GPU-accelerated vs. CPU-only Applications

_-l. L |
-; -'_-F_
S a
n F— _‘-:-
" 1*.____,- * "
+ 'r. t'—-:.._
- | g™ o

In CPU-only applications data is
allocated on the CPU

DATA
HEN NN

a=np.arange (n)

EA
nviDiA. INSTITUTE

...and all work is performed serially on
the CPU

DATA
N e s 1 I e O e B e

a=np.arange (n) a=do_work (a)

EA
nviDiA. INSTITUTE

...and all work is performed serially on
the CPU

DATA
N e s 1 I e O e B e

a=np.arange (n) a=do_work (a) verify(a)

EA
nviDiA. INSTITUTE

In accelerated applications there is
both host and device memory.

DAT A - m e
HEN NN

a=np.arange (n)

EA
nviDiA. INSTITUTE

Data initialized on the CPU can be
DD copied to the GPU device...

D AT A - - mmm o m e e e
HEN NN

-——g-——- d a=cuda.to device (a) SR i e

a=np.arange (n)

EA
nviDiA. INSTITUTE

... Where it can be worked on in

DD parallel

DAT A - - - mm o m e e e
HEN NN

d a=do work(d a)

-——g-——- d a=cuda.to device (a) SR i e

a=np.arange (n)

EA
nviDiA. INSTITUTE

GPU work is asynchronous to the host,
DD so work on the CPU and GPU can
happen at the same time

DAT A - - - mm o m e e e
HEN NN

d a=do work(d a)

-——g-——- d a=cuda.to device (a) SR i e

a=np.arange (n) cpu work ()

EA
nviDiA. INSTITUTE

DATA

HiNn N

Programmers can indicate

CPU and GPU with
cuda.synchronize ()

synchronization points between the

d a=do work(d a)

a=np.arange (n) cpu work ()

----- d a=cuda.to device (a) ———————— -

9ZIUOIYJUAS

EA
nviDiA. INSTITUTE

DAT A - - e e e
HiNn N

CPU...

And data can be copied back to the

oot

d a=do work(d a)

----- d a=cuda.to device (a) ———— -~

a=np.arange (n) cpu work ()

9ZIUOIYJUAS

- a=d a.copy to host() |uliaiaiiedidiai

EA
nviDiA. INSTITUTE

DAT A - - e e e
HiNn N

... for verification etc.

d a=do work(d a)

——g-———- d a=cuda.to device (a) EEEEEEEIEEEI

a=np.arange (n) cpu work ()

9ZIUOIYJUAS

- a=d a.copy to host() |uliaiaiiedidiai

verify(a)

EA
nviDiA. INSTITUTE

CUDA Thread Hierarchy

i
N —i—ill g
| o
- ‘I"-"l =
5 I—i- =

Let’s dig into what happens when we
launch a function on the GPU

d a=do work(d a)

DEEF
LEARNING
nVIDIA. [NSTITUTE

GPU

GPUs do work in parallel

do work([2, 4] (d a)

- DEER
& T
nviDlA. (NSTITUTE

GPU work is done in a thread

do work([2, 4] (d a)

- IIII IIII

4 DEEF
Qz LEARNING
nVIDIA. [NSTITUTE

Many threads run in parallel

do work([2, 4] (d a)

B IIII IIII

DEEF
62 LEARNING

nVIDIA. [NSTITUTE

CUDA can process thousands of
threads in parallel. The sizes are
greatly reduced in these images for
simplicity.

do work([2, 4] (d a)

B IIII IIII

, DEEP
© LEARNING
nviDiA. INSTITUTE

A collection of threads is a block

do work([2, 4] (d a)

- IIII IIII

4 DEEF
Qz LEARNING
nVIDIA. [NSTITUTE

GPU

There can be many blocks

do work([2, 4] (d a)

DEEF
62 LEARNING

nVIDIA. [NSTITUTE

A collection of blocks associated with a
given kernel launch is a grid

do work([2, 4] (d a)

- IIII IIII

DEEF
62 LEARNING

nVIDIA. [NSTITUTE

GPU functions are called kernels

(2, 4] (d_a)

B IIII IIII

- DEER
& T
nviDlA. (NSTITUTE

Kernels are launched with an
execution configuration

do work (d a)

- IIII IIII

- DEER
& T
nviDlA. (NSTITUTE

The execution configuration defines
the number of blocks in the grid

do workf[Zz, 4] (d a)

