

Performance-Portable Earthquake Simulations in SeisSol using SYCL

Ravil Dorozhinskii, Michael Bader Technical University of Munich

oneAPI Workshop at LRZ: 2023

Munich, 5. June 2023

Tur Uhrenturm

Outline

Introduction

Code Generation and Structure

Wave Propagation GPU offloading

Local Time Stepping

Dynamic Rupture GPU offloading

Results

Conclusion

SeisSol

Software for simulating seismic waves and earthquake dynamic based on:

- Discontinious Galerking method
- ADER time-integration scheme
- Tetrahedral meshing

supports:

- Elastic and visco-elastic Wave Propagation (WP)
- Dynamic Rupture (DR) and Point sources
- Off-fault plasticity model
- Local and Global Time Stepping schemes
- Fused-simulations

came with:

- MPI+OpenMP parallelization
- Code Generation
- GPU offloading

WP using CUDA/HIP/SYCL DR using SYCL (OpenMP, experimental)

ПП

ADER-DG in a Nutshell

Update Scheme

$$Q_{k}^{n+1} = Q_{k}^{n} + M^{-1} (K^{\xi} \mathscr{D}_{k} A_{k}^{*} + K^{\eta} \mathscr{D}_{k} B_{k}^{*} + K^{\zeta} \mathscr{D}_{k} C_{k}^{*})$$

$$- \frac{1}{|J|} M^{-1} (\sum_{i=1}^{4} |S_{i}| F^{-,i} \mathscr{D}_{k} \widehat{A}_{k}^{+})$$

$$- \frac{1}{|J|} M^{-1} (\sum_{i=1}^{4} |S_{i}| F^{+,i,j_{k},h_{k}} \mathscr{D}_{k(i)} \widehat{A}_{k(i)}^{-})$$

$$(1)$$

Cauchy-Kowalewski

$$\mathscr{D}_{k} = \sum_{j=0}^{\mathscr{O}-1} \frac{(t^{n+1}-t^{n})^{j+1}}{(j+1)!} \frac{\partial^{j}}{\partial t^{j}} Q_{k}^{n}$$

$$\frac{\partial^{j+1}}{\partial t^{j+1}} Q_{k}^{n} = M^{-1} \left[(K^{\xi})^{T} (\frac{\partial^{j}}{\partial t^{j}} Q_{k}^{n}) A_{k}^{*} + (K^{\eta})^{T} (\frac{\partial^{j}}{\partial t^{j}} Q_{k}^{n}) B_{k}^{*} + (K^{\zeta})^{T} (\frac{\partial^{j}}{\partial t^{j}} Q_{k}^{n}) C_{k}^{*} \right]$$

$$(2)$$

Code Structure and Generation with YATeTo


```
volumeSum = self.Q['kp']
for i in range(3):
volumeSum += self.db.kDivM[i][self.t('kl')] * self.I['lq'] * self.starMatrix(i)['qp']
volume = (self.Q['kp'] <= volumeSum)</pre>
```

```
generator.add('volume', volume)
```

ПП

GPU computing in SeisSol

Single GPU performance - SeisSol-proxy

- Obtained with GemmForge - Binary Batched GEMMs

ПП

clustering

40000

30000

LTS in a Nutshell

Figure. Cluster-wise time stepping (R = 2).

10000

20000

Figure. Example of elements distribution over 6 LTS clusters. A cross section of LOH.1 benchmark.

Courant-Friedrichs-Lewy condition:

- necessary condition for convergence
- determined by local wave speed and element size

Workload per element, proposed by Breuer, Heinecke, and Bader in [1]:

$$w_k = R^{L-l_k} \tag{4}$$

where *R* is update cluster ratio, *L* is the total number of clusters and I_k is a linear index of the time cluster to which element *k* belongs.

30000

-20000

Graph-based Execution & LTS

Figure. Example of a CUDA graph.

R. Dorozhinskii, M. Bader | 2023 SIAM CSE | SeisSol - SYCL

Figure. Strong scaling of LOH.1 with 5mio mesh on A100 GPU.

Figure. Distribution of 5mio elements of LOH.1 benchmark.

Dynamic Rupture

$$F_{pk} = A_{pr} \int_{t}^{t+\Delta t} \int_{S} \Phi_{k} \tilde{Q}_{r} dS dt$$
$$F_{pk} = A_{pr} \sum_{i=1}^{2N+1} \sum_{l=1}^{N} \omega_{i}^{S} \omega_{l}^{T} \Phi_{k}(\vec{\xi}_{i}) \tilde{Q}_{r,il}$$

R. Dorozhinskii, M. Bader | 2023 SIAM CSE | SeisSol - SYCL

Aging Law:

$$\mu_{f} = a \cdot \sinh^{-1} \left[\frac{V}{2V_{0}} exp\left(\frac{f_{0} + b\ln(V_{0}\psi/L)}{a}\right) \right]$$
$$\frac{d\psi}{dt} = 1 - \frac{V\psi}{L}$$
$$\tau_{i,rl} \le \tau_{s_{i,rl}} = \max(0, -\mu_{f}\sigma_{n_{i,rl}})$$

