-VTUNE-
GPU/03-run.sh

37

Running a First Analysis -

38

Hottest CPU and GPU Tasks

39

The Platform Tab

40

The Graphics Tab

41

GPU Compute/Media Hotspots analysis

42

gpu-hotspots (GPU Compute/Media Hotspots analysis)

Explore GPU kernels with high GPU utilization, estimate
the effectiveness of this utilization, identify possible
reasons for stalls or low occupancy and options.

Explore the performance of your application per selected
GPU metrics over time.

Analyze the hottest SYCL* standards or OpenCL™ kernels
for inefficient kernel code algorithms or incorrect work
item configuration.

43

Configure Analysis

44

Running a GPU Compute/Media Hotspots analysis
Characterization: Overview

vtune -collect gpu-hotspots

--app-working-dir=/home/stephen/dv/LRZ-DEMOS/2-VTUNE-GPU

-- /home/stephen/dv/LRZ-DEMOS/2-VTUNE-GPU/03-run.sh

45

Running a GPU Compute/Media Hotspots analysis
Characterization: Compute Basic

vtune -collect gpu-hotspots

-knob characterization-mode=global-local-accesses

--app-working-dir=/home/stephen/dv/LRZ-DEMOS/2-VTUNE-GPU

-- /home/stephen/dv/LRZ-DEMOS/2-VTUNE-GPU/03-run.sh

46

Running a GPU Compute/Media Hotspots analysis
Characterization: Full Compute

vtune -collect gpu-hotspots

-knob characterization-mode=full-compute

--app-working-dir=/home/stephen/dv/LRZ-DEMOS/2-VTUNE-GPU

-- /home/stephen/dv/LRZ-DEMOS/2-VTUNE-GPU/03-run.sh

47

Running a GPU Compute/Media Hotspots analysis
Characterization: Dynamic Instruction Count

vtune -collect gpu-hotspots

-knob characterization-mode=instruction-count

--app-working-dir=/home/stephen/dv/LRZ-DEMOS/2-VTUNE-GPU

-- /home/stephen/dv/LRZ-DEMOS/2-VTUNE-GPU/03-run.sh

48

GPU Hotspots - Summary

49

Graphics Tab
Instruction count – by Type

GPU Roofline Analysis
with Intel® Advisor

51

Roofline Summary (GPU)

 Similar usage to CPU roofline!

52

GPU Roofline differences to CPU Roofline

• The dots on the chart correspond to OpenCL, OpenMP, Level Zero and SYCL kernels,
while in the CPU version, they correspond to individual loops.

• Some displayed information and controls (for example, thread/core count) are not
relevant to GPU Roofline. For more information, see the table below.

• The GPU Roofline chart enables you to view arithmetic intensity of one kernel at
multiple memory levels. To do so, double-click a dot representing this kernel or select
it and press ENTER. The dots that appear on the Roofline chart correspond to different
memory levels used to calculate arithmetic intensity. Hover over a dot to identify its
arithmetic intensity. To show or hide certain dots from a chart, use the Memory
Level drop-down filter.

Measure GPU Performance Using GPU Roofline (intel.com)

https://www.intel.com/content/www/us/en/docs/advisor/get-started-guide/2023-1/measure-gpu-performance-using-gpu-roofline.html

53

A GPU Roofline

54

Cookbook Example

 Intel® Advisor Performance Optimization Cookbook

 Analyze a SYCL Application with GPU Roofline (intel.com)

https://cdrdv2.intel.com/v1/dl/getContent/720943Example Results:

https://www.intel.com/content/www/us/en/docs/advisor/cookbook/2023-1/overview.html
https://www.intel.com/content/www/us/en/docs/advisor/cookbook/2023-1/use-cli-to-analyze-dpcpp-with-gpu-roofline.html

Lammps offloading
Stephen Blair-Chappell

stephen AT sbcnow DOT co DOT uk

Test Application

56

https://www.lammps.org/

Optimize Your GPU Application with the Intel®
oneAPI Base Toolkit

https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/gpu-optimization-workflow.html