- IIII IIII

4 DEEF
Qz LEARNING
nVIDIA. [NSTITUTE

... as well as the number of threads in
each block

do work([2, 4](d a)

B IIII IIII

DEEF
«2 LEARNING

nVIDIA. [NSTITUTE

Every block in the grid contains the
same number of threads

do work([2, 4] (d a)

- IIII IIII

DEEF
«2 LEARNING

nVIDIA. [NSTITUTE

CUDA-Provided Thread Hierarchy Variables

L |
¥ :1:' -
- P
" 1*.____,- # 7
i - ’;__'E'I-
- | g™ -1

Inside kernel definitions, CUDA-
provided variables describe its
executing thread, block, and grid

do work([2, 4] (d a)

- IIII IIII

, DEEP
© LEARNING
nviDiA. INSTITUTE

gridDim. x is the number of blocks in
the grid, in this case 2

do work([2, 4] (d a)

- IIII IIII

4 DEEF
Qz LEARNING
nVIDIA. [NSTITUTE

blockIdx.x is the index of the

current block within the grid, in this
case 0

do work([2, 4] (d a)

B IIII IIII

; DEEP
@ LEARNING
nviDiA. INSTITUTE

blockIdx.x is the index of the

current block within the grid, in this
case 1

do work([2, 4] (d a)

B IIII IIII

; DEEP
@ LEARNING
nviDiA. INSTITUTE

Inside a kernel blockDim. x describes

the number of threads in a block. In
this case 4

do work([2, 4] (d a)

B IIII IIII

DEEF
«2 LEARNING

nVIDIA. [NSTITUTE

All blocks in a grid contain the same
number of threads

do work([2, 4] (d a)

B IIII IIII

. DEEP
© LEARNING
nviDiA. INSTITUTE

GPU

Inside a kernel threadIdx. x
describes the index of the thread within

a block. In this case 0

do work([2, 4] (d a)

, DEEP
© LEARNING

nVIDIA. [NSTITUTE

GPU

Inside a kernel threadIdx. x
describes the index of the thread within

a block. In this case 1

do work([2, 4] (d a)

, DEEP
© LEARNING

nVIDIA. [NSTITUTE

GPU

Inside a kernel threadIdx. x
describes the index of the thread within

a block. In this case 2

do work([2, 4] (d a)

, DEEP
© LEARNING

nVIDIA. [NSTITUTE

GPU

Inside a kernel threadIdx. x
describes the index of the thread within

a block. In this case 3

do work([2, 4] (d a)

, DEEP
© LEARNING

nVIDIA. [NSTITUTE

GPU

Inside a kernel threadIdx. x
describes the index of the thread within

a block. In this case 0

do work([2, 4] (d a)

= DEEP
& T

nVIDIA. [NSTITUTE

GPU

Inside a kernel threadIdx. x
describes the index of the thread within

a block. In this case 1

do work([2, 4] (d a)

= DEEP
& T

nVIDIA. [NSTITUTE

GPU

Inside a kernel threadIdx. x
describes the index of the thread within

a block. In this case 2

do work([2, 4] (d a)

= DEEP
& T

nVIDIA. [NSTITUTE

GPU

Inside a kernel threadIdx. x
describes the index of the thread within

a block. In this case 3

do work([2, 4] (d a)

= DEEP
& T

nVIDIA. [NSTITUTE

Coordinating Parallel Threads

Let’s look at some basic ways to
DD coordinate parallel threads to work on
a data set

d a=do work(d a)

DEEF
LEARNING
nVIDIA. [NSTITUTE

Assume data is in a O indexed vector

GPU

DATA

do work]|

B IIII IIII

EA
IIIIIIIIIIIIIII

0 4 Assume data is in a O indexed vector

GPU 1 5
DATA
2 6
3 7

do work]|

B IIII IIII

EA
IIIIIIIIIIIIIII

0 4 Somehow, each thread must be
mapped to work on elements in the

data
GPU 1 5
DATA
2 6
3 7

do A d

GPU

. DEEF
Qz LEARNING
nVIDIA. [NSTITUTE

0 4 ... if we can calculate a thread’s index
within the entire grid, then we could
map that index to an index in the data

GPU 1 5
DATA

2 6

3 7

do A d

GPU oM1M203 alls el

4 DEEF
Qz LEARNING
nVIDIA. [NSTITUTE

0 4 unfortunately CUDA does not
} provide a single variable to capture
this, only thread indices within the
GPU 1 5 block
. 2 6
3 7
do / d

