|

oneAPI

Cross-Architecture Programming for Accelerated Compute, Freedom of Choice for Hardware

Direct

June 2023

intel.

~rog

Nntel® oneA

P

D

ramming with

PC++/C++ Compiler

All information provided in this deck is subject to change without notice.
Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

Agenda

What is DPC++ and SYCL?
Intel Compilers
SYCL Basics
“Hello World” Example
Basic Concepts: buffer, accessor, queue, kernel, etc.
Device Selection
Synchronization
Error Handling
Demo — part |

Compilation and Execution Flow
Unified Shared Memory
Sub-groups

Demo — part I

intel.

2

What is DPC++and SYCL?

intel. :

Data Parallel C++

Standards-based, Cross-architecture Language

DPC++ =150 C++ and Khronos SYCL and community extensions
The final SYCL 2020 Specification published in 2021

Today’'s DPC++ compiler is a mix of SYCL 1.2.1, SYCL 2020, and
Language Extensions

Community Project Drives Language Enhancements

Many DPC++ extensions became features of SYCL 2020
« USM, sub-groups, group algorithms, reductions, etc.

* Interfaces enhanced based on feedback from SYCL working group

* Many APIs differin SYCL 2020 to their DPC++ Extension versions

tinyurl.com/sycl2020-support-in-dpcpp

Direct Programming:
Data Parallel C++

Community Extensions
tinyurl.com/dpcpp-ext

Khronos SYCL
tinyurl.com/sycl2020-spec

ISO C++

intel.

4

https://tinyurl.com/sycl2020-spec
https://tinyurl.com/dpcpp-ext
https://tinyurl.com/sycl2020-support-in-dpcpp

Intel” oneAP|
DPC++/C++ Compiler

Parallel Programming Productivity & Performance

Compiler to deliver uncompromised parallel programming
productivity and performance across CPUs and accelerators

= Open, cross-industry alternative to single architecture
proprietary language

* The open source DPC++ compiler supports Intel CPUs,
GPUs, and FPGAs + Nvidia and AMD GPUs

* SYCL backends supported: OpenCL, Level Zero, CUDA*, HIP*

Code samples:

oithub.com/intel/llvm/tree/sycl/sycl/test
oithub.com/intel/llvm/tree/sycl/sycl/test-e2e
oithub.com/oneapi-src/oneAPl-samples

oneAP| DPC++/C++ Compiler and Runtime

DPC++ Source Code

Clang/LLVM
github.com/intel/llvm

Runtime

intel.

https://github.com/intel/compute-runtime
https://github.com/intel/llvm
https://tinyurl.com/dpcpp-tests
https://tinyurl.com/dpcpp-tests
https://github.com/intel/llvm/tree/sycl/sycl/test-e2e
https://github.com/oneapi-src/oneAPI-samples

SYCL ecosystem is growing

SYCL, OpenCL and SPIR-V, as open industry
standards, enable flexible integration and
deployment of multiple acceleration technologies

GreL.

Source Code

C codeplay’/ ¢ computeCpp

ComputeCpp
Uses LLVM/Clang Multiple
Part of oneAPI Backends
RO
Cm Na
NVIDIA An CPU ~ * "~ @D
NVIDIA ! NVIDIA GPUs
GPUs g
OpenCL
0/ El: v @R
pen Jevalz Intel CPUs
@R" evel £ero Intel GPUs
Intel CPUs Intel GPUs Intel FPGAs
Intel GPUS (depﬁ\ﬁé?n dGrieelgsStack)
Intel FPGAs Arm Mali
IMG PowerVR

Renesas R-Car

& XILINX.
triSYCL

Open source

OpenMP /
Any CPU / g
g

rd L 9
OpenCL
(SPIR..

XILINX FPGAs
POCL

(open-source OpenCL
supporting CPUs and NVIDIA
GPUs and more)

il

https://www.khronos.org/blog/sycl-2020-what-do-you-need-to-know

*This slide is prepared by The Khronos Group Inc

SYCL enables Khronos to
influence ISO C++ to (eventually)
support heterogeneous compute

ey
) 3
QipSYCL ™\ L DEtBERe
hipSYCL
CUDA and SX-AURORA
HIP/ROCm TSUBASA
\
GperiP \
\ CUDA
Any CPU \ NVIDIA GPUs
\
\ VEO
<
Intel CPUs
1Cm
Intel GPUs

AMD GPUs

Multiple Backends in Development
There is development on supporting SYCL on
even more low-level frameworks.

