
Memory Coalescing



Recall that thread blocks are divided 

into warps of 32 threads



Recall that thread blocks are divided 

into warps of 32 threads



Recall that thread blocks are divided 

into warps of 32 threads



Instructions are issued in parallel at the 

warp level of 32 threads



Instructions are issued in parallel at the 

warp level of 32 threads



For space on these slides, we will treat 

just 4 threads as a warp

Warp



Data is transferred to and from global 

device memory in 32-byte segments*

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data



(* If the data is in the L1 cache it will be 

transferred in 128-byte cache lines –

see the notebook for details)

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data



For these slides we will treat 4 data 

elements as one of these fixed-length 

lines of contiguous memory

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data



The memory subsystem will attempt to 

minimize the number of lines required 

to fulfill the read/write requirements of 

the warp
Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data



If the addresses requested are 

contiguous

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

idx = threadIdx.x + 

blockIdx.x * blockDim.x

a[idx] += 1

Data



All data in the line will be used

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

idx = threadIdx.x + 

blockIdx.x * blockDim.x

a[idx] += 1

Data



And the transfer will happen in as few 

lines as possible

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

idx = threadIdx.x + 

blockIdx.x * blockDim.x

a[idx] += 1

Data



When this occurs, the memory access 

is fully coalesced

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

idx = threadIdx.x + 

blockIdx.x * blockDim.x

a[idx] += 1

Data



As requested memory becomes less 

contiguous

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

idx = blockIdx.x + 

blockDim.x * threadIdx.x

a[idx] += 1

Data



More lines will have to be transferred 

to fulfil the needs of the warp

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data

idx = blockIdx.x + 

blockDim.x * threadIdx.x

a[idx] += 1



And more of the data being transferred 

will go unused

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data

idx = blockIdx.x + 

blockDim.x * threadIdx.x

a[idx] += 1



The memory throughput is degraded, 

and additional time is required: a 

performance loss

Warp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data

idx = blockIdx.x + 

blockDim.x * threadIdx.x

a[idx] += 1



Row and Column Sum Comparison



Consider a kernel that stores the sum 

of each row of a matrix (which here is 

4 contiguous data elements) in a result 

vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp



A single thread could iterate over a 

row, summing it, and then write the 

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp



A single thread could iterate over a 

row, summing it, and then write the 

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

Sum = 0 



A single thread could iterate over a 

row, summing it, and then write the 

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

Sum = 1 



A single thread could iterate over a 

row, summing it, and then write the 

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

Sum = 3 



A single thread could iterate over a 

row, summing it, and then write the 

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

Sum = 6 



A single thread could iterate over a 

row, summing it, and then write the 

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

6 ? ? ?

Warp

Sum = 6 



This seems natural, but look at what 

happens when we consider the parallel 

execution within the warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp



Each thread in the warp is requesting 

data in a different line of memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size



Note that increments to threadIdx.x are 

mapping to increments in the data 

along the y axis

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size



Which means (in our example) 4 lines 

of data will need to be loaded, and 

75% of the data loaded will be unused

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size



Unfortunately, as each thread iterates 

over its row, the same uncoalesced 

pattern continues 

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size



Unfortunately, as each thread iterates 

over its row, the same uncoalesced 

pattern continues 

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size



Unfortunately, as each thread iterates 

over its row, the same uncoalesced 

pattern continues 

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size



In this example we transferred 16 

memory lines, and used 25% of the 

data for each line transferred

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp



Let’s compare a kernel that stores the 

sum of each column of a matrix in a 

result vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp



A single thread could iterate over a 

column, summing it, and then write the 

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp



A single thread could iterate over a 

column, summing it, and then write the 

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

Sum = 0 



A single thread could iterate over a 

column, summing it, and then write the 

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

Sum = 5 



A single thread could iterate over a 

column, summing it, and then write the 

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

Sum = 12 



A single thread could iterate over a 

column, summing it, and then write the 

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

? ? ? ?