Machine 1 Spec - Workstation

58

Machine 2 Spec - Laptop

59

Analyze

60

61

https://www.intel.com/content/www/us/en/developer/tools/oneapi/gpu-optimization-workflow.html

ANALYZE

Goal of Analysis

1. Find the ‘hot spots’ 2. if possible, predict benefit of
offloading

62

63

64LAB1

65

Steps to Offload Projection with Advisor

1. Run a Survey: get a list of hotspots
advisor -collect survey …

2. Run a Trip Count: count loop iteration
advisor -collect=tripcounts -target-device=gen9_gt2 . . .

3. Perform a dependency analysis [optional for quick modelling]
advisor -collect dependencies . . .

4. Model the Performance
advisor -collect projection -no-assume-dependencies . . .

66

• Sampling
• Binary Static Analysis
• Compiler & debug info

• Trip count
• Cache simulation

• Check memory accesses
• Loop selection heuristic

• Generate HTML report

Ex
pe

ns
iv

e
St

ep
s

67

686
8

https://www.intel.com/content/www/us/en/developer/tools/oneapi/gpu-optimization-workflow.html

IMPLEMENT

ANALYZE

69

TWO TYPES OF COMPILER

 CLASSIC [Same as was in Parallel Studio]

 icc

 icpc

 ifort

6
9

LLVM based [Totally new compilers]

• icx
• dpcpp
• ifx

All
objects
are binary
compatibleOffloading

supported

Offloading not
supported

Deprecated and will be
removed from product
release in the second
half of 2023

70

One approach . . .

7

icc

icx

.cpp.cpp.cpp.cpp.cpp.cpp

.cpp icx
Lammps
executable

contains
offload

code

CLASSIC

LLVM

LLVM

NB: icc deprecated mid 2023

71

. . . or alternatively

7
1

icx

icx

.cpp.cpp.cpp.cpp.cpp.cpp

.cpp icx
Lammps
executable

contains
offload

code

LLVM

LLVM

LLVM

72

GPU Architecture

72

Slice

SubSlice

Execution Unit with SIMD ALUs

72

73

GPU Architecture

73 73

#pragma omp target

Sends Code to target
but only on one sub-slice

parallel for

74

OpenMP GPU Offload and OpenMP Constructs

74

• OpenMP GPU offload support all “normal” OpenMP constructs

• E.g. parallel, for/do, barrier, sections, tasks, etc.

• Not every construct will be useful

• Full threading model outside of a single GPU subslice not supported

• No synchronization among subslices

• No coherence and memory fence between among subslice L1 caches

74

75

GPU Architecture

75 75

#pragma omp target teams

Share code across subslices
but only on one EU

parallel for

76

GPU Architecture

76 76

#pragma omp target teams distribute

Distributes loop iterations
across all EUs

parallel for

77

GPU Architecture

77 77

#pragma omp target teams distribute simd parallel

Uses SIMD wide registers
in execution units

78

Experiment in Lammps -Target

78

79

Experiment in Lammps –Indirect Indexes

79

Debug

80

81

https://www.intel.com/content/www/us/en/developer/tools/oneapi/gpu-optimization-workflow.html

IMPLEMENT

ANALYZE

DEBUG

82

Tool Description
Environment variables Gather diagnostic information from the OpenMP and SYCL runtimes at program

execution with no modifications to your program.

Onetrace From Profiling Tools Interfaces for GPU (PTI for GPU). Used to debug backend
errors and for performance profiling on both the host and device.

Intercept Layer for OpenCL™
Applications

Used to debug backend errors and for performance profiling on both the host and
device (has wider functionality comparing with onetrace).

Intel® Distribution for GDB* Used for source-level debugging of the application, typically to inspect logical
bugs, on the host and any devices you are using (CPU, GPU, FPGA emulation).

Intel® Inspector locate and debug memory and threading problems, including those that can
cause offloading to fail.

In-application debugging printf; looking at output of apps etc, etc
Intel® Advisor Use to ensure Fortran, C, C++, OpenCL™, and SYCL applications realize full

performance potential on modern processors.