For more information: http://sycl.tech

+ Celerity: SYCL on MPI+SYCL

intel.

https://www.khronos.org/blog/sycl-2020-what-do-you-need-to-know
http://sycl.tech/

Codeplay one AP| Plug-ins for Nvidia* & AMD*

Support for Nvidia & AMD GPUs to Intel” one APl Base Toolkit

oneAPI for NVIDIA & AMD GPUs

* Free download of binary plugins to Intel® oneAPI C++ / SYCL™ Source Code
DPC++/C++ Compiler:
Nvidia GPU
AMD beta GPU
No need to build from source!
Plug-ins updated quarterly in-sync with SYCL
2020 conformance & performance

Intel’ oneAPI Base Toolkit

1L TeY

oneAPI for NVIDIA® oneAPI for AMD GPUs
GPUs (beta)

Priority Support

= Available through Intel, Codeplay & our channel
Requires Intel Priority Support for Intel® oneAPI
DPC++/C++ Compiler
Intel takes first call, Codeplay delivers backend Image courtesy of Codeplay Software Ltd.

support
Codeplay provides access to older plug-in
versions

Nvidia GPU plug-in AMD GPU plug-in

Codeplay blog Codeplay press release

*Other names and brands may be claimed as the property of others. intel 7
®

http://developer.codeplay.com/products/oneapi/nvidia/
http://developer.codeplay.com/products/oneapi/amd/
https://codeplay.com/portal/blogs/2022/12/16/bringing-nvidia-and-amd-support-to-oneapi.html
Codeplay®%20announces%20oneAPI%20for%20Nvidia®%20and%20AMD%20GPU%20hardware%20-%20Codeplay%20Software%20Ltd

INntel® Compilers

intel. =

Compiler Architecture — Simplified View

- Source

/CC Code

IcpC

.ICX Intermediate

ICPX Representation
l | (R)
Compiler

Driver

Optimizer

)

Code
Generator

Target
Code

intel.

9

Intel® C++ Compilers

Intel® C++ Compiler Classic, ILO
icc/icpc/icl - deprecated

Intel® Fortran Compiler Classic, ILO

ifort PY Yes e
Intel® oneAPI DPC++/C++ Compiler, LLVM CPU, GPU, Yes Viers
icxficpx/cdpcpp* FPGA
Intel® Fortran Compiler, LLVM CPU, Yes Yes
ifx GPU

Cross Compiler Binary Compatible and Linkable!

tinyurl.com/oneapi-standalone-components

*'dpcpp' is deprecated and will be removed in a future release. Use 'icpx -fsycl'

intel.

10

https://tinyurl.com/oneapi-standalone-components

Packaging of C++ Compilers
= oneAP| Base Toolkit PLUS oneAPI HPC Toolkit

Classic compilers (icc/icpc) in HPC Toolkit
v2021.9 code base

Compilers based on LLVM* framework
Compiler Drivers: icx/icpx and dpcpp*
v2023.7 In oneAPI 2023.7

= Prerequisites: Set Up Your System for Intel GPU
Install Intel GPU Drivers, Disable Hangcheck etc.

tinyurl.com/oneapi-linux-install-suide

*'dpcpp' is deprecated and will be removed in a future release. Use 'icpx -fsycl' inteL 1

https://www.intel.com/content/www/us/en/develop/documentation/installation-guide-for-intel-oneapi-toolkits-linux/top/prerequisites.html
https://tinyurl.com/oneapi-linux-install-guide

"Hello World” Example

intel.

SYCL Basics

(CPU) i] SYCL Application
xecuted on...
. Host code Device code
I submits...

Device

Private Memory

Global Memory

Command

Alow A |e20T

Executed on.

=R AN = |

Co n-{méu_’ld

Queue

intel.

13

Anatomy of a SYCL Application

#include <sycl/sycl.hpp>
using namespace sycl

int main() {
std: :vector<float> A(1024, 1.0f), B(1024, 2.0f), C(1024);
{
buffer bufA {A}, bufB {B}, bufC {C};

queue q;
g.submit([&] (handler &h) ({

auto A = bufA.get access(h, read only);
auto B = bufB.get access(h, read only);
auto C = bufC.get access(h, write only);

h.parallel for (1024, [=] (auto i) {
C[i] = A[i] + B[i];
}) s
}) s
}
for (int i = 0; 1 < 1024; i++)
std::cout <K "C[" <K 1 <K "] = " << C[1i] << std::endl;

— Host code

Accelerator
device code

— Host code

intel.

14

Anatomy of a SYCL Application

#include <sycl/sycl.hpp>
using namespace sycl

int main() {
std: :vector<float> A(1024, 1.0f), B(1024, 2.0f), C(1024);
{
buffer bufA {A}, bufB {B}, bufC {C};
queue q;
g.submit([&] (handler &h) ({
auto A = bufA.get access(h, read only);
auto B = bufB.get access(h, read only);
auto C = bufC.get access(h, write only);
h.parallel for (1024, [=] (auto i) {
C[i] = A[i] + B[1i];
});
});
}
for (int i = 0; 1 < 1024; i++)
std::cout <K "C[" <K 1 <K "] = " << C[1i] << std::endl;

— Application scope

Command group
==
scope

} Device scope

Application scope

intel. s

Memory Model

» Buffers: abstract view of memory that can be local to the
host or a device, and is accessible only via accessors.

* Images: a special type of buffer that has extra
functionality specific to image processing.