GPU oM1M2M3 J N FE

4 DEEF
Qz LEARNING
nVIDIA. [NSTITUTE

0 4 There is an idiomatic way to calculate
this value, however. Recall that each
thread has access to the size of its
GPU 1 5 block via blockDim. x
2 6
3 7

do workf[2, 4] (d a)

B IIII IIII

. DEEP
© LEARNING
nviDiA. INSTITUTE

0 4 ...and the index of its block within the
grid via blockIdx.x

GPU 1 5
DATA
2 6
3 7

do workl[Z,

GPU

EA
IIIIIIIIIIIIIII

0 4 ...and its own index within its block via
threadIdx.x

GPU 1 5
DATA
2 6
3 7

GPU

EA
IIIIIIIIIIIIIII

0 4 Using these variables, the formula
threadIdx.x + blockIdx.x *
blockDim. x will return the thread’s
GPU 1 5 unique index in the whole grid, which
DATA we can then map to data elements.
2 6
3 7

do workl[Z,

0

GPU

= DEEP
& T
nviDiA. INSTITUTE

0 4 threadIdx.x |+| blockIdx.x H
0 0 4

GPU 1 5

DATA
2 6 ?
3 7

do workl[Z,

0

GPU

IIIIIIIIIIIIIIII

0 4 threadIdx.x |+| blockIdx.x H
0 0 4

GPU 1 5

DATA
2 6 0
3 7

do wprkl[Z2,

0

GPU

IIIIIIIIIIIIIIII

0 4 threadIdx.x |+| blockIdx.x H
1 0 4

GPU 1 5

DATA
2 6 ?
3 7

do workl[Z,

0

GPU

IIIIIIIIIIIIIIII

0 4 threadIdx.x |+| blockIdx.x H
1 0 4

GPU 1 5

DATA
2 6 1
3 7

do workl[d,

0

GPU

IIIIIIIIIIIIIIII

0 4 threadIdx.x |+| blockIdx.x H
2 0 4

GPU 1 5

DATA
2 6 ?
3 7

do workl[Z,

0

GPU

IIIIIIIIIIIIIIII

0 4 threadIdx.x |+| blockIdx.x H
2 0 4

GPU 1 5
DATA
2 6 2
3 7

do workl[Z,

0

GPU

EA
IIIIIIIIIIIIIII

0 4 threadIdx.x |+| blockIdx.x H
3 0 4

GPU 1 5

DATA
2 6 ?
3 7

do workl[Z,

0

GPU

IIIIIIIIIIIIIIII

(NIPRI tnzesdic x | +| blockIox.x |+ | blockbim.x |
3 0 4

GPU 1 5
DATA

2 6 3

3 7

0

GPU ON1M2N3 olM1M2N3

EA
IIIIIIIIIIIIIII

0 4 threadIdx.x |+| blockIdx.x H
0 1 4

GPU 1 5

DATA
2 6 ?
3 7

do workl[Z,

0

GPU

EA
IIIIIIIIIIIIIII

(NIIPR tnzssdic x | +| blockIox.x |+ | blockbim.x |
0 1 4

GPU 1 5
DATA

2 6 4

3 7

0
GPU oN1M2H 3 of1M2N3
4 i

EA
IIIIIIIIIIIIIII

0 4 threadIdx.x |+| blockIdx.x H
1 1 4

GPU 1 5

DATA
2 6 ?
3 7

do workl[Z,

0

GPU

EA
IIIIIIIIIIIIIII

0 4 threadIdx.x |+| blockIdx.x H
1 1 4

GPU 1 5 |

DATA
2 6 5
3 7

do workl[Z,

0

GPU

EA
IIIIIIIIIIIIIII

0 4 threadIdx.x |+| blockIdx.x H
2 1 4

GPU 1 5

DATA
2 6 ?
3 7

do workl[Z,

0

GPU

EA
IIIIIIIIIIIIIII

0 4 threadIdx.x |+| blockIdx.x H
2 1 4

GPU 1 5

D AT A data index
2 6
3 7

do workl[Z,

0

GPU

EA
IIIIIIIIIIIIIII

0 4 threadIdx.x |+| blockIdx.x H
3 1 4

GPU 1 5

DATA
2 6 ?
3 7

do workl[Z,

0

GPU

EA
IIIIIIIIIIIIIII

0 || 4 [Emrdens o Eesuta|peamng
3 1 4
GPU 1 5
DATA
2 6 7
3 7

do workl[Z,

0 1

AN
GPU 3

— —

EA
IIIIIIIIIIIIIII

o[+] N T
3 1 4
GPU 1 5
DATA
As a convenience, Numba
2 6 7 provides the “cuda.grid()®
: function, which will return a
3 . thread’s unique index in the
rid.
™\ 7 .

