GPU-accelerated vs. CPU-only Applications
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In CPU-only applications data is
allocated on the CPU

DATA
HEN NN

a=np.arange (n)
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...and all work is performed serially on
the CPU

DATA
N e s 1 I e O e B e

a=np.arange (n) a=do_work (a)
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...and all work is performed serially on
the CPU

DATA
N e s 1 I e O e B e

a=np.arange (n) a=do_work (a) verify(a)

EA
nviDiA.  INSTITUTE



In accelerated applications there is
both host and device memory.

DAT A - m e
HEN NN

a=np.arange (n)
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nviDiA.  INSTITUTE



Data initialized on the CPU can be
DD copied to the GPU device...

D AT A - - mmm o m e e e
HEN NN

-——g-——- d a=cuda.to device (a) SR i e

a=np.arange (n)
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... Where it can be worked on in

DD parallel

DAT A - - - mm o m e e e
HEN NN

d a=do work(d a)

-——g-——- d a=cuda.to device (a) SR i e

a=np.arange (n)

EA
nviDiA.  INSTITUTE



GPU work is asynchronous to the host,
DD so work on the CPU and GPU can
happen at the same time

DAT A - - - mm o m e e e
HEN NN

d a=do work(d a)

-——g-——- d a=cuda.to device (a) SR i e

a=np.arange (n) cpu work ()

EA
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DATA

HiNn N

Programmers can indicate

CPU and GPU with
cuda.synchronize ()

synchronization points between the

d a=do work(d a)

a=np.arange (n) cpu work ()

----- d a=cuda.to device (a) ———————— -
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EA
nviDiA.  INSTITUTE



DAT A - - e e e
HiNn N

CPU...

And data can be copied back to the

oot

d a=do work(d a)

----- d a=cuda.to device (a) ———— -~

a=np.arange (n) cpu work ()

9ZIUOIYJUAS

- a=d a.copy to host() |uliaiaiiedidiai
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DAT A - - e e e
HiNn N

... for verification etc.

d a=do work(d a)

——g-———- d a=cuda.to device (a) EEEEEEEIEEEI

a=np.arange (n) cpu work ()

9ZIUOIYJUAS

- a=d a.copy to host() |uliaiaiiedidiai

verify(a)

EA
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CUDA Thread Hierarchy
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Let’s dig into what happens when we
launch a function on the GPU

d a=do work(d a)
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GPU

GPUs do work in parallel

do work([2, 4] (d a)

- DEER
& T
nviDlA.  (NSTITUTE



GPU work is done in a thread

do work([2, 4] (d a)
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Many threads run in parallel

do work([2, 4] (d a)

B IIII IIII

DEEF
62 LEARNING

nVIDIA.  [NSTITUTE



CUDA can process thousands of
threads in parallel. The sizes are
greatly reduced in these images for
simplicity.

do work([2, 4] (d a)
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A collection of threads is a block

do work([2, 4] (d a)
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GPU

There can be many blocks

do work([2, 4] (d a)
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A collection of blocks associated with a
given kernel launch is a grid

do work([2, 4] (d a)
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GPU functions are called kernels

(2, 4] (d_a)
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Kernels are launched with an
execution configuration

do work (d a)
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The execution configuration defines
the number of blocks in the grid

do workf[Zz, 4] (d a)
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... as well as the number of threads in
each block

do work([2, 4](d a)
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Every block in the grid contains the
same number of threads

do work([2, 4] (d a)
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CUDA-Provided Thread Hierarchy Variables

L |
¥ :1:' -
- P
" 1*.____,- # 7
i - ’;__'E'I-
- | g™ -1



Inside kernel definitions, CUDA-
provided variables describe its
executing thread, block, and grid

do work([2, 4] (d a)
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gridDim. x is the number of blocks in
the grid, in this case 2

do work([2, 4] (d a)
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blockIdx.x is the index of the

current block within the grid, in this
case 0

do work([2, 4] (d a)
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blockIdx.x is the index of the

current block within the grid, in this
case 1

do work([2, 4] (d a)
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Inside a kernel blockDim. x describes

the number of threads in a block. In
this case 4

do work([2, 4] (d a)
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All blocks in a grid contain the same
number of threads