* Unified Shared Memory: pointer-based approach for
memory model that is familiar for C++ programmers

intel. s

SYCL Basics

std: :vector<float> A(1024, 1.0f), B(1024, 2.0f), C(1024);

{ Buffers creation via host
buffer bufA {A}, bufB {B}, bufC {C}; vectors/pointers
queue q; Buffers encapsulate data
qg.submit([&] (handler &h) { in a SYCL application

auto A = bufA.get access(h, read only); . Across both devices and
auto B = bufB.get access(h, read only); host!

auto C = bufC.get access(h, write only);
h.parallel for (1024, [=] (auto 1) {
C[i] = A[1i] + B[1];
});
}) g

}
for (int 1 = 0; i1 < 1024; i++)

std::cout < "C[" KK 1 <K<K "] = " <K C[1] KK std::endl;

intel.

17

SYCL Basics

std: :vector<float> A(1024, 1.0f), B(1024, 2.0f), C(1024);

{ .
buffer bufA {A}, bufB {B}, bufC {C}; s
queue q, be executed by the
g.submit ([&] (handler &h) { SYCL runtime

auto A = bufA.get access(h, read only); . Queueisa
auto B = bufB.get access(h, read only); mechanism where
auto C = bufC.get access(h, write only); work is submitted to a
h.parallel for(1024, [=](auto i) { device.
C[i] = A[i] + BI[i];
})
}) s
}

for (int 1 = 0; i1 < 1024; i++)

std::cout < "C[" KK 1 <K<K "] = " <K C[1] KK std::endl;

intel.

18

Where is my “Hello World” code executed?
Device Selector

Get a device (any device): queue q (); // default _selector_ v

queue g(cpu_selector v ;
queue g(gpu_selector_v);
queue glaccelerator_selector v):

Create a queue with
predefined device selectors

int usm_selector(const sycl::device& dev) {
if (dev.has(sycl::aspect::usm device allocations)) {
if (dev.has(sycl::aspect::gpu)) return 2;
Create a queue via custom return 1;
selector }
return -1;

}

queue q(usm_selector);

default_selector_v

* SYCL runtime scores all devices and picks one with highest compute power
* Environment variable

export ONEAPI DEVICE SELECTOR={backend:device type:device_num}

tinyurl.com/dpcpp-env-vars for more details on env variables intel@ 19

https://github.com/intel/llvm/blob/sycl/sycl/doc/EnvironmentVariables.md#oneapi_device_selector
https://tinyurl.com/dpcpp-env-vars

ONEAPI_DEVICE_SELECTOR

Examples
ONEAPI_DEVICE_SELECTOR=

opencl:* Only the OpenCL devices are available

level zero:gpu Only GPU devices on the Level Zero platform are available.

GPU devices from both Level Zero and OpenCL are available. Note that
“opencl:gpu;level zero:gpu” escaping (like quotation marks) will likely be needed when using semi-
colon separated entries.

opencl:gpu,cpu Only CPU and GPU devices on the OpenCL platform are available.
opencl:0 Only the device with index O on the OpenCL backend is available.

hip:0,2 Only devices with indices of O and 2 from the HIP backend are available.

tinyurl.com/dpcpp-env-vars for more details on env variables ihtel®

20

https://tinyurl.com/dpcpp-env-vars

SYCL Basics

std: :vector<float> A(1024, 1.0f), B(1024, 2.0f), C(1024);

{ « Mechanism to access
buffer bufA {A}, bufB {B}, bufC {C}; buffer data
queue q, * Create data
g.submit ([&] (handler &h) { dependencies in the

SYCL graph that order

auto A = bufA.get access(h, read only); _
- — kernel executions

auto B = bufB.get access(h, read only);
auto C = bufC.get access(h, write only);
h.parallel for (1024, [=] (auto 1) {
C[i] = A[1] + B[1i];
});
}) g
}

for (int 1 = 0; 1 < 1024; i++)
std::cout < "C[" KK 1 K "] =" KK C[1] std::endl

intel. =

SYCL Basics

std: :vector<float> A(1024,

{

buffer bufA {A}, bufB {B}, bufC {C};

queue g,

g.submit ([&] (handler &h) {

auto A =
auto B =
auto C =

h.parallel for (1024,

C[i]
})
})
}

1.0£), B(1024, 2.0f), C(1024);

« Vector addition kernel
enqueues a parallel for
task.

» Pass a function

bufA.get access(h, read only); object/lambda to be
bufB.get access(h, read only); executed by each work-
bufC.get access(h, write only); item

= A[i] + B[1];

range<1>{1024} |id<1l>

for (int 1 = 0; i1 < 1024; i++)

std::cout < "C[" K 1 K "]

[=] (auto 1) {

= " << C[1i] << std::endl;

intel.