Warp

Sum = 24 



A single thread could iterate over a 

column, summing it, and then write the 

result in the solution vector

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Result

24 ? ? ?

Warp

Sum = 24 



Here when we consider the parallel 

execution, we see that the warp’s 

memory access is coalesced

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size
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Data
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Data
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Here when we consider the parallel 

execution, we see that the warp’s 

memory access is coalesced

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size



A useful tip to keep in mind is that 

increments to threadIdx.x should map 

to increments in data in the direction of 

fastest changing index – in this case 

the x axis

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp

Memory Line Size



In this example we transferred 4 

memory lines (compared to 16), and 

used 100% of the data for each line 

transferred (compared to 25%)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Data

Warp



Using Shared Memory to Support Coalesced 
Memory Access



We will examine a matrix transpose to 

demonstrate how shared memory can 

be used to promote coalesced data 

transfers to and from global memory



Here we have a (2,2) grid, with each 

block containing (2,2) threads as well 

as (4,4) input and output matrices

Grid

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Input Output



For these slides we will define a warp 

as 2 threads, and a memory segment 

as 2 data elements wide

Grid

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Input Output

Memory Segment 

Size

Warp Size



Our goal is to transpose the input by 

rotating all elements around the 

diagonal, writing the transposed 

elements to output

Grid

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Input Output

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

Memory Segment 

Size

Warp Size



A naïve approach is to launch a grid 

with threads equal to input elements, 

and to have each thread read 1 

element, then write it to output in the 

transposed location

Grid

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Input Output

Memory Segment 

Size

Warp Size

x, y = cuda.grid(2)

out[x][y] = in[y][x]



Observing the behavior of a single 

warp, is it the case that memory reads 

are coalesced? Let’s dig into 

answering that question

Grid

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Input Output

Memory Segment 

Size

Warp Size

x, y = cuda.grid(2)

out[x][y] = in[y][x]



Rewriting the creation of the indexing 

variables, it is clearer that contiguous 

threads in the same warp are adjacent 

along the x axis

Grid

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Input Output

Memory Segment 

Size

Warp Size

x = blockIdx.x * blockDim.x 

+ threadIdx.x

y = blockIdx.y * blockDim.y 

+ threadIdx.y

out[x][y] = in[y][x]



Furthermore, these contiguous threads 

will read elements from the rows of 

input where data elements are 

contiguous

Grid

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Input Output

Memory Segment 

Size

Warp Size

x = blockIdx.x * blockDim.x 

+ threadIdx.x

y = blockIdx.y * blockDim.y 

+ threadIdx.y

out[x][y] = in[y][x]



Therefore, it makes sense that reads 

from input are coalesced
Grid

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Input Output

Memory Segment 

Size

Warp Size

x = blockIdx.x * blockDim.x 

+ threadIdx.x

y = blockIdx.y * blockDim.y 

+ threadIdx.y

out[x][y] = in[y][x]



What about this warp’s writes to 

output, will they be coalesced?
Grid

Input Output

Memory Segment 

Size

Warp Size

x = blockIdx.x * blockDim.x 

+ threadIdx.x

y = blockIdx.y * blockDim.y 

+ threadIdx.y

out[x][y] = in[y][x]

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15



Here we see that contiguous threads in 

the same warp will be writing along a 

column in output

Grid

Input Output

Memory Segment 

Size

Warp Size

x = blockIdx.x * blockDim.x 

+ threadIdx.x

y = blockIdx.y * blockDim.y 

+ threadIdx.y

out[x][y] = in[y][x]

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15



Therefore, the writes will not be 

coalesced
Grid

Input Output

Memory Segment 

Size

Warp Size

0

1

x = blockIdx.x * blockDim.x 

+ threadIdx.x

y = blockIdx.y * blockDim.y 

+ threadIdx.y

out[x][y] = in[y][x]

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15



We can use shared memory to make 

coalesced reads and writes. Here, 

each block will allocate a (2,2) shared 

memory tile

Grid

Input Output

Memory Segment 

Size

Warp Size

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Shared

tile = cuda.shared.array(2,2)