11

DR GPU offloading: SYCL

for (size_t timeIndex{0}; timeIndex < misc::numTimeWeights; ++timeIndex) {
 sycl :: nd_range rng{{layerSize * misc::numPaddedPoints}, {misc::numPaddedPoints}};</pre>

/*code*/

```
this->queue.submit([&](sycl::handler& cgh) {
    sycl :: accessor<real, 1, mode::read_write, access::target:: local> buffer;
```

```
cgh.parallel_for (rng, [=]( sycl :: nd_item<1> item) {
/* kernel: part I */
```

item.barrier(access::fence_space::local_space);

```
/* kernel: part II */
```

```
/*code*/
```


DR GPU offloading: OpenMP 4.5

```
for (size_t timeIndex{0}; timeIndex < misc::numTimeWeights; ++timeIndex) {
    /*code*/
    real buffer[misc::numPaddedPoints]{};
    #pragma omp target teams distribute num_teams(layerSize) \
    is_device_ptr(/*a list of pointers */) private(buffer) \
    device(this->deviceId) depend(inout: this->ompTag) nowait
    for (unsigned ItsFace = 0; ItsFace < layerSize; ++ItsFace) {
</pre>
```

```
#pragma omp parallel for schedule(static,1) shared(buffer)
for (auto point = 0; point < misc::numPaddedPoints; ++point) {
    /* kernel: part 1 */
}</pre>
```

```
#pragma omp parallel for schedule(static,1) shared(buffer)
for (auto point = 0; point < misc::numPaddedPoints; ++point) {
    /* kernel: part II */
  }
/*code*/</pre>
```

ПΠ

TPV5 Benchmark

Table: Testing Scenario

Name	TPV5
Convergence Order	6
Number Cells	595128
Number DR Cells	11794
Floating Point Format	single
Simulation Time, sec	1.0

Table: Tested Platform

Hardware			
GPU	Nvidia RTX 3080 10GB		
CPU	AMD EPYC 7402 24-cores		

Table: Testing Scenario

	gcc@9.3.0	clang@17.0	gcc@9.3.0	nvhpc@22.11	clang@14.0	gcc@11.0
	omp-CPU	dpcpp-GPU	hipSYCL-GPU	omp@5.1-GPU	omp@4.5-GPU	omp@4.5-GPU
Hardware	24 cores	1 core - 1 GPU				
Performance, GFLOP/s	1316.73	3315.262	3007.45	2811.88	1632.85	525.08
Elapsed time, sec	266.742	146.881	161.927	182.985	280.405	871.99
Total kernels time, sec	264.645	120.159	121.575	122.479	271.176	862.6
YATeTo backend	LIBSXMM	ChainForge	ChainForge	ChainForge	ChainForge	ChainForge

Conclusion

OpenMP offloading is neither compiler nor performance portable at this moment!

Profiling

and the second sec			P. C. 1997 (1997)
):::::::::::::::::::::::::::::::::::::	void _hipsyct	()v) (v) (v) (voic
		void _hipsycl	
2000-2000 Kasa		void _hipsycl) v) v) (v)	
			1
	2	dvanceInTime [7.859 s]	
3 ms)	evaluateFriction	[3.495 ms]	computeNeight
ze		cudaEventSynchronize	west it it is set and it is the

Figure: hipSYCL - llvm@14.0.0

Figure: clang@14.0.0

Figure: nvhpc@22.11

gcc@11.3.0

MPI Process - CUDA/SYCL GPU Binding

#!/bin/bash

case "\${SLURM_LOCALID}" in

- 0) cpus=<socket-0,numa-node-0> ;;
- 1) cpus=<socket-0,numa-node-1>;;
- 2) cpus=<socket-1,numa-node-0> ;;

```
3) cpus=<socket-1,numa-node-1> ;;
```

esac

```
export CUDA_VISIBLE_DEVICES="${SLURM_LOCALID}"
numactl ---physcpubind=$cpus "$@"
```

ТШ

Conclusion

- Use vendor-specific GPU languages for the generated code (WP)
 - vendor-specific compiler backend \Rightarrow better code \Rightarrow higher performance
 - better information from vendor-specific profiling tools
 - access to advanced features (e.g., CUDA-Graphs, cuda::memcpy_async)
- Use SYCL for conventional scientific code (DR)
 - low enough for achieving decent performance
 - high enough for achieving less source code maintenance
- No OpenMP offloading at this moment
 - requires specific compilers versions \Rightarrow annoys users
 - $-\,$ different pragma clauses for different compilers \Rightarrow no source-code portability
 - "opaque" GPU kernels \Rightarrow difficult to find performance bottlenecks
 - prescriptive model but with a huge degree of freedom

Nice to have in the future:

- Alternative device selection
 - based of the vendor selection mechanism (using integers)
- unified SYCL CMake/Autotools interfaces