
All information provided in this deck is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Intel® Distribution for GDB*
A Cross-Architecture Application
Debugger

LRZ Workshop

Alina Shadrina

alina.shadrina@intel.com

mailto:alina.shadrina@intel.com

Agenda

▪ System Requirements Overview
▪ Key features
▪ DPC++ Linux* Demo
▪ Debugging Multi-Tile GPU
▪ C++: Debugging OpenMP* offload
▪ Other Debug Capabilities

3

System Requirements Overview

4

Windows*

Language Support

Data Parallel C++ (DPC++)

C \ C++

Fortran

OpenMP

IDE Support

Visual Studio Code *

OS Support

Windows* 10, 64-bit

GPUs CPUs

Intel® Core™ Processor family

Intel® Xeon® Processor family

FPGA

Emulation device only

Microsoft Visual Studio 2022*

Intel® Distribution for GDB* Release Notes
Intel® Distribution for GDB* System Requirements

Intel® Xeon® Scalable
Performance processors

Windows* 11, 64-bit

Intel® Arc™ Series

https://software.intel.com/content/www/us/en/develop/articles/gdb-release-notes.html
https://software.intel.com/content/www/us/en/develop/articles/gdb-system-requirements.html

5

Linux*

Language Support

Data Parallel C++ (DPC++)

C \ C++

Fortran

OpenMP

IDE Support

Eclipse *

OS Support

GPUs FPGA

Emulation device only

Visual Studio Code *

Intel® Distribution for GDB* Release Notes
Intel® Distribution for GDB* System Requirements

CPUs

Intel® Core™ Processor family

Intel® Xeon® Processor family

Intel® Xeon® Scalable
Performance processors

Intel® Arc™ Series

Intel® Data Center GPU Flex
Series

Intel® Data Center GPU Max

Ubuntu* 20.04, 22.04

SLES* 15

RHEL* 8, 9

https://software.intel.com/content/www/us/en/develop/articles/gdb-release-notes.html
https://software.intel.com/content/www/us/en/develop/articles/gdb-system-requirements.html

6

Key features

Multi-node debugging MPI applications Not supported

Multi-thread debugging On the same GPU Supported

Multi-user debugging On the same GPU Not supported; GPU is
blocked by the debugger

Multi-target debugging debug GPU and CPU code
in the same session

Supported

• Command line debugging on the same machine: gdb-oneapi
• IDE Integration

• 2 machines required: CPU host and GPU target
• Device support:

7

CPU and GPU Debugging:
Major Differences

Aspect Description CPU GPU

Threads and single
instruction, multiple

data (SIMD) lanes

When the code is
vectorized, threads
process vectors of
data elements in

parallel

Not supported Context switch supported

Inferior calls Inferior calls are calls
to kernel functions

from inside the
debugger as part of

expression
evaluation

Inferior calls are
supported.

Inferior calls are not
supported.

8

CPU and GPU Debugging:
Commands Differences

Command Description GPU Modification Example

disassemble Disassemble the current function.
GEN instructions and
registers are shown.

N/A

step
Single-step a source line, stepping into function

calls.

SIMD lanes are supported,
and SIMD lane switches can

occur.

next

[Switching to SIMD lane0]
stepi Single-step a machine instruction.

next
Single-step a source line, stepping over

function calls.

thread
Switch context to the SIMD lane of the specified

thread.
SIMD lanes are supported. thread 2.5:1

thread apply
Apply a command to the specified SIMD lane of

the thread.

SIMD lanes are supported. thread apply 2.3:* print

element

9

CPU and GPU Debugging:
Commands Differences

Command Description GPU Modification Example

info threads Display information about threads with ID,
including their active SIMD lanes.

SIMD lanes are supported. N/A

commands Specify a list of commands to execute when your
program stops due to a particular breakpoint.

/a modifier - breakpoint actions
apply to all SIMD lanes that match the
condition of the specified breakpoint.

commands /a

print element

end

break Create a breakpoint at a specified line. Create a breakpoint at a special SIMD
lane 3 of thread 2

break 56 thread 2:3

Specify a breakpoint for a particular
inferior 2

break 56 inferior 2

10

DPC++ Linux* Demo
(Command Line)

11

Array Transform Sample

▪ Prerequisites:

• Get Started Guide to configure the debugger

▪ Clone oneAPI-samples:

git clone https://github.com/oneapi-src/oneAPI-samples.git

cd oneAPI-samples/Tools/ApplicationDebugger/array-transform

▪ Set oneAPI environment:

source /opt/intel/oneapi/setvars.sh

Debugging with Intel® Distribution for GDB* on Linux* OS Host

https://software.intel.com/en-us/get-started-with-debugging-dpcpp
https://github.com/oneapi-src/oneAPI-samples
https://github.com/oneapi-src/oneAPI-samples.git
https://www.intel.com/content/www/us/en/develop/documentation/debugging-dpcpp-linux/top.html

12

Array Transform Sample

▪ Enable i915 debug support in kernel persistently:

• Requires sudo!