22

SYCL1.21vs SYCL 2020

std: :vector<float> A(1024, 1.0f), B(1024, 2.0f), C(1024);
{

buffer<float> bufA {A.data(), A.size()};

buffer<float> bufB{B.data(), B.size()};

buffer<float> bufC {C.data(), C.size()};

queue q;
g.submit([&] (handler &h) ({
auto A = bufA.get access<access::mode: :read>(h);
auto B = bufB.get access<access::mode: :read>(h);
auto C = bufC.get access<access::mode: :write>(h);
h.parallel for <class vector_ add>(range<1>{1024}, [=] (id<1> i) {
C[i] = A[i] + B[i];
}) g
}) s
}
for (int 1 = 0; 1 < 1024; i++)
std::cout < "C[" KK 1 <K "] = " KL C[1] <K std::endl;

intel. =

Basic Parallel Kernels

The functionality of basic parallel kernels is exposed via range, id

and item classes

* range class is used to describe the
iteration space of parallel execution

* id classis used to index an individual
instance of a kernel in a parallel
execution

* item class represents an individual
instance of a kernel function, exposes
additional functions to query
properties of the execution range

h. par'allel_for‘([r‘ange<1>(1024j ,» [=] (idx){

// CODE THAT RUNS ON DEVICE

});

h.parallel for(

range<1>(1024), [=]({item<1>] item){

auto idx = item.get id();

auto R = item.get range();

// CODE THAT RUNS ON DEVICE

})s

intel.

24

SYCL Thread Hierarchy and Mapping

4 “—>
dimension 0

of sub-group

Work-item Sub-group

sub-group of
4 work-items

dimension 1
of work-group

4 —>
dimension 2

of work-group

Work-group

»/Tiimension 0

of work-group

work-group of

L L L L L f fL L

(4,4,4) work-items

A

A

dimension 1

of ND-range

ﬁ:nension 0

of ND-range

dimension 2
of ND-range

ND-Range

>

intel.

25

SYCL Thread Hierarchy and Mapping

Geometry
RS | e aE | s T /All work-items in a \\
work-group are
scheduled on one
Compute Unit,
which has its own
local memory

SubSlice
1% & thread dispatch

All work-items in a sub-group
are mapped to vector
hardware

Texd
Dataport

I
L
| Pixel Dispatch |

| Pixel Backend I

L3S

Slice Common

intel. 2

Logical Memory Hierarchy

Work-Group

Private Private Private
Memory Memory Memory

— I

Work-Item Work-Item Work-Item

I I

Local Memory

Global Memory

Device

Work-Group

Private Private Private
Memory Memory Memory

I I

Work-ltem Work-Item Work-Item

_— I

Local Memory

Constant Memory

intel. =

ND-range Kernels

» Basic Parallel Kernels are easy way to parallelize a for-loop but
does not allow performance optimization at hardware level.

= ND-range kernel is another way to express parallelism which
enable low level performance tuning by providing access to local
memory and mapping executions to compute units on hardware.

work-group of
(4,4,4) work-items

* The entire iteration space is divided into smaller groups -

called work-groups, work-items within a work-group $
are scheduled on a single compute unit on hardware.

* The grouping of kernel executions into work-groups
will allow control of resource usage and load balance | .A“"
work distribution. « > ofNDrange

dimension 2
of ND-range

dimension 1
of ND-range

ND-Range

intel.

ND-range Kernels

The functionality of nd_range kernels is exposed via nd_range and
nd item classes

h.parallel forqhd range<1ﬂ{fange<1>(1@24}[range<1>(64ﬂ), [=](bd item<1> 1tem}{
auto idx = item.get global 1d(),

auto local id = item.get local id();

// CODE THAT RUNS ON DEVICE
1); global size work-group size
J

nd range class represents a grouped execution range using global execution range
and the local execution range of each work-group.

nd_item class represents an individual instance of a kernel function and allows to
query for work-group range and index.

intel.

29

SYCL Basics

std: :vector<float> A(1024, 1.0f), B(1024, 2.0f), C(1024);

{
buffer bufA {A}, bufB {B}, bufC {C};

dqueue q;

g.submit ([&] (handler &h) {
auto A = bufA.get access(h, read only);
auto B = bufB.get access(h, read only);
auto C = bufC.get access(h, write only);
h.parallel for (1024, [=] (auto 1) {

C[i] = A[i] + B[i];

});

});

}
for (int 1 = 0; i1 < 1024; i++)

std::cout < "C[" KK 1 <K<K "] = " <K C[1] KK std::endl;

intel.

30

Synchronization

intel. =

Synchronization

» Synchronization within kernel function
* Barriers for synchronizing work items within a workgroup
* No synchronization primitives across workgroups
* Synchronization between host and device
« Call to wait() member function of device queue
« Buffer destruction will synchronize the data with host memory

* Host accessor constructor is a blocked call and returns only after all
enqueued kernels operating on this buffer finishes execution

* DAG construction from command group function objects enqueued into
the device queue

intel. =2

Host Accessors

= An accessor which uses host buffer access target
= (Created outside of command group scope
= The data that this gives access to will be available on the host

= Used to synchronize the data back to the host by constructing

the host accessor objects

intel.