Grid

Input Output

Memory Segment 

Size

Warp Size

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Shared

tile = cuda.shared.array(2,2)

(It is worth reminding that in our slides, 

to preserve space, 2 threads is a warp 

length. A real warp is 32 threads)



Grid

Input Output

Memory Segment 

Size

Warp Size

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

Now we can make coalesced reads 

from input, and write the values to the 

block’s shared memory tile

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1



Grid

Input Output

Memory Segment 

Size

Warp Size

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

Because each shared memory tile is 

local to the block (not the grid) we 

index into it using thread indices, not 

grid indices

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1



Grid

Input Output

Memory Segment 

Size

Warp Size

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

After synchronizing on all threads in 

the block, the tile will contain all the 

data this block needs to begin the 

writes

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

4 5



Grid

Input Output

Memory Segment 

Size

Warp Size

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

So that the writes are coalesced, we 

want each warp to write to a row in 

output

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

4 5



Grid

Input Output

Memory Segment 

Size

Warp Size

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

Notice that to write to output at the 

transposed locations we use blockIdx.y 

and blockDim.y to calculate the x axis 

index in output…

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

4 5



Grid

Input Output

Memory Segment 

Size

Warp Size

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

…but to accomplish coalesced writes, 

we still map increments to threadIdx.x  

to be along the x output axis

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

4 5



Grid

Input Output

Memory Segment 

Size

Warp Size

0 4

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

Because of this last detail, each warp 

will need to read from a column of the 

shared memory tile in order to perform 

the transpose

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

4 5



Grid

Input Output

Memory Segment 

Size

Warp Size

0 4

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

(There’s more to come about efficient 

reads/writes to/from shared memory, 

but for now know that reading across 

the column in shared memory has very 

low impact compared to doing so with 

global memory)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

4 5



Grid

Input Output

Memory Segment 

Size

Warp Size

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Shared



Grid

Input Output

Memory Segment 

Size

Warp Size

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

2 3

4 5 6 7

8 9 10 11

12 13 14 15

Shared

0 1

0 1



Grid

Input Output

Memory Segment 

Size

Warp Size

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

Shared



Grid

Input Output

Memory Segment 

Size

Warp Size

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

Shared



Grid

Input Output

Memory Segment 

Size

Warp Size

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

Shared



Grid

Input Output

Memory Segment 

Size

Warp Size

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

Shared



Grid

Input Output

Memory Segment 

Size

Warp Size

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

Shared



Grid

Input Output

Memory Segment 

Size

Warp Size

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

Shared



Grid

Input Output

Memory Segment 

Size

Warp Size

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared



Grid

Input Output

Memory Segment 

Size

Warp Size

0 4

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared



Grid

Input Output

Memory Segment 

Size

Warp Size

0 4

1 5

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared



Grid

Input Output

Memory Segment 

Size

Warp Size

0 4 8 12

1 5

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared



Grid

Input Output

Memory Segment 

Size

Warp Size

0 4 8 12

1 5 9 13

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared



Grid

Input Output

Memory Segment 

Size

Warp Size

0 4 8 12

1 5 9 13

2 6

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared



Grid

Input Output

Memory Segment 

Size

Warp Size

0 4 8 12

1 5 9 13

2 6

3 7

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared



Grid

Input Output

Memory Segment 

Size

Warp Size

0 4 8 12

1 5 9 13

2 6 10 14

3 7

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared



Grid

Input Output

Memory Segment 

Size

Warp Size

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared



Grid

Input Output

Memory Segment 

Size

Warp Size

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

In this way we can transpose the 

matrix while making fully coalesced 

reads from and writes to global 

memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared



Shared Memory Bank Conflicts



Shared memory is physically stored in 

banks

Logical Shared Memory
cuda.shared.array(4,4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D