do work([2, 4] (d a)
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GPU

Inside a kernel threadIdx. x
describes the index of the thread within

a block. In this case 0

do work([2, 4] (d a)
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GPU

Inside a kernel threadIdx. x
describes the index of the thread within

a block. In this case 1

do work([2, 4] (d a)
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GPU

Inside a kernel threadIdx. x
describes the index of the thread within

a block. In this case 2

do work([2, 4] (d a)
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GPU

Inside a kernel threadIdx. x
describes the index of the thread within

a block. In this case 3

do work([2, 4] (d a)
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GPU

Inside a kernel threadIdx. x
describes the index of the thread within

a block. In this case 0

do work([2, 4] (d a)
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GPU

Inside a kernel threadIdx. x
describes the index of the thread within

a block. In this case 1

do work([2, 4] (d a)
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GPU

Inside a kernel threadIdx. x
describes the index of the thread within

a block. In this case 2

do work([2, 4] (d a)

= DEEP
& T

nVIDIA.  [NSTITUTE



GPU

Inside a kernel threadIdx. x
describes the index of the thread within

a block. In this case 3

do work([2, 4] (d a)
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Coordinating Parallel Threads



Let’s look at some basic ways to
DD coordinate parallel threads to work on
a data set

d a=do work(d a)
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Assume data is in a O indexed vector

GPU

DATA

do work]|
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0 4 Assume data is in a O indexed vector

GPU 1 5
DATA
2 6
3 7

do work]|
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0 4 Somehow, each thread must be
mapped to work on elements in the

data
GPU 1 5
DATA
2 6
3 7

do A d

GPU
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0 4 ... if we can calculate a thread’s index
within the entire grid, then we could
map that index to an index in the data

GPU 1 5
DATA

2 6

3 7

do A d

GPU oM1M203 alls el
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0 4 . ... unfortunately CUDA does not
} provide a single variable to capture
this, only thread indices within the
GPU 1 5 block
. 2 6
3 7
do / d

GPU oM1M2M3 J N FE
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0 4 There is an idiomatic way to calculate
this value, however. Recall that each
thread has access to the size of its
GPU 1 5 block via blockDim. x
2 6
3 7

do workf[2, 4] (d a)
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0 4 ...and the index of its block within the
grid via blockIdx.x

GPU 1 5
DATA
2 6
3 7

do workl[Z,

GPU
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0 4 ...and its own index within its block via
threadIdx.x

GPU 1 5
DATA
2 6
3 7

GPU
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0 4 Using these variables, the formula
threadIdx.x + blockIdx.x *
blockDim. x will return the thread’s
GPU 1 5 unique index in the whole grid, which
DATA we can then map to data elements.
2 6
3 7

do workl[Z,

0

GPU
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0 4 threadIdx.x |+| blockIdx.x H
0 0 4

GPU 1 5

DATA
2 6 ?
3 7

do workl[Z,

0

GPU
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0 4 threadIdx.x |+| blockIdx.x H
0 0 4

GPU 1 5

DATA
2 6 0
3 7

do wprkl[Z2,

0

GPU
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0 4 threadIdx.x |+| blockIdx.x H
1 0 4

GPU 1 5

DATA
2 6 ?
3 7

do workl[Z,

0

GPU
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0 4 threadIdx.x |+| blockIdx.x H
1 0 4

GPU 1 5

DATA
2 6 1
3 7

do workl[d,

0

GPU
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0 4 threadIdx.x |+| blockIdx.x H
2 0 4

GPU 1 5

DATA
2 6 ?
3 7

do workl[Z,

0

GPU
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0 4 threadIdx.x |+| blockIdx.x H
2 0 4

GPU 1 5
DATA
2 6 2
3 7

do workl[Z,

0

GPU
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0 4 threadIdx.x |+| blockIdx.x H
3 0 4

GPU 1 5

DATA
2 6 ?
3 7

do workl[Z,

0

GPU
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(NIPRI tnzesdic x | +| blockIox.x |+ | blockbim.x |
3 0 4

GPU 1 5
DATA

2 6 3

3 7

0

GPU ON1M2N3 olM1M2N3
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0 4 threadIdx.x |+| blockIdx.x H
0 1 4