Host Accessor

PP = Buffer takes ownership of the

constexpr int N = 100; data stored in vector.

auto R = range<l1>(N);
std: :vector<double> v (N, 10);

dnene s » Creating host accessoris a

[buffer buf (v);] blocking call and will only return

SCEEZZ;E (iiié??ni)lfr& h) { after all enqueued DPC++

h.parallel for(R, [=](auto i) { kernels that modify the same
R buffer in any queue completes

b) s execution and the data is

(host accessor b(buf, read only)] available to the host via this host
for _(int i =0; 1 < N; i+1) accessor.
std::cout << b[i] << "\n";
return 0O;
} = Note: set SYCL THROW_ON_BLOCK to throw
an exception on attempt to wait for a
blocked command.

intel.

Buffer Destruction

#include <sycl/sycl.hpp>
constexpr int N=100;
using namespace sycl;

void dpcpp code (std::vector<double> &v,
auto R = range<l>(N);
buffer buf (v);
g.submit ([&] (handler& h) {
accessor a(buf, h);
h.parallel for (R, [=] (auto 1) {
ali] -= 2;
}) s

1) ;
}

int main() {
std::vector<double> v (N,
queue g;
[dpcpp code(v,q);]
for (int i1 = 0; i < N; i++)
std::cout << v[1i] << "\n";
return 0;

10) 7

queue &q) {

= Buffer creation happens within a
separate function scope.

* When execution advances
beyond this function scope,
buffer destructor is invoked
which relinquishes the
ownership of data and copies
back the data to the host
memory.

intel.

35

—rror Handling

intel. 3

Error Handling o

device queue.reset (new queue (device selector));

}

. catch (exception consté& e) {
SynCh ronous exceptlons std::cout << "Caught a synchronous SYCL exception:“ << e.what ()
return;
* Detected immediately i

 Failure to construct an object, e.g. can't create buffer
* Use try...catch block

auto async _exception handler = [] (exception list exceptions) ({

for (std::exception ptr consté& e : exceptions) {
try |

std: :rethrow exception(e);
}

catch (exception const& e) {

std::cout << “Caught the Asynchronous SYCL exception”

<< e.what () << std::endl;

Asynchronous exceptions .
« Caused by a future failure v

* E.g. error occurring during execution of a kernel on a device

* Host program has already moved on to new things!
* Programmer provides processing function, and says when to process

» queue:wait_and throw(), queue:throw asynchronous(), event:wait_and throw()

intel. ¥

Compilation and

—xecution

—low

intel. 3

-fsycl-targets=spir64_gen -Xs '-device pvc' / -fsycl-targets= intel_gpu_pvc
. . . . spir64_x86_64 for CPU nvidia_gpu_sm_90
SYCL Application Compilation Flow amdecramcamens. amd_gpu gr00:

nvptx64-nvidia-cuda

Offload-
3 — wrapper —

(another source compiled) Target binary c\:\éjf:gfﬁlre
4
Target specific _
LLVM compiler REQYIrES
LLVM IR JIT at
| runtime
SYCL device e : (default)
front-end compiler [vm-iin g |IVM-Spirv Eung
LLVM IR SPIRY
= Compiler —
q - —
driver —
Integration header

y

SourceFile.cpp
‘ C++ host R > :
compiler - Linker

Host object file

(another source compiled) —>

More info: tinyurl.com/dpcpp-compilation-flow Host object file

Fat binary file
intel.github.io/llvm-docs/GetStartedGuide.html

intel. =

https://tinyurl.com/dpcpp-compilation-flow
https://intel.github.io/llvm-docs/GetStartedGuide.html

Runtime Architecture

SYCL host
SYCL

Device
application SPIRY

DPC++ runtime library

DPC++ SYCL AP
runtime Pl discovery Memory Device binary
2 o Scheduler
plugininfra manager management

DPC++ Runtime Plugin Interface (PI)

Pltypes & services

Controlled via
ONEAPI DEVICE SELECTOR

opencl

PI/HIP plugin

P1/OpenCL plugin PI/CUDA plugin

1 level zero

Level Zero Runtime OpenCL Runtime CUDA* Runtime m cu d a
hip

1 l' 1 TBBRT |

Native runtime
& driver

intel. «

https://intel.github.io/llvm-docs/EnvironmentVariables.html#oneapi_device_selector

Check Your Configuration First

= sycl-ls --verbose
0. CPU : Intel(R) OpenCL 2.1 [2021.12.6.0.19 _160000]

1. ACC: Intel(R) FPGA Emulation Platform for OpenCL(TM) 1.2 [2021.12.6.0.19_160000]

2. GPU : Intel(R) OpenCL HD Graphics 3.0 [21.28.20343]
3. GPU : Intel(R) Level-Zero 1.1 [1.1.20343]
4. HOST: SYCL host platform 1.2 [1.2]

= https://github.com/intel/pti-gpu

* https://github.com/intel/pti-gpu/tree/master/samples/gpu_info

Device Information:

Device Name: Intel(R) HD Graphics 630
(Kaby Lake GT2)
EuCoresTotalCount: 24
EuCoresPerSubsliceCount: 8
EuSubslicesTotalCount: 3
EuSubslicesPerSliceCount: 3
EuSlicesTotalCount: 1
EuThreadsCount: 7
SubsliceMask: 7
SliceMask: 1
SamplersTotalCount: 3
GpuMinFrequencyMHz: 350
GpuMaxFrequencyMHz: 1150
GpuCurrentFrequencyMHz: 350
PciDeviceld: 22802
SkuRevisionld: 4
Platformindex: 12
ApertureSize: 0
NumberOfRenderOutputUnits: 4
NumberOfShadingUnits: 28
OABufferMinSize: 16777216
OABufferMaxSize: 16777216
GpuTimestampFrequency: 12000000
MaxTimestamp: 357913941250

intel.

