
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Performance Analysis
with Callgrind and KCachegrind

Josef Weidendorfer 1

40th VI-HPS Tuning Workshop
June 2021, Garching

1 Leibniz Computing Centre (LRZ)

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Focus: CPU Cache Simulation using a Simple Machine Model

Why simulation? (in contrast to real measurement)

§ Reproducability
§ No influence of tool on results
§ Allows to collect information not possible with real hardware
§ No special permissions needed / cannot crash machine

CALLGRIND - KCACHEGRIND | WEIDENDORFER | JUNE 14, 2021 2

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Focus: CPU Cache Simulation using a Simple Machine Model

Why a simple machine model?

§ easier to understand
§ still captures most problems
§ faster simulation

A sophisticated model includes
§ All pipeline stages, Out-of-Order scheduling, speculation, instr. troughput & latency
§ All cache layers, coherency protocol, replacement, memory parallelism, contention,
hardware prefetching, exact interleaving of accesses from cores

CALLGRIND - KCACHEGRIND | WEIDENDORFER | JUNE 14, 2021 3

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Focus: CPU Cache Simulation using a Simple Machine Model

Why a simple cache model?

§ Bottlenecks in the memory hierarchy often dominate anything else
§ You should first check this with real measurements

§ Qualitative results still useful for cache optimizations

CALLGRIND - KCACHEGRIND | WEIDENDORFER | JUNE 14, 2021 4

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Outline

§ Background

§ Callgrind and {Q,K}Cachegrind
§ Measurement
§ Visualization

§ Hands-On
§ Example: Matrix Multiplication

CALLGRIND - KCACHEGRIND | WEIDENDORFER | JUNE 14, 2021 5

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Single Node CPU Performance: Cache Exploitation is Important

„Memory Wall“

Access latencies to local memory on modern x86 processors ~ 200 cycles
è AVX512 can do 200 * 8 (vector) * 4 (2 FMA units) = 6400 DP-FLOPs / access

Callgrind - KCachegrind | Weidendorfer | June 14, 2021

10

100

1000

10000

1990 2000 2020

CPU Peak Performance
(clock + #cores)

+ 40% / year

Main Memory Performance
+7% / year

Growing
Gap

2010

6

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Single Node CPU Performance: Cache Exploitation is Important

This will mostly be true also in the future
§ Latency of main memory access does not improve
§ Bandwidth to typical main memory (DDRx) increases slower than compute power
§ Lots of integrated cores requesting access to memory (multi-core, accelerators)
§ Improvements GDDRx / HBMx: better bandwidth, but fixed capacity, higher power

(Examples: GPUs / A64FX with HBM)

§ Power consumption [Keynote Dongarra, PPAM 2011]

§ DP FMADD: 100 pJ (2011) è 10 pJ (2018)
§ DP Read DRAM: 4800 pJ (2011) è 1920 pJ (2018)

§ ”Power Wall”: drives large system designs (lots of compute but low memory capacity à NVM)
§ “Affinity Wall”: pressure towards shorter transfer distances makes programming more complex

(increased number of NUMA domains, NUCA & PIM designs)

Callgrind - KCachegrind | Weidendorfer | June 14, 2021 7

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Caches do their Job transparently...

Caches work because programs expose access locality
§ Temporal (hold recently used data) / Spatial (work on blocks of memory)

The “Principle of Locality” is not enough... è “Cache optimization”

Reasons for Performance Loss for SPEC2000
[Beyls/Hollander, ICCS 2004]

Callgrind - KCachegrind | Weidendorfer | June 14, 2021 8

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

How to do Cache Optimization on Parallel Code

§ Analyze sequential code phases
§ Optimization of sequential phases always improve runtime
§ No need to strip down to sequential program

§ Influences of threads/tasks on cache exploitation
§ On multi-core: all cores share bandwidth to main memory
§ Use of shared caches:

cores compete for space vs. cores prefetch for each other
§ Slowdown because of “false sharing”

§ not easy to measure with hardware performance counters

Callgrind - KCachegrind | Weidendorfer | June 14, 2021 9

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Going Sequential ...

