
Memory Coalescing

Recall that thread blocks are divided

into warps of 32 threads

Recall that thread blocks are divided

into warps of 32 threads

Recall that thread blocks are divided

into warps of 32 threads

Instructions are issued in parallel at the

warp level of 32 threads

Instructions are issued in parallel at the

warp level of 32 threads

For space on these slides, we will treat

just 4 threads as a warp

Warp

Data is transferred to and from global

device memory in 32-byte segments*

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data

(* If the data is in the L1 cache it will be

transferred in 128-byte cache lines –

see the notebook for details)

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data

For these slides we will treat 4 data

elements as one of these fixed-length

lines of contiguous memory

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data

The memory subsystem will attempt to

minimize the number of lines required

to fulfill the read/write requirements of

the warp
Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data

If the addresses requested are

contiguous

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

idx = threadIdx.x +

blockIdx.x * blockDim.x

a[idx] += 1

Data

All data in the line will be used

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

idx = threadIdx.x +

blockIdx.x * blockDim.x

a[idx] += 1

Data

And the transfer will happen in as few

lines as possible

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

idx = threadIdx.x +

blockIdx.x * blockDim.x

a[idx] += 1

Data

When this occurs, the memory access

is fully coalesced

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

idx = threadIdx.x +

blockIdx.x * blockDim.x

a[idx] += 1

Data

As requested memory becomes less

contiguous

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

idx = blockIdx.x +

blockDim.x * threadIdx.x

a[idx] += 1

Data

More lines will have to be transferred

to fulfil the needs of the warp

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data

idx = blockIdx.x +

blockDim.x * threadIdx.x

a[idx] += 1

And more of the data being transferred

will go unused

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data

idx = blockIdx.x +

blockDim.x * threadIdx.x

a[idx] += 1

The memory throughput is degraded,

and additional time is required: a

performance loss

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data

idx = blockIdx.x +

blockDim.x * threadIdx.x

a[idx] += 1

Row and Column Sum Comparison

Consider a kernel that stores the sum

of each row of a matrix (which here is

4 contiguous data elements) in a result

vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

A single thread could iterate over a

row, summing it, and then write the

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

A single thread could iterate over a

row, summing it, and then write the

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

Sum = 0

A single thread could iterate over a

row, summing it, and then write the

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

Sum = 1

A single thread could iterate over a

row, summing it, and then write the

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

Sum = 3

A single thread could iterate over a

row, summing it, and then write the

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

Sum = 6

A single thread could iterate over a

row, summing it, and then write the

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

6 ? ? ?

Warp

Sum = 6

This seems natural, but look at what

happens when we consider the parallel

execution within the warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Each thread in the warp is requesting

data in a different line of memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size

Note that increments to threadIdx.x are

mapping to increments in the data

along the y axis

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size

Which means (in our example) 4 lines

of data will need to be loaded, and

75% of the data loaded will be unused

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size

Unfortunately, as each thread iterates

over its row, the same uncoalesced

pattern continues

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size

Unfortunately, as each thread iterates

over its row, the same uncoalesced

pattern continues

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size

Unfortunately, as each thread iterates

over its row, the same uncoalesced

pattern continues

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size

In this example we transferred 16

memory lines, and used 25% of the

data for each line transferred

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Let’s compare a kernel that stores the

sum of each column of a matrix in a

result vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

A single thread could iterate over a

column, summing it, and then write the

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

A single thread could iterate over a

column, summing it, and then write the

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

Sum = 0

A single thread could iterate over a

column, summing it, and then write the

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

Sum = 5

A single thread could iterate over a

column, summing it, and then write the

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

Sum = 12

A single thread could iterate over a

column, summing it, and then write the

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

Sum = 24

A single thread could iterate over a

column, summing it, and then write the

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

24 ? ? ?

Warp

Sum = 24

Here when we consider the parallel

execution, we see that the warp’s

memory access is coalesced

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size

Here when we consider the parallel

execution, we see that the warp’s

memory access is coalesced

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size

Here when we consider the parallel

execution, we see that the warp’s

memory access is coalesced

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size

Here when we consider the parallel

execution, we see that the warp’s

memory access is coalesced

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size

A useful tip to keep in mind is that

increments to threadIdx.x should map

to increments in data in the direction of

fastest changing index – in this case

the x axis

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size

In this example we transferred 4

memory lines (compared to 16), and

used 100% of the data for each line

transferred (compared to 25%)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Using Shared Memory to Support Coalesced
Memory Access