Intel® VTune TM Profiler Use to gather performance data either on the native system or on a remote
system.

oneAPI Debug Tools (intel.com)

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/software-development-process/debugging-the-dpcpp-and-openmp-offload-process/oneapi-debug-tools.html

Example – offload on Laptop

83

Runtime FAILS

Get Visibility

Get Visibility

The Solution

Tune

84

85

https://www.intel.com/content/www/us/en/developer/tools/oneapi/gpu-optimization-workflow.html

IMPLEMENT

ANALYZE

DEBUG TUNE

86

VTune Results - 1

87

Shorter Elapsed Time

Increased Thread Count

Increased GPU Usage

25
40

0.3
%

1 %

88

Reduced Core Utilization

INCREASED GPU Utilization when busy

QUESTIONS?

90

Notices & Disclaimers
Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.
See configuration disclosure for details.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other
names and brands may be claimed as the property of others.

http://www.intel.com/PerformanceIndex

	using Intel® VTune and Intel® Advisor on GPUs:
	Introduction
	Slide Number 3
	Today’s session is about getting visibility
	Agenda
	Host with accelerator GPUs
	Programmers' perspective: Three things to consider
	Programmers' perspective: Three things to consider
	GPU Occupancy
	Slide Number 10
	Xe-LP configuration
	Maximum �Occupancy�Calculator
	Language concepts for max occupancy
	Slide Number 14
	Advisor Offload Modelling
	Offload Modelling – doing it by hand
	Offload Modelling – with Advisor
	Demo – Our Example�oneapi-cli
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Summary
	Summary
	Loop Offload (from Summary Page)
	GPU-GPU modelling
	Comparison of CPU-GPU and GPU-GPU modelling
	Re-modelling for a different GPU �- once you already have a set of results
	GPU Offload Analysis with Intel® VTuneTM
	VTune GPU Profiling Recipe
	STEP 1: Build and Compile �
	The Starting point – Running a Performance Snapshot
	Choose one of the Accelerator Analysis Types�[GPU Offload is best to do first]
	GPU Offload Analysis
	gpu-offload (GPU Offload Analysis)�
	Slide Number 35
	Command line for GPU Offload Analysis
	Running a First Analysis -
	Hottest CPU and GPU Tasks
	The Platform Tab
	The Graphics Tab
	GPU Compute/Media Hotspots analysis
	gpu-hotspots (GPU Compute/Media Hotspots analysis)
	Configure Analysis
	Running a GPU Compute/Media Hotspots analysis�Characterization: Overview
	Running a GPU Compute/Media Hotspots analysis�Characterization: Compute Basic
	Running a GPU Compute/Media Hotspots analysis�Characterization: Full Compute
	Running a GPU Compute/Media Hotspots analysis�Characterization: Dynamic Instruction Count
	GPU Hotspots - Summary
	Graphics Tab�Instruction count – by Type
	GPU Roofline Analysis with Intel® Advisor
	Roofline Summary (GPU)
	GPU Roofline differences to CPU Roofline
	A GPU Roofline
	Cookbook Example
	Lammps offloading
	Test Application
	Optimize Your GPU Application with the Intel® oneAPI Base Toolkit
	Machine 1 Spec - Workstation
	Machine 2 Spec - Laptop
	Analyze
	Slide Number 61
	Goal of Analysis
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	TWO TYPES OF COMPILER
	One approach . . .
	. . . or alternatively
	GPU Architecture
	GPU Architecture
	OpenMP GPU Offload and OpenMP Constructs
	GPU Architecture
	GPU Architecture
	GPU Architecture
	Experiment in Lammps -Target
	Experiment in Lammps –Indirect Indexes
	Debug
	Slide Number 81
	Slide Number 82
	Example – offload on Laptop
	Tune
	Slide Number 85
	Slide Number 86
	VTune Results - 1
	Slide Number 88
	QUESTIONS?
	Slide Number 90
	Notices & Disclaimers