• cat /etc/default/grub

• Make sure your GRUB_CMDLINE_LINUX_DEFAULT contains:

i915.debug_eu=1 drm.debug=0xa i915.enable_hangcheck=0

i915.debugger_timeout_ms=0

▪ Enable i915 debug support in Kernel:

• cat /sys/class/drm/card*/prelim_enable_eu_debug

• Make sure the output is 1

Debugging with Intel® Distribution for GDB* on Linux* OS Host

https://www.intel.com/content/www/us/en/develop/documentation/debugging-dpcpp-linux/top.html

13

Diagnostics Utility

▪ For the default oneAPI installation:
• python3 /opt/intel/oneapi/diagnostics/latest/diagnostics.py --filter

debugger_sys_check –force

▪ Expected output:

14

Array Transform Sample on CPU

▪ Build:
icpx -fsycl -g -O0 array-transform.cpp -o array-transform.exe

▪ Run:
ONEAPI_DEVICE_SELECTOR=*:cpu ./array-transform.exe cpu

▪ Run under the debugger:

ONEAPI_DEVICE_SELECTOR=*:cpu gdb-oneapi --args ./ array-transform.exe cpu

15

Array Transform Sample on GPU

▪ Build:
icpx -fsycl -g -O0 jacobi.cpp -o array-transform.exe

▪ Run:
ONEAPI_DEVICE_SELECTOR=level_zero:gpu gdb-oneapi ./ array-transform.exe gpu

▪ Enable debugging:
export ZET_ENABLE_PROGRAM_DEBUGGING=1

export IGC_EnableGTLocationDebugging=1

▪ Run under the debugger:
ONEAPI_DEVICE_SELECTOR=level_zero:gpu gdb-oneapi --args ./ array-transform.exe gpu

16

Debugging on GPU

▪ info inferiors - make sure you are on GPU now

▪ info threads - inspect threads

▪ thread 2.<Thread_number>:<SIMD_lane> - switching between
threads

▪ info locals - print local threads variables

▪ disassemble - see disassemble

▪ set scheduler-locking step - step to the next

17

Debugging Multi-Tile GPU

18

ZE_AFFINITY_MASK

Value Behavior

0, 1 all devices and sub-devices are reported (same as default)

0 only device 0 is reported; with all its sub-devices

1 only device 1 is reported as device 0; with all its sub-devices

0.0 only device 0, sub-device 0 is reported as device 0

1.1 only device 1 is reported as device 0; with its sub-devices 1 and 2
reported as sub-devices 0 and 1, respectively

0.2, 1.3,
1.0, 0.3

both device 0 and 1 are reported; device 0 reports sub-devices 2 and 3
as sub-devices 0 and 1, respectively; device 1 reports sub-devices 0
and 3 as sub-devices 0 and 1, respectively; the order is unchanged.

19

Selecting Different Devices

▪ $ gdb-oneapi --args ./array-transform.exe gpu

▪ $ ZE_AFFINITY_MASK=0.0 gdb-oneapi --args ./array-

transform.exe gpu

▪ $ ZE_AFFINITY_MASK=1.0 gdb-oneapi --args ./array-

transform.exe gpu

20

Debugging OpenMP* Offload (C++)

21

Matmul build and run
▪ Build:

• icpx -O0 -g -fiopenmp -fopenmp-targets=spir64 matmul_offload.cpp -o

matmul_debug

▪ Disable device optimizations:
export ZET_ENABLE_PROGRAM_DEBUGGING=1

export IGC_EnableGTLocationDebugging=1

▪ Set up offloading:

• export OMP_TARGET_OFFLOAD="MANDATORY"

▪ Debug:

• gdb-oneapi ./matmul_debug

Expect full support for OpenMP offload for Fortran soon!

Get Started with OpenMP* Offload to GPU for the Intel® oneAPI DPC/C++ Compiler and Intel® Fortran Compiler

https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html

22

Other Debug Capabilities

23

oneAPI Debug Tools and Variables

▪ Specified level of tracing for SYCL Plugin Interface:

• SYCL_PI_TRACE={1,2,-1}

▪ GPU backends:

• Profiling Tools Interfaces for GPU (PTI GPU) - Level Zero Tracer ze_tracer

• Intercept Layer for OpenCL - How to Use the Intercept Layer for OpenCL™
Applications

▪ OpenMP Offload: LIBOMPTARGET_DEBUG

▪ Clang Sanitizers

Intel LLVM Compiler: Environment Variables docs

https://github.com/intel/pti-gpu/tree/master/tools/ze_tracer
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top/debugging-and-profiling/how-to-use-the-intercept-layer-for-opencl-applications.html
https://github.com/intel/llvm/blob/sycl/sycl/doc/EnvironmentVariables.md#sycl_pi_trace-options

24

Useful Links

▪Basic:

•Documentation & Code Samples

• Intel® Distribution for GDB* Release Notes

• Intel® Distribution for GDB* System Requirements

▪Advanced:

• oneAPI Debug Tools at Intel® oneAPI Programming Guide

•Get Started with OpenMP* Offload to GPU for the Intel®
oneAPI DPC/C++ Compiler and Intel® Fortran Compiler

https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-for-gdb.html#gs.p6k6my
https://software.intel.com/content/www/us/en/develop/articles/gdb-release-notes.html
https://software.intel.com/content/www/us/en/develop/articles/gdb-system-requirements.html
https://www.intel.com/content/www/us/en/docs/oneapi/programming-guide/2023-0/oneapi-debug-tools.html
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-cpp-fortran-compiler-openmp/top.html

QUESTIONS?

Notices & Disclaimers
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details.
No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, Xeon, Core, VTune, OpenVINO, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

27