We will examine a matrix transpose to

demonstrate how shared memory can

be used to promote coalesced data

transfers to and from global memory

Here we have a (2,2) grid, with each

block containing (2,2) threads as well

as (4,4) input and output matrices

Grid

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Input Output

For these slides we will define a warp

as 2 threads, and a memory segment

as 2 data elements wide

Grid

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Input Output

Memory Segment

Size

Warp Size

Our goal is to transpose the input by

rotating all elements around the

diagonal, writing the transposed

elements to output

Grid

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Input Output

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

Memory Segment

Size

Warp Size

A naïve approach is to launch a grid

with threads equal to input elements,

and to have each thread read 1

element, then write it to output in the

transposed location

Grid

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Input Output

Memory Segment

Size

Warp Size

x, y = cuda.grid(2)

out[x][y] = in[y][x]

Observing the behavior of a single

warp, is it the case that memory reads

are coalesced? Let’s dig into

answering that question

Grid

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Input Output

Memory Segment

Size

Warp Size

x, y = cuda.grid(2)

out[x][y] = in[y][x]

Rewriting the creation of the indexing

variables, it is clearer that contiguous

threads in the same warp are adjacent

along the x axis

Grid

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Input Output

Memory Segment

Size

Warp Size

x = blockIdx.x * blockDim.x

+ threadIdx.x

y = blockIdx.y * blockDim.y

+ threadIdx.y

out[x][y] = in[y][x]

Furthermore, these contiguous threads

will read elements from the rows of

input where data elements are

contiguous

Grid

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Input Output

Memory Segment

Size

Warp Size

x = blockIdx.x * blockDim.x

+ threadIdx.x

y = blockIdx.y * blockDim.y

+ threadIdx.y

out[x][y] = in[y][x]

Therefore, it makes sense that reads

from input are coalesced
Grid

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Input Output

Memory Segment

Size

Warp Size

x = blockIdx.x * blockDim.x

+ threadIdx.x

y = blockIdx.y * blockDim.y

+ threadIdx.y

out[x][y] = in[y][x]

What about this warp’s writes to

output, will they be coalesced?
Grid

Input Output

Memory Segment

Size

Warp Size

x = blockIdx.x * blockDim.x

+ threadIdx.x

y = blockIdx.y * blockDim.y

+ threadIdx.y

out[x][y] = in[y][x]

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Here we see that contiguous threads in

the same warp will be writing along a

column in output

Grid

Input Output

Memory Segment

Size

Warp Size

x = blockIdx.x * blockDim.x

+ threadIdx.x

y = blockIdx.y * blockDim.y

+ threadIdx.y

out[x][y] = in[y][x]

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Therefore, the writes will not be

coalesced
Grid

Input Output

Memory Segment

Size

Warp Size

0

1

x = blockIdx.x * blockDim.x

+ threadIdx.x

y = blockIdx.y * blockDim.y

+ threadIdx.y

out[x][y] = in[y][x]

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

We can use shared memory to make

coalesced reads and writes. Here,

each block will allocate a (2,2) shared

memory tile

Grid

Input Output

Memory Segment

Size

Warp Size

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Shared

tile = cuda.shared.array(2,2)

Grid

Input Output

Memory Segment

Size

Warp Size

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Shared

tile = cuda.shared.array(2,2)

(It is worth reminding that in our slides,

to preserve space, 2 threads is a warp

length. A real warp is 32 threads)