41

https://github.com/intel/pti-gpu
https://github.com/intel/pti-gpu/tree/master/samples/gpu_info

Getting Started on DevCloud

= gsub - -l nodes=1:gpu:ppn=2 -d.

= sycl-ls (control devices via SYCL DEVICE FILTER)
* Compile and run simple vecAdd code

= export SYCL Pl TRACE=1

= export SYCL DEVICE FILTER=level zero

intel. «

Unified Shared Memory

intel. =

Motivation

The SYCL 1.2.1 standard provides a Buffer memory abstraction

* Powerful and elegantly expresses data dependences
However...

* Replacing all pointers and arrays with buffers in a C++ program can be a
burden to programmers

USM provides a pointer-based alternative in SYCL
« Simplifies porting to an accelerator
* Gives programmers the desired level of control

 Complementary to buffers

intel. #«

Developer View Of USM

» Developers can reference same memory object in host and device
code with Unified Shared Memory

CPU GPU CPU GPU

UNIFIED SHARED MEMORY

intel.

45

Unified Shared Memory

Unified Shared Memory provides both explicit and implicit models
for managing memory.

device Allocations in device memory (explicit) NO YES
host Allocations in host memory (implicit) YES YES
shared Allocations can migrate between host and device YES YES

memory (implicit)

Automatic data accessibility and explicit data movement supported

intel.

USM - Explicit Data Movement

queue q;
int hostArray[42];
int “deviceArray -

for (int 1 = 0; 1 < 42; i++) hostArra

// copy hostArray to deviceArray

g.memcpy (deviceArray, ~‘hostArray 0],

g.wait () ;

g.submit ([&] (handleré h) {
h.parallel for (42, [=] (

deviceArray|[ID| ++;

b) g

Y) g

g.wait () ;

// copy deviceArray back to hostArray

g.memcpy (¢hostArray 0, deviceArray,

g.wait () ;

free (deviceArray, Jg);

auto ID) {

(Int*) malloc device (42 * sizeof (i1nt),

yii] = 42;

42 * sizeof (int)) ;

42 * sizeof (int)) ;

d) ;

intel.

47

USM - Implicit Data Movement

queue g

int "hostArray int malloc host (47 sizeof (int g

int “sharedArray int mallgc_shared 42 sizeof (1nt

for (int 1 0; 1 42; 1 hostArray|i 1234

g.submit handlerd h

h.parallel for (42 auto ID

// access sharedArray and hostArray on device
sharedArray[ID] = hostArray[ID] + 1

q.wailt

for (int i 0; 1 42; 1 hostArray|i sharedArray |1

free (sharedArray, g
free (hostArray, g

intel.

48

USM - Data Dependency in Queues

No accessors in USM

Dependences must be specified explicitly using events
e queue.wait()
* wait on event objects

* use the depends on method inside a command group

intel.

USM - Data Dependency in Queues

Explicit wait() used to
ensure data dependency in
maintained

wait() will block execution
on host

queue g;
int*= malloc shared<int>(N, q);
for (int i=0;i<N;i++) datal[i] = 10;
g.submit ([&] (handler &h) {
h.parallel for<class taskA>(range<l>(N),
(dataJi] += 2;
b))
}) [rait O 7]
g.submit ([&] (handler &h) {
h.parallel for<class taskB>(range<l>(N),
(cataJi] += 3;
});
}) frait)
g.submit ([&] (handler &h) {
h.parallel for<class taskC>(range<1l>(N),
(dataJi] += 5;
}) g
) FEETS)

for (int i=0;i<N;i++) std::cout << datal[i]
free (data, q);

[=] (1d<1> 1) {

[=] (1d<1> 1) {

[=] (1d<1> 1) {

<< mw ",.

intel.

50

USM - Data Dependency in Queues

Use in_queue property for
the queue

Execution will not overlap even if the
queues have no data dependency

queue qgilproperty::queue::in order ()]};
int *data = malloc shared<int>(N, q);
for (int i=0;i<N;i++) data[i] = 10;
g.submit ([&] (handler &h) {
h.parallel for<class taskA>(range<l>(N), [=] (1d<1> 1) {
datal[i] += 2;
1) ;
1) ;
// non-blocking; execution of host code is possible
g.submit ([&] (handler &h) {
h.parallel for<class taskB>(range<l>(N), [=] (1d<1> 1) {
@tai] += 3;
1) ;
1) ;
// non-blocking; execution of host code is possible
g.submit ([&] (handler &h) {
h.parallel for<class taskC>(range<l>(N), [=] (1d<1> i) {
(data)ii) += 5;
1) ;
}) wait ()
for(int 1=0;i<N;i++) std::cout << datal[i] << " ";
free(data, q);

intel.