do workl[Z,

0

GPU

4 DEEF
Qz LEARNING
nVIDIA. [NSTITUTE

Grid-Stride Loops

0 4 8 12 16 20 24 28 Often there are more data
elements than there are
threads in the grid

GPU 1 5 9 13 || 17 || 21 || 25 || 29
DATA

2 6 10 14 || 18 22 26 30

3 7 11 || 15 || 19 || 23 27 || 31

do workf[2, 4] (d a)
GPU

= DEEP
& T
nviDiA. INSTITUTE

DATA

In such scenarios threads
cannot work on only one
element

0‘ 8 12 || 16 20 24 28
1 9 13 || 17 21 25 29
| N\
[N\
2 10N\ 14 || 18 22 26 30
| N N
(™
3 A |11 TN| 19 23 27 31

DEEF
LEARNING
nVIDIA. [NSTITUTE

JEN | [] 1| R
undone
e | [111
DATA
2|« | I
3|7 |

do work]|

- IIHI HIHI

IIIIIIIIIIIIIII

0 4 8 12 16 20 24 28 One way to address this
programmatically is with a
grid-stride loop
GPU 1 5 9 13 || 17 || 21 || 25 || 29
DATA
2 6 10 || 14 || 18 || 22 26 || 30
3 7 11 || 15 || 19 || 23 27 || 31
do workf[2, 4] (d a)
GPU

= DEEP
& T
nviDiA. INSTITUTE

DATA

In a grid-stride loop, the

thread’s first element is

calculated as usual, with
cuda.grid()

0 ‘ 4 8 12 || 16 || 20 24 28

1 5) 13 || 17 21 25 29
|

2 6 10 14 || 18 22 26 30

3 7 11 15 || 19 || 23 27 31

ork[2, 4] (d a)

I I

DEEF
LEARNING
nVIDIA. [NSTITUTE

DATA

The thread then strides
forward by the total number
of threads in the grid
(blockDim.x *
gridDim.x) , in this case
8

0 4 | 8 12 || 16 || 20 24 28
|

1 5) 13 || 17 21 25 29

2 6 10 14 || 18 22 26 30

3 7 11 15 || 19 || 23 27 31

ork[2, 4] (d a)

I I

DEEF
LEARNING
nVIDIA. [NSTITUTE

DATA

Numba provides another
convenience function for this
common calculation:
cuda.gridsize(),
returning the number of
threads in the grid

0 4 | 8 12 || 16 || 20 24 28
|

1 5) 13 || 17 21 25 29

2 6 10 14 || 18 22 26 30

3 7 11 15 || 19 || 23 27 31

ork[2, 4] (d a)

I I

DEEF
LEARNING
nVIDIA. [NSTITUTE

DATA

The thread continues in this
way until its data index is
greater than the number of
data elements

4 8 12 [/ 16 || 20 24 || 28
/|

5 9 13_ 17 || 21 || 25 || 29

6 10 | 14 || 18 || 22 || 26 || 30

7 r11 15 [| 19 || 23 || 27 || 31

k(2, 4] (d a)

I

DEEF
LEARNING
nVIDIA. [NSTITUTE

DATA

The thread continues in this
way until its data index is
greater than the number of
data elements

4 8 12 16 20 24 28
5] 13 || 17 le 25 29
/]
-
6 10 14 /| 18 22 26 30
| [7
7 11 15 || 19 || 23 27 31

K[z, 4] (d_a)

I

DEEF
LEARNING
nVIDIA. [NSTITUTE

0 4 8 12 || 16 20 24 28 With all threads working in
parallel using a grid stride
loop...
GPU 1 5 9 13 || 17 || 21 || 25 || 29
DATA
2 6 10 || 14 || 18 || 22 || 26 || 30
3 7 11 || 15 || 19 || 23 || 27 || 31
do workf[2, 4] (d a)
GPU

= DEEP
& T
nviDiA. INSTITUTE

0 4 4 8 12 16 20 24 28 ... all elements are covered
GPU 1 5 \9\ 13 (|17 || 21 || 25 || 29
DATA AR\

2 6 10N\ 14 || 18 || 22 26 || 30

\ x
\\
3 11 \ 19 || 23 || 27 || 31
DN\ ~\

GPU O 18203 Op1p2

EA
IIIIIIIIIIIIIII

DATA

Additionally the device
coalesces memory
reads/writes into as few
transactions as possible for
performance...