§ Sequential performance bottlenecks
§ Logical errors (unneeded/redundant function calls)
§ Bad algorithm (high complexity or huge “constant factor”)
§ Bad exploitation of available resources (caches, vector units, pipelining,...)

§ How to improve sequential performance
§ Use tuned libraries where available
§ Check for above obstacles è by use of analysis tools

Callgrind - KCachegrind | Weidendorfer | June 14, 2021 10

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

(Sequential) Performance Analysis Tools

§ Count occurrences of events
§ Resource exploitation is related to events
§ SW-related: function call, OS scheduling, ...
§ HW-related: FLOP executed, memory access, cache miss, time spent for an activity (like running an

instruction)

§ Relate events to source code
§ Find code regions where most time is spent
§ Check for improvement after changes
§ „Profile data“: histogram of events happening at given code positions
§ Inclusive vs. Exclusive cost

Callgrind - KCachegrind | Weidendorfer | June 14, 2021 11

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

How to measure Events

§ Target: real hardware
§ Needs sensors for interesting events
§ For low overhead: hardware support for event counting
§ May be difficult to understand because of unknown micro-architecture, overlapping and

asynchronous execution

§ Target: machine model
§ Events generated by a simulation of a (simplified) hardware model
§ No measurement overhead: allows for sophisticated online processing
§ Simple models make it easier to understand the problem and to think about solutions

§ Both methods (real vs. model) have advantages & disadvantages,
but reality matters in the end

Callgrind - KCachegrind | Weidendorfer | June 14, 2021 12

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Back to the Memory Wall: Improvements

Latency
§ Exploit (fast) cache: improve locality of data
§ Allow hardware to prefetch data (use access patterns which are easy to predict)
§ Memory controller on chip (standard today) – be aware of NUMA

Bandwidth
§ Share data in caches among cores
§ Keep working set in cache (temporal locality)
§ Use good data layout (spatial locality)
§ If memory accesses are unavoidable

§ Predictable access pattern (stream/strided) è exploit HW prefetcher
§ Memory affinity
§ Avoid data dependencies (linked list traversals)

Callgrind - KCachegrind | Weidendorfer | June 14, 2021 14

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Optimization (1): Reduce Number of Accesses

§ Use large data types (may be done by compiler)
§ Vectors instead of bytes

§ 1 cache line = 1 access: use full cache lines
§ Alignment: crossing cache line gives two accesses

§ (redundant) Calculation instead of memory access

§ Avoid unneeded writes
§ Check if a variable already has given value before writing
§ “Write-allocate” effect: higher bandwidth than expected

CALLGRIND - KCACHEGRIND | WEIDENDORFER | JUNE 14, 2021 15

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Optimization (2): Reorder Accesses

§ If possible, do sequential accesses (in inner loop level)
§ Exploit full cache line
§ Trigger hardware prefetcher

(small sequential accesses reduce accuracy of HW prefetcher)

§ Blocking: reuse data as much as possible
§ Instead of multiple large sweeps over large buffer,

split up into multiple small sweeps over buffer parts
§ Useful in 1d, 2d, 3d, …

§ Recursive (multi-level) blocking: “cache-oblivious”:
best use of multiple cache levels at once!

§ Multi-core: consecutive iterations on cores with shared cache

CALLGRIND - KCACHEGRIND | WEIDENDORFER | JUNE 14, 2021 16

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cache Optimization (3): Improve Data Layout

§ Group data with same access frequency and access type (read vs. write)
§ Use every byte of a fetched cache line (unused data is wasted space + bandwidth)
§ AoS-to-SoA

§ Reorder data in memory according to traversal order in program

§ Avoid power-of-2 strides: may produce conflict misses
§ By padding

CALLGRIND - KCACHEGRIND | WEIDENDORFER | JUNE 14, 2021 17

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind

Cache Simulation with Call-Graph Capturing

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind: Basic Features

Based on Valgrind
§ Runtime instrumentation infrastructure (no recompilation needed)
§ Dynamic binary translation of user-level processes
§ Linux/AIX/OS X on x86, x86-64, PPC32/64, ARM/ARM64, MIPS
§ Open source (GPL), www.valgrind.org