Actual shared memory is 32 4-byte 

wide banks. For space in these slides, 

we will portray shared memory as 

having 4 banks (A, B, C, D) and a 

warp as having 4 threads

Logical Shared Memory
cuda.shared.array(4,4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

Warp



Successive 4-byte words (1 box in 

these slides) will belong to different 

banks

Logical Shared Memory
cuda.shared.array(4,4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

Warp



A warp can access 4 bytes per bank, 

in parallel. This shared memory access 

would occur all at once

Logical Shared Memory
cuda.shared.array(4,4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

Warp



So would this one, since each element 

is in a different bank

Logical Shared Memory
cuda.shared.array(4,4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

Warp



Memory accesses in the same bank 

result in the access operations being 

serialized. We call this a bank 

conflict.

Logical Shared Memory
cuda.shared.array(4,4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

Warp



In this scenario, we have a 2-way bank 

conflict that would require the memory 

access to be serialized over 2 cycles.

Logical Shared Memory
cuda.shared.array(4,4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

Warp



Here have a 4-way bank conflict that 

would require the memory access to 

be serialized over 4 cycles.

Logical Shared Memory
cuda.shared.array(4,4)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

Warp



Grid

Input Output

Memory Segment 

Size

Warp Size

0 4 8 12

1 5

0 1

5

Shared

tile = cuda.shared.array(2,2)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

Recall from our earlier matrix 

transpose example that we were 

making this very kind of columnar read

from shared memory, which means we 

had significant bank conflicts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared



Here is a technique we can use to 

avoid bank conflicts when we know we 

need to make columnar access to 

shared memory



First, when we allocate our shared 

memory tile, we will pad it with an extra 

column

Logical Shared Memory
cuda.shared.array(4,5)

Warp



Next, when we write to the tile, we act 

as if the tile is (4,4) and only write to 

addresses in the range [0:4][0:4]

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15



The physical shared memory has a 

fixed size of 32 banks (4 banks in our 

slides to save space), so our padding 

of the shared memory array does not 

affect the number of memory banks

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D



So if we consider how the array is laid 

out within the memory banks, we see 

the following:

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3



So if we consider how the array is laid 

out within the memory banks, we see 

the following:

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7



So if we consider how the array is laid 

out within the memory banks, we see 

the following:

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7 8 9

10 11



So if we consider how the array is laid 

out within the memory banks, we see 

the following:

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7 8 9

10 11 12

13 14 15



Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

Now when we access a column of 

shared memory, each element resides 

in a different bank and there are no 

bank conflicts



Now when we access a column of 

shared memory, each element resides 

in a different bank and there are no 

bank conflicts

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7 8 9

10 11 12

13 14 15



Now when we access a column of 

shared memory, each element resides 

in a different bank and there are no 

bank conflicts

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7 8 9

10 11 12

13 14 15



Now when we access a column of 

shared memory, each element resides 

in a different bank and there are no 

bank conflicts

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7 8 9

10 11 12

13 14 15



Now when we access a column of 

shared memory, each element resides 

in a different bank and there are no 

bank conflicts

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7 8 9

10 11 12

13 14 15



Worth mentioning that to use this 

technique for this example, the only 

change we had to make to our code 

was add one extra column to our 

shared memory allocation

Logical Shared Memory
cuda.shared.array(4,5)

Warp

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Physical Shared Memory

in 4 banks

A B C D

0 1 2 3

4 5 6

7 8 9

10 11 12

13 14 15



Grid

Input Output

Memory Segment 

Size

Warp Size

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

0 1

5

Shared

tile = cuda.shared.array(2,3)

x, y = cuda.grid(2)

tile[tIdx.y][tIdx.x] = in[y][x]

cuda.syncthreads()

o_x = bId.y*bDim.y + tId.x

o_y = bId.x*bDim.x + tId.y

o[o_y][o_x] = tile[tIdx.x][tIdx.y]

From our earlier matrix transpose 

example, the single change in green 

below would suffice to avoid bank 

conflicts while retaining correctness

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

4

8 9

1312

2 3

76

10 11

1514

Shared
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