Grid

Input Output

Memory Segment

Size

Warp Size

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

Now we can make coalesced reads

from input, and write the values to the

block’s shared memory tile

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

Grid

Input Output

Memory Segment

Size

Warp Size

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

Because each shared memory tile is

local to the block (not the grid) we

index into it using thread indices, not

grid indices

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

Grid

Input Output

Memory Segment

Size

Warp Size

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

After synchronizing on all threads in

the block, the tile will contain all the

data this block needs to begin the

writes

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

4 5

Grid

Input Output

Memory Segment

Size

Warp Size

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

So that the writes are coalesced, we

want each warp to write to a row in

output

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

4 5

Grid

Input Output

Memory Segment

Size

Warp Size

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

Notice that to write to output at the

transposed locations we use blockIdx.y

and blockDim.y to calculate the x axis

index in output…

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

4 5

Grid

Input Output

Memory Segment

Size

Warp Size

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

…but to accomplish coalesced writes,

we still map increments to threadIdx.x

to be along the x output axis

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

4 5

Grid

Input Output

Memory Segment

Size

Warp Size

0 4

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

Because of this last detail, each warp

will need to read from a column of the

shared memory tile in order to perform

the transpose

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

4 5

Grid

Input Output

Memory Segment

Size

Warp Size

0 4

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

(There’s more to come about efficient

reads/writes to/from shared memory,

but for now know that reading across

the column in shared memory has very

low impact compared to doing so with

global memory)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

4 5

Grid

Input Output

Memory Segment

Size

Warp Size

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Shared

Grid

Input Output

Memory Segment

Size

Warp Size

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

2 3

4 5 6 7

8 9 10 11

12 13 14 15

Shared

0 1

0 1

Grid

Input Output

Memory Segment

Size

Warp Size

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

Shared

Grid

Input Output

Memory Segment

Size

Warp Size

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

Shared

Grid

Input Output

Memory Segment

Size

Warp Size

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

Shared

Grid

Input Output

Memory Segment

Size

Warp Size

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

Shared

Grid

Input Output

Memory Segment

Size

Warp Size

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

Shared

Grid

Input Output

Memory Segment

Size

Warp Size

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

Shared

Grid

Input Output

Memory Segment

Size

Warp Size

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared

Grid

Input Output

Memory Segment

Size

Warp Size

0 4

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared

Grid

Input Output

Memory Segment

Size

Warp Size

0 4

1 5

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared

Grid

Input Output

Memory Segment

Size

Warp Size

0 4 8 12

1 5

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared

Grid

Input Output

Memory Segment

Size

Warp Size

0 4 8 12

1 5 9 13

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared

Grid

Input Output

Memory Segment

Size

Warp Size

0 4 8 12

1 5 9 13

2 6

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared

Grid

Input Output

Memory Segment

Size

Warp Size

0 4 8 12

1 5 9 13

2 6

3 7

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared

Grid

Input Output

Memory Segment

Size

Warp Size

0 4 8 12

1 5 9 13

2 6 10 14

3 7

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared

Grid

Input Output

Memory Segment

Size

Warp Size

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared

Grid

Input Output

Memory Segment

Size

Warp Size

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the

matrix while making fully coalesced

reads from and writes to global

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared

Shared Memory Bank Conflicts

Shared memory is physically stored in

banks

Logical Shared Memory
cuda.shared.array(4,4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

Actual shared memory is 32 4-byte

wide banks. For space in these slides,

we will portray shared memory as

having 4 banks (A, B, C, D) and a

warp as having 4 threads

Logical Shared Memory
cuda.shared.array(4,4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

Warp

Successive 4-byte words (1 box in

these slides) will belong to different

banks

Logical Shared Memory
cuda.shared.array(4,4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

Warp

A warp can access 4 bytes per bank,

in parallel. This shared memory access

would occur all at once

Logical Shared Memory
cuda.shared.array(4,4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

Warp

So would this one, since each element

is in a different bank

Logical Shared Memory
cuda.shared.array(4,4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

Warp

Memory accesses in the same bank

result in the access operations being

serialized. We call this a bank

conflict.

Logical Shared Memory
cuda.shared.array(4,4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

Warp

In this scenario, we have a 2-way bank

conflict that would require the memory

access to be serialized over 2 cycles.

Logical Shared Memory
cuda.shared.array(4,4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

Warp

Here have a 4-way bank conflict that

would require the memory access to

be serialized over 4 cycles.

Logical Shared Memory
cuda.shared.array(4,4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

Warp

Grid

Input Output

Memory Segment

Size

Warp Size

0 4 8 12

1 5

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

Recall from our earlier matrix

transpose example that we were

making this very kind of columnar read

from shared memory, which means we

had significant bank conflicts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared

Here is a technique we can use to

avoid bank conflicts when we know we

need to make columnar access to

shared memory

First, when we allocate our shared

memory tile, we will pad it with an extra

column

Logical Shared Memory
cuda.shared.array(4,5)

Warp

Next, when we write to the tile, we act

as if the tile is (4,4) and only write to

addresses in the range [0:4][0:4]

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

The physical shared memory has a

fixed size of 32 banks (4 banks in our

slides to save space), so our padding

of the shared memory array does not

affect the number of memory banks

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

So if we consider how the array is laid

out within the memory banks, we see

the following:

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

So if we consider how the array is laid

out within the memory banks, we see

the following:

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7

So if we consider how the array is laid

out within the memory banks, we see

the following:

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7 8 9

10 11

So if we consider how the array is laid

out within the memory banks, we see

the following:

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

Now when we access a column of

shared memory, each element resides

in a different bank and there are no

bank conflicts

Now when we access a column of

shared memory, each element resides

in a different bank and there are no

bank conflicts

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

Now when we access a column of

shared memory, each element resides

in a different bank and there are no

bank conflicts

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

Now when we access a column of

shared memory, each element resides

in a different bank and there are no

bank conflicts

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

Now when we access a column of

shared memory, each element resides

in a different bank and there are no

bank conflicts

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

Worth mentioning that to use this

technique for this example, the only

change we had to make to our code

was add one extra column to our

shared memory allocation

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

Grid

Input Output

Memory Segment

Size

Warp Size

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

0 1

5

Shared

tile = cuda.shared.array(2,3)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

From our earlier matrix transpose

example, the single change in green

below would suffice to avoid bank

conflicts while retaining correctness

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared

www.nvidia.com/dli

	Slide 1: Memory Coalescing
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Row and Column Sum Comparison
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: Using Shared Memory to Support Coalesced Memory Access
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90: Shared Memory Bank Conflicts
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115