GPU 1 5

DATA
2 6 ?
3 7

do workl[Z,

0

GPU
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(NIIPR tnzssdic x | +| blockIox.x |+ | blockbim.x |
0 1 4

GPU 1 5
DATA

2 6 4

3 7

0
GPU oN1M2H 3 of1M2N3
4 i
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0 4 threadIdx.x |+| blockIdx.x H
1 1 4

GPU 1 5

DATA
2 6 ?
3 7

do workl[Z,

0

GPU
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0 4 threadIdx.x |+| blockIdx.x H
1 1 4

GPU 1 5 |

DATA
2 6 5
3 7

do workl[Z,

0

GPU
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0 4 threadIdx.x |+| blockIdx.x H
2 1 4

GPU 1 5

DATA
2 6 ?
3 7

do workl[Z,

0

GPU
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0 4 threadIdx.x |+| blockIdx.x H
2 1 4

GPU 1 5

D AT A data index
2 6
3 7

do workl[Z,

0

GPU
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0 4 threadIdx.x |+| blockIdx.x H
3 1 4

GPU 1 5

DATA
2 6 ?
3 7

do workl[Z,

0

GPU
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0 || 4 [Emrdens o Eesuta|peamng
3 1 4
GPU 1 5
DATA
2 6 7
3 7

do workl[Z,

0 1

AN
GPU 3

— —
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o[+ ] N T
3 1 4
GPU 1 5
DATA
As a convenience, Numba
2 6 7 provides the “cuda.grid()®
: function, which will return a
3 . thread’s unique index in the
rid.
™\ 7 .

do workl[Z,

0

GPU
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Grid-Stride Loops




0 4 8 12 16 20 24 28 Often there are more data
elements than there are
threads in the grid

GPU 1 5 9 13 || 17 || 21 || 25 || 29
DATA

2 6 10 14 || 18 22 26 30

3 7 11 || 15 || 19 || 23 27 || 31

do workf[2, 4] (d a)
GPU
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DATA

In such scenarios threads
cannot work on only one
element

0‘ 8 12 || 16 20 24 28
1 9 13 || 17 21 25 29
| N\
[ N\
2 10N\ 14 || 18 22 26 30
| N N
( ™
3 A |11 TN| 19 23 27 31
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JEN | [ ] 1| R
undone
e | [ 111
DATA
2|« | I
3|7 |

do work]|
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0 4 8 12 16 20 24 28 One way to address this
programmatically is with a
grid-stride loop
GPU 1 5 9 13 || 17 || 21 || 25 || 29
DATA
2 6 10 || 14 || 18 || 22 26 || 30
3 7 11 || 15 || 19 || 23 27 || 31
do workf[2, 4] (d a)
GPU
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DATA

In a grid-stride loop, the

thread’s first element is

calculated as usual, with
cuda.grid()

0 ‘ 4 8 12 || 16 || 20 24 28

1 5 ) 13 || 17 21 25 29
|

2 6 10 14 || 18 22 26 30

3 7 11 15 || 19 || 23 27 31

ork[2, 4] (d a)

I I
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DATA

The thread then strides
forward by the total number
of threads in the grid
(blockDim.x *
gridDim.x) , in this case
8

0 4 | 8 12 || 16 || 20 24 28
|

1 5 ) 13 || 17 21 25 29

2 6 10 14 || 18 22 26 30

3 7 11 15 || 19 || 23 27 31

ork[2, 4] (d a)

I I
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DATA

Numba provides another
convenience function for this
common calculation:
cuda.gridsize(),
returning the number of
threads in the grid

0 4 | 8 12 || 16 || 20 24 28
|

1 5 ) 13 || 17 21 25 29

2 6 10 14 || 18 22 26 30

3 7 11 15 || 19 || 23 27 31

ork[2, 4] (d a)

I I
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DATA

The thread continues in this
way until its data index is
greater than the number of
data elements

4 8 12 [/ 16 || 20 24 || 28
/|

5 9 13_ 17 || 21 || 25 || 29

6 10 | 14 || 18 || 22 || 26 || 30

7 r11 15 [| 19 || 23 || 27 || 31

k(2, 4] (d a)