0‘ 8 12 || 16 20 24 28
1 9 13 || 17 21 25 29
| N\
[N\
2 10N\ 14 || 18 22 26 30
| N N
(™
3 A |11 TN| 19 23 27 31

DEEF
LEARNING
nVIDIA. [NSTITUTE

DATA

And grid stride loops
support this memory
coalescing because
threads executing in parallel
will access adjacent data
elements

0‘ 8 12 || 16 20 24 28
1 9 13 || 17 21 25 29
| N\
[N\
2 10N\ 14 || 18 22 26 30
| N N
(™
3 A |11 TN| 19 23 27 31

DEEF
LEARNING
nVIDIA. [NSTITUTE

DATA

With all threads working in
this way, all elements are
covered with the
performance advantage of
memory coalescing

0 4 8 12 || 16 || 20 || 24 || 28
1 5 9 13 || 17 || 21 || 25 || 29
2 6 10 || 14 || 18 || 22 || 26 || 30
3 7 11 || 15 || 19 || 23 || 27 || 31

do work]| 2, 4]

(d

a)

DEEF
LEARNING
nVIDIA. [NSTITUTE

DATA

With all threads working in
this way, all elements are
covered with the
performance advantage of
memory coalescing

8 12 16 20 24 28
|

o) 13 || 17 21 25 29
I_

10 14 .|\18 22 26 30
AN

11 15 |y. 19 23 27 31

DEEF
LEARNING
nVIDIA. [NSTITUTE

DATA

With all threads working in
this way, all elements are
covered with the
performance advantage of
memory coalescing

0 4 8 12 || 16 || 20 || 24 || 28
1 5 9 13 || 17 || 21 || 25 || 29
2 6 10 || 14 || 18 || 22 || 26 || 30
3 7 11 || 15 || 19 || 23 || 27 || 31

do work]| 2, 4]

(d

a)

DEEF
LEARNING
nVIDIA. [NSTITUTE

DATA

With all threads working in
this way, all elements are
covered with the
performance advantage of
memory coalescing

8 12 16 20 24 28

o) 13 | 17 21J 25 29

10 ¥4 | 18 22 26 30
L -

11 15 | 19 23 27 31

DEEF
LEARNING
nVIDIA. [NSTITUTE

DATA

With all threads working in
this way, all elements are
covered with the
performance advantage of
memory coalescing

0 4 8 12 || 16 || 20 || 24 || 28
1 5 9 13 || 17 || 21 || 25 || 29
2 6 10 || 14 || 18 || 22 || 26 || 30
3 7 11 || 15 || 19 || 23 || 27 || 31

do work]| 2, 4]

(d

a)

DEEF
LEARNING
nVIDIA. [NSTITUTE

0 4 8 12 || 16 20 24 28 With all threads working in

/] | this way, all elements are

7 - covered with the
1 5 e 13 17 21 25 29 performance advantage of
DATA /| A0LL Y memory coalescing
YV 1/ '
2 6 10 || 14 4] 18 1 22 er 30
| LA |
A b V_/11/

3 7 11| 15| 19 | 23 A/27/|} 31

DEEF
LEARNING
nVIDIA. [NSTITUTE

DATA

With all threads working in
this way, all elements are
covered with the
performance advantage of
memory coalescing

0 4 8 12 || 16 || 20 || 24 || 28
1 5 9 13 || 17 || 21 || 25 || 29
2 6 10 || 14 || 18 || 22 || 26 || 30
3 7 11 || 15 || 19 || 23 || 27 || 31

do work|[2, 4]

(d

a)

DEEF
LEARNING
nVIDIA. [NSTITUTE

DEEP
@2 LEARNING
NVIDIA. INSTITUTE

www.nvidia.com/dli

	Slide 1: GPU-accelerated vs. CPU-only Applications
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: CUDA Thread Hierarchy
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: CUDA-Provided Thread Hierarchy Variables
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Coordinating Parallel Threads
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69: Grid-Stride Loops
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