§ Includes correctness checking & profiling tools
§ “memcheck”: accessibility/validity of memory accesses
§ “helgrind” / ”drd”: race detection on multithreaded code
§ “cachegrind”/”callgrind”: cache & branch prediction simulation
§ “massif”: memory profiling

19CALLGRIND - KCACHEGRIND | WEIDENDORFER | JUNE 14, 2021

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind: Basic Features

Part of Valgrind
§ Open Source, GPL
§ Callgrind vs. Cachegrind
§ Dynamic call graph
§ Simulator extensions
§ More control

§ Measurement
§ Profiling via machine simulation (simple cache model)
§ Instruments memory accesses to feed cache simulator
§ Hook into call/return instructions, thread switches, signal handlers
§ Instruments (conditional) jumps for CFG inside of functions

§ Presentation of results: callgrind_annotate / {Q,K}Cachegrind

Profile

Binary

2-level $ Simulator

Memory
Accesses

Event
Counters

Debug Info

20CALLGRIND - KCACHEGRIND | WEIDENDORFER | JUNE 14, 2021

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Pro & Contra (i.e. Simulation vs. Real Measurement)

Usage of Valgrind
§ Driven only by user-level instructions of one process
§ Slowdown (call-graph tracing: 15-20x, + cache simulation: 40-60x)
§ “fast-forward mode”: 2-3x

§ Serializes threads
§ Detailed observation
§ Does not need root access / can not crash machine

Cache model
§ “Not reality”: synchronous 2-level inclusive cache hierarchy
(size/associativity taken from real machine, always including LLC)

§ Reproducible results independent on real machine load
§ Derived optimizations applicable for most architectures

21CALLGRIND - KCACHEGRIND | WEIDENDORFER | JUNE 14, 2021

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrinds Cache Model vs. Xeon

§ Parameters: size, line size, associativity
§ L1 / LLC, inclusive, LRU, shared among threads
§ Write back vs. write through does not matter for hit/miss counts
§ Optional stream prefetcher

IvyMUC node: 2x Intel Xeon (IvyBridge, each 16 cores, 20 MB L3)
§ private L1 (D/I a 32kB) + L2 (256 kB) per core
§ L1/L2 strictly inclusive to L3, L3 shared

Callgrind only simulates 2 levels (L1+LLC) è LLC hit count higher

22CALLGRIND - KCACHEGRIND | WEIDENDORFER | JUNE 14, 2021

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind: Advanced Features

§ Interactive control (backtrace, dump command, …)
§ “Fast forward”-mode to quickly get at interesting code phases
§ Application control via “client requests” (start/stop, dump)

Optional
§ Best-case simulation of simple stream prefetcher
§ Byte-wise usage of cache lines before eviction
§ Branch prediction
§ Dynamic context in function names (call chain/recursion depth)
§ Wallclock time spent in system calls (useful for MPI)

23CALLGRIND - KCACHEGRIND | WEIDENDORFER | JUNE 14, 2021

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind Cheat-Sheet

§ “valgrind –tool=callgrind [callgrind options] <yourprogram> [args]”
§ Cache simulator: “--cache-sim=yes”
§ Specify cache sizes: “--L1/I1/LL=<size>,<assoc>,<linesize>"
§ Branch prediction simulation: “--branch-sim=yes”
§ Enable for machine code annotation: “--dump-instr=yes”
§ Start in “fast-forward”: “--instr-atstart=yes”
§ Switch on event collection: “callgrind_control –i on”

§ Spontaneous dump: “callgrind_control –d [dump identification]”
§ Current backtrace of threads (interactive): “callgrind_control –b”
§ Separate output per thread: “--separate-threads=yes”
§ Jump-profiling in functions (CFG): “--collect-jumps=yes”
§ Time in system calls: “--collect-systime=yes”
§ Byte-wise usage within cache lines: “--cacheuse=yes”

24

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

{Q,K}Cachegrind

Graphical Browser for Profile Visualization

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Features

Open source, GPL, kcachegrind.github.io
§ https://github.com/KDE/kcachegrind
§ includes pure Qt version, able to run on Linux / OS-X / Windows

Visualization of
§ Call relationship of functions (callers, callees, call graph)
§ Exclusive/Inclusive cost metrics of functions
§ Grouping according to ELF object / source file / C++ class