I
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DATA

The thread continues in this
way until its data index is
greater than the number of
data elements

4 8 12 16 20 24 28
5 ] 13 || 17 le 25 29
/]
-
6 10 14 /| 18 22 26 30
| [7
7 11 15 || 19 || 23 27 31

K[z, 4] (d_a)

I
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0 4 8 12 || 16 20 24 28 With all threads working in
parallel using a grid stride
loop...
GPU 1 5 9 13 || 17 || 21 || 25 || 29
DATA
2 6 10 || 14 || 18 || 22 || 26 || 30
3 7 11 || 15 || 19 || 23 || 27 || 31
do workf[2, 4] (d a)
GPU
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0 4 4 8 12 16 20 24 28 ... all elements are covered
GPU 1 5 \9\ 13 (|17 || 21 || 25 || 29
DATA AR\

2 6 10N\ 14 || 18 || 22 26 || 30

\ x
\\
3 11 \ 19 || 23 || 27 || 31
DN\ ~\

GPU O 18203 Op1p2
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DATA

Additionally the device
coalesces memory
reads/writes into as few
transactions as possible for
performance...

0‘ 8 12 || 16 20 24 28
1 9 13 || 17 21 25 29
| N\
[ N\
2 10N\ 14 || 18 22 26 30
| N N
( ™
3 A |11 TN| 19 23 27 31
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DATA

And grid stride loops
support this memory
coalescing because
threads executing in parallel
will access adjacent data
elements

0‘ 8 12 || 16 20 24 28
1 9 13 || 17 21 25 29
| N\
[ N\
2 10N\ 14 || 18 22 26 30
| N N
( ™
3 A |11 TN| 19 23 27 31
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DATA

With all threads working in
this way, all elements are
covered with the
performance advantage of
memory coalescing

0 4 8 12 || 16 || 20 || 24 || 28
1 5 9 13 || 17 || 21 || 25 || 29
2 6 10 || 14 || 18 || 22 || 26 || 30
3 7 11 || 15 || 19 || 23 || 27 || 31

do work]| 2, 4]

(d

a)
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DATA

With all threads working in
this way, all elements are
covered with the
performance advantage of
memory coalescing

8 12 16 20 24 28
|

o) 13 || 17 21 25 29
I_

10 14 .|\18 22 26 30
AN

11 15 |y. 19 23 27 31
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DATA

With all threads working in
this way, all elements are
covered with the
performance advantage of
memory coalescing

0 4 8 12 || 16 || 20 || 24 || 28
1 5 9 13 || 17 || 21 || 25 || 29
2 6 10 || 14 || 18 || 22 || 26 || 30
3 7 11 || 15 || 19 || 23 || 27 || 31

do work]| 2, 4]

(d

a)
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DATA

With all threads working in
this way, all elements are
covered with the
performance advantage of
memory coalescing

8 12 16 20 24 28

o) 13 | 17 21J 25 29

10 ¥4 | 18 22 26 30
L -

11 15 | 19 23 27 31
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DATA

With all threads working in
this way, all elements are
covered with the
performance advantage of
memory coalescing

0 4 8 12 || 16 || 20 || 24 || 28
1 5 9 13 || 17 || 21 || 25 || 29
2 6 10 || 14 || 18 || 22 || 26 || 30
3 7 11 || 15 || 19 || 23 || 27 || 31

do work]| 2, 4]

(d

a)
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0 4 8 12 || 16 20 24 28 With all threads working in

/] | this way, all elements are

7 - covered with the
1 5 e 13 17 21 25 29 performance advantage of
DATA /| A0LL Y memory coalescing
YV 1/ '
2 6 10 || 14 4] 18 1 22 er 30
| LA |
A b V_/11/

3 7 11| 15| 19 | 23 A/27/|} 31
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DATA

With all threads working in
this way, all elements are
covered with the
performance advantage of
memory coalescing

0 4 8 12 || 16 || 20 || 24 || 28
1 5 9 13 || 17 || 21 || 25 || 29
2 6 10 || 14 || 18 || 22 || 26 || 30
3 7 11 || 15 || 19 || 23 || 27 || 31

do work|[ 2, 4]

(d

a)
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