51

USM - Data Dependency in Queues

Use depends _on() method
to let command group
handler know that specified
events should be complete
before specified task can
execute

queue g;

malloc_shared<int>(N, q) ;
malloc_shared<int>(N, q) ;

for (int 1i=0;i<N;i++) {datal[i] = 10; dataz2[i] = 10;}
auto el = g.submit([&] (handler &h) {
h.parallel for<class taskA>(range<1l>(N), [=] (1d<1> i
@@EaDil) += 2;
});
});
auto e2 = g.submit([&] (handler &h) {
h.parallel for<class taskB>(range<l>(N), [=] (1d<1> 1
@atazii] += 3;
});
})
g.submit ([&] (handler &h) {
[h.depends on ({el,e2});]
h.parallel for<class taskC>(range<l>(N), [=] (id<1> i

datal[i] += data2[i];
})
}) wait () ;
for (int i=0;i<N;i++) std::cout << datali] << " ";
free(datal, q); free(data2, q);

SYCL_PRINT_EXECUTION_GRAPH
tinyurl.com/dag-print

intel.

52

https://tinyurl.com/dag-print

USM - Data Dependency in Queues

A more simplified way of
specifying dependency as
parameter of parallel for

queue q;
int*
LA

for (int i=0;1i<N;i++)

auto el = g.parallel

@atadii) += 2;
Y

auto e2 = g.parallel

@ata2)il += 3;
NN

g.parallel for <class taskC>(range<l>(N),
+= data2[i];

datal[i]

b it 0]

for (int i=0;i<N;i++)
free (datal, q);

malloc
malloc

shared<int> (N, q);
shared<int> (N, q);
{datal[i] = 10; data2[i] = 10;}

for <class taskA>(range<l>(N), [=] (1d<1> 1) {
for <class taskB>(range<1>(N), [=] (id<1> 1) {
{el, e2}, [=](1id<1l> 1) {

std::cout << datal[i] << " ";

free(dataz, q);

intel.

53

Sub-groups

intel. s

Sub-groups

= A subset of work-items within a work-group

= Why use Sub-groups?

sub-group of

that may map to vector hardware. 4 worlcitems

dimension 1
of work-group

Work-items in a sub-group can communicate directly using %
shuffle operations, without explicit memory operations «—— ¥ dimension
p ! p y p ' dimension 2 °f work-group

of work-group

Work-items in a sub-group can synchronize using sub-group
barriers and guarantee memory consistency using sub-group

memory fences.

Work-items in a sub-group have access to sub-group collectives, Worlcgroup

providing fast implementations of common parallel patterns.

intel.

55

Sub-groups

sub_group class | |
- h.parallel for(nd range<l>(N,B), [=](nd item<l> item)
{

= The sub-group handle can
be obtained from the

nd_item using the // KERNEL CODE
get _sub_group() });

auto sg =[item.get_sub_group();]

= Once you have the sub-group handle, you can query for more information about the sub-
group, do shuffle operations or use collective functions.

» Explicit kernel attribute [[intel::reqd _sub _group_size(N)]] to control
the sub-group size

intel. s

Sub-groups

The sub-group handle can be
quired to get other information:

get local id() returns the index of
the work-item within its sub-group

get local range() returns the size of
sub_group

get group id() returns the index of
the sub-group

get group range() returns the
number of sub-groups within the
parent work-group

h.parallel for (nd range<l>(N,B),

[=] (nd item<1> item) {

auto sg = item.get sub group();

if (sg.get local id)() ==

out << "sub group id:

) {

" << sglget group id

<< " oof " L sg{get_group_rangek)

<< ", size=" <K< sg.bet_local_rangek)[O]

<< endl;

sub group
sub group

sub group
sub group

size=16
size=16
size=16
size=16

intel.

57

Sub-Group Shuffles

* One of the most useful features of
sub-groups is the ability to
communicate directly between
individual work-items without
explicit memory operations.

» Shuffle operations enable us to
remove work-group local memory
usage from our kernels and/or to
avoid unnecessary repeated
accesses to global memory.

h.parallel for (nd range<l>(N,B),

auto sg = 1

size t 1 =1

[=] (nd item<1> item) {
tem.get sub group();

tem.get global id(0);

/* Shuffles */
//data[i] = sg.shuffle(datali], 2);
//data[i] = sg.shuffle up(0, datali]l, 1);
//datal[i] = sg.shuffle down(datafi], 0, 1);
data[i] = sgJlshuffle xor|(datali], 1);
}) g
% ol1|2]|3|4ls|6]|7
mask : | 1|1 [1(1]1]1 1|1
shuffle xor(x, mask): (1[0 |3|2|5]|4|7]|6

intel.

53

Sub-Group Collectives

« The collective functions provide h.parallel for(nd range<l>(N,B), [=](nd item<l> item) {
implementations of closely- auto sg = item.get sub_group();
related common parallel size t i = item.get global 1d(0);
patterns.