§ Source/assembly annotation: costs + CFG
§ Arbitrary events counts + specification of derived events

Callgrind support: file format, events of cache model

26

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Usage

qcachegrind callgrind.out.<pid>

§ Left: “Dockables”
§ list of function groups

groups according to
§ library (ELF object)
§ source
§ class (C++)

§ list of functions with
§ inclusive
§ exclusive costs

§ Right: visualization panes
27

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

• List of event types
• List of callers/callees

• Treemap visualization
• Call Graph

• Source annotation
• Assemly annotation

Visualization panes for selected function

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Hands-on

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Getting started (see /lrz/sys/courses/vihps/material/kcg)

§ Setup
§ “ssh -X hpckursXX@lxlogin10.lrz.de”
§ “cp -r /lrz/sys/courses/vihps/material/kcg .“
§ “module use /lrz/sys/courses/vihps/modulefiles“
§ “module load qcachegrind”
§ Valgrind is already in path (in system image)

§ Test: What happens in „/bin/ls“ ?
§ run “valgrind --tool=callgrind ls /usr/bin”
§ run “qcachegrind”
§ function with highest instruction execution count? Purpose?
§ where is the main function?

§ run with cache simulation: “--cache-sim=yes”

Callgrind
-

KCacheg
rind |

Weidend
orfer |

June 14,

30

“source kcg/kcg.env”

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Detailed analysis of matrix multiplication

§ Kernel for C = A * B
§ Side length N è N3 multiplications + N3 additions

§ 3 nested loops (i,j,k): Best index order?
§ Optimization for large matrixes: Blocking

Callgrind
-

KCacheg
rind |

Weidend
orfer |

June 14,

BC A= *

i j
k

i

k j

c[k][i] = a[k][j] * b[j][i]

31

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cacheline Usage

CALLGRIND - KCACHEGRIND | WEIDENDORFER | JUNE 14, 2021 32

Usage 16 / 64 24 / 64 48 / 64

loaded at
src.c:42
into L1

new access
src.c:50

time

new access
src.c:52

evicted from L1
(still in LL)

SpLoss1 at src.c:42
incremented by 16

Why maintain “Loss” events? Higher Numbers should point at larger bottlenecks (here: 16B lost)

Why attribution to line loading the cacheline? No variable to attach ”Loss” to, still understandable

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Detailed analysis of matrix multiplication

§ To try out...
§ “cd ~/kcg; make”
§ timing of orderings (e.g. size 512): “./mm 800”
§ cache behavior for small matrix (fits into cache):

“valgrind --tool=callgrind --cache-sim=yes ./mm 300”
§ How good is L1/L2 exploitation of the MM versions?
§ Warning: Login node has 20MB LLC (also used in simulation)

Cache Line Usage
§ “valgrind --tool=callgrind --cacheuse=yes ./mm”
§ Right-click in list on Types tab, “New Event Type”, double click formula column: “64 L1m”

= “How much data is loaded into L1”
§ compare with “SpLoss1” : “How much data was never accessed but loaded into L1”

Other example: 2d Jacobi solver: jc / jc.c

Callgrind - KCachegrind | Weidendorfer | June 14, 2021 33

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

How to run with MPI (here: interactive session)

§ Optional: reduce iterations in BT_MZ / use class A
§ sys/setparams.c, write_bt_info, class A: set niter = 5
§ “make clean; make bt-mz CLASS=A NPROCS=2”

§ „module load salloc_conf/ivymuc“
§ “salloc --nodes=1 --reservation=hhps1s21_workshop“
§ „module load valgrind“
§ “export OMP_NUM_THREADS=2”
§ “mpiexec –n 2 valgrind --tool=callgrind --cache-sim=yes \

--separate-threads=yes bin/bt-mz_A.2”
(verification with fail as it assumes 200 iterations)

§ load all profile dumps at once:
§ in directory you started mpiexec: “qcachegrind callgrind.out.*”

Callgrind - KCachegrind | Weidendorfer | June 14, 2021 34

VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Callgrind - KCachegrind | Weidendorfer | June 14, 2021

Q A&
?

?

Josef Weidendorfer
LRZ
weidendo@lrz.de

35