* Providing these implementations /* Collectives */
as library functions.ipcreases_ datal[i] =[reduce(sg, data[il, plus<>()) ,-]
:jrs\é?el?npee;tgigdnicfﬁl\gt;/bal'[:fy%gles //data[i] = reduce(sg, datal[i], std::maximum<>());
generate highly Optimized code //data[i] = reduce(sg, datal[i], std::minimum<>());
for individual target devices. }) ;

intel. =

Useful Links

Open source projects

oneAPI| Data Parallel C++ compiler:

Graphics Compute Runtime:
Graphics Compiler:

SYCL 2020:

DPC++ Extensions:
Environment Variables:
DPC++ book:

SYCL Academy

Code samples:

oithub.com/intel/llvm

oithub.com/intel/compute-runtime

oithub.com/intel/intel-graphics-compiler

tinyurl.com/sycl2020-spec

tinyurl.com/dpcpp-ext

tinyurl.com/dpcpp-env-vars

tinyurl.com/dpcpp-book

oithub.com/codeplaysoftware/syclacademy/tree/main

ogithub.com/intel/llvm/tree/sycl/sycl/test
ogithub.com/intel/llvm/tree/sycl/sycl/test-e2e
oithub.com/oneapi-src/oneAPl-samples

intel.

60

https://github.com/intel/llvm
https://github.com/intel/compute-runtime
https://github.com/intel/intel-graphics-compiler
https://tinyurl.com/sycl2020
https://tinyurl.com/dpcpp-ext
https://tinyurl.com/dpcpp-env-vars
https://tinyurl.com/dpcpp-book
https://github.com/codeplaysoftware/syclacademy/tree/main
https://tinyurl.com/dpcpp-tests
https://github.com/intel/llvm/tree/sycl/sycl/test-e2e
https://github.com/oneapi-src/oneAPI-samples

Hands-on Exercises

—ssentials of oneAPland SYCL
Nntroduction

Module 1- Introduction to oneAPland SYCL

Module 2 - SYCL Program Structure
Module 3 - SYCL Unified Shared Memory

Advanced

Module 4 - SYCL Sub-Groups
Module 9 - SYCL Buffers and Accessors in depth
Module 10 - SYCL Task Scheduling and Data Dependences

intel.

Jupyter Notebook™ Lab

Getting Started with Intel DevCloud

https://devcloud.intel.com/oneapi/get started/
Explore Intel oneAPI| Toolkits in the DevCloud

These toolkits are for performance-driven applications—HPC, 10T, advanced rendering, deep learning frameworks—that are written in DPC++, C++, C, and Fortran
languages. Select a toolkit to see what it includes, explore training modules, and go deeper with developer guides.

Intel® oneAP| Base Toolkit

1) 1 Build and deploy high-performance, data-centric applications across diverse architectures with a core set of tools and libraries.
oneAPI] }] i
Get Started with your first Sample View Training Modules
BASE TOOLKIT
2) Module 0 Module 1 Module 2 Module 3
- Introduction to JupyterLab* and Introduction to oneAPI and SYCL* SYCL* Program Structure) = - SYCL* Unified Shared Memory
.~ Notebooks. ae oo
S Learn to use Jupyter notebooks to * Articulate how oneAPI can help to ¢ Articulate the SYCL* fundamental == == * Use new SYCL* features like
modify and run code as part of learning solve the challenges of classes. Unified Shared Memory (USM) to
exercises.

programming in a heterogeneous simplify programming.

Use device selection to offload

Try itin JupyterLab* world. kernel workloads. * Understand implicit and explicit
¢ Use oneAPI solutions to enable « Decide when to use basic parallel ways of moving memory using
your workflows. USM.

kernels and ND Range Kernels.

Understand the SYCL* language
and programming model.

Solve data dependency between
kernel tasks in an optimal way.

Create a host accessor.

Build a sample SYCL* application
through hands-on lab exercises. Try itin JupyterLab*

Become familiar with using
Jupyter notebooks for training
throughout the course. Try it in JupyterLab*

Try itin JupyterLab*

intel. =

https://devcloud.intel.com/oneapi/get_started/
https://github.com/codeplaysoftware/syclacademy/blob/isc23/Code_Exercises/Getting_started_with_Intel_DevCloud.pdf

Jupyter Notebook™ Lab

Allocate the compute node in interactive mode :

gsub -/ -l nodes=1:gpu:ppn=2 -d.

SYCL Academy: github.com/codeplaysoftware/syclacademy/tree/main

* Many branches available there: main, iwocl23, isc23, etc.

intel. =

https://github.com/codeplaysoftware/syclacademy/tree/main

'S 278 A"

B

ssscoe “ HiIHHNN=
e :_--__m..
L ecseses gllMlIINME,

00000000 e —

SO
3 , -

1

Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/Performancelndex.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details.
No product or component can be absolutely secure.

Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.
Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

© Intel Corporation. Intel, the Intel logo, Xeon, Core, VTune, OpenVINO, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
Other names and brands may be claimed as the property of others.

intel. =

