
Using Python at LRZ

Ferdinand.Jamitzky@LRZ.de

Python Intro

● On each node there is a system python installed. Don't use
it!

● Use the module system:

$ module avail python

------------------------------- /lrz/sys/share/modules/files/tools --------------

python/2.7_anaconda_nompi python/2.7_intel(default) python/3.5_intel

$ module load python

$ python

Python 2.7.13 (default, Jan 11 2017, 10:56:06) [GCC] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

Python module

● LRZ uses the conda package manager for python libraries.
In the default module only a minimla set of libraries is
provided. You have to generate your own environment to get
more

$ module load python

$ conda create –n py36 python=3.6

$ source activate py36

$ conda install scipy=0.15

$ conda list

Generate your own python environment

● Beautiful is better than ugly

● Explicit is better than implicit

● Simple is better than complex

● Complex is better than complicated

● Readability counts

“There should be one (and only one) obvious way to do it“

"We should forget about small efficiencies, say about 97% of the

time: premature optimization is the root of all evil. Yet we should
not pass up our opportunities in that critical 3%“ (Donald Knuth)

Zen of python (20.2.1991-?)

Python in a nutshell

● basic syntax
- import, for, if, while, list comprehensions

● advanced syntax
● builtin data types

- lists, tuples, arrays, sets
- dicts
- strings

Python Syntax

if x==0:
print “x is zero”

elif x>0 and x<1:
print “x between 0 and 1”

else:
print “x = “, x

“Python is executable pseudocode. Perl is
executable line noise.” (– Old Klingon Proverb)

if then else

● indentation matters!
● file type matters (*.py)!
● directory hierarchy matters!
● comments are #
● lists start from 0

$ python
>>> import myfile
>>> import mymod
>>> myfile.myfunc()
hello
>>> mymod.myfunc()
world

basic rules of the game

$ ls
myfile.py
mymod/
mymod/__init__.py

myfile.py:
def myfunc():

print(“hello”)

__init__.py:
def myfunc():

print(“world”)

● Python has the following number types:
- int, long, float, complex

- del var

● Strings
- ”this”, ’this’, ”””this”””, ’’’this’’’, u’this’,

b’this’ (python3)

- interpolation: ”one plus %i = %s” % (1,”two”)

● Lists and tuples
- a=[1,2,3] is a list, b=(1,2,3) is a tuple (immutable)
- a+a, a[0:2], a[-1], a[0:]

● Dictionaries
- a={ ’one’: 1, ’two’: ”zwei”} is a dict, a[’one’]

types, lists, tuples and dicts

import lib as name
from lib import n as n

if condition:
elif condition:
else:

for iterator in list:
pass
break
continue

Keywords (more than 90% of python code)

[expr for it in list if cond]

while condition:

def function:
”””doc string”””
return value

class name:
def __init__(self):
def method(self):

raise name

try:
except name:
finally:

with expression as var:

global variable
nonlocal variable

Keywords (less than 10% of python code)

lambda var: expression

@decorator

async def fun -> ann:
assert condition
yield value
yield from generator
await expression

● Python has the following number types:
- int, long, float, complex
- del var

>>> x=0
>>> x=1234567890123456789012345
>>> x**2
152415787532388367504953347995733866912056239
9025

basic types

>>> x=1234567890123456789012345
>>> float(x)**12
1.2536598767934103e+289
>>> float(x**12)
1.2536598767934098e+289
>>> x**12
125365987679340988385155987957344620719772763
435558412643918634708860008684622476289189408
122904124025079348898207042504644463778641104
140990841878266383680568044115362044043884095
444413842891790950870476081757908423384415448
872287884941281209197912958987211967647326426
09051396426025390625

basic types

Imaginary and complex numbers are built in:
>>> 1j**2 #imaginary unit
(-1+0j)
>>>(1+1j)**4 #4th root of -4
(-4+0j)
>>> 1j**1j # i to the i
(0.20787957635076193+0j)
>>> import cmath
>>> cmath.log(-1)
3.141592653589793j # pi

basic types

The import statement, which is used to import modules
whose functions or variables can be used in the current
program. There are four ways of using import:

>>> import numpy
>>> from numpy import *
>>> import numpy as np
>>> from numpy import pi as Pie

import

python2 has byte strings, python3 has Unicode strings
- ”this”, ’this’, ”””this”””, ’’’this’’’, u’this’,

b’this’
- string interpolation (masks)
>>> ”one plus %i = %s” % (1,”two”)
- indexing strings: a=”1234”
>>> print a[0] -> 1
>>> print a[0:] -> 1234
>>> print a[0:-1] -> 123
>>> print a[0::2] -> 13
>>> print a[::-1] -> 4321
>>> print a[-1::-2]-> 42

Strings

● split strings
>>> dd="a b c d"
>>> dd.split()
['a', 'b', 'c', 'd']
● join strings
>>> " ".join(['a', 'b', 'c', 'd'])
● combine both
>>> " ".join(["<"+x"/>" for x in dd.split()])
'<a/> <c/> <d/>'

strings

x=0.1
n=0
while x>0 and x<10:

x*=2
n+=1
if n>1000:

break

run the loop until the "while" condition is false or the "if"
condition is true.

while

for i in list:
do_something_with(i)
print result(i)
if cond(i):

break
loops over a list, prints the result and stops either when
the list is consumed or the break condition is fulfilled

for

● text files
dd=open(”data.txt”).readlines()
● print lines
[x[:-1] for x in open(”data.txt”,”r”).readlines()]
● pretty print
from pprint import pprint
pprint(dd)
● binary files
xx=open(”data.txt”,”rb”).read()
xx.__class__

file i/o

make script executable:
$ chmod u+x myscript.py

myscript.py:
#!/usr/bin/python
#!/usr/bin/env python2.7
import sys
print "The name of the script: ", sys.argv[0]
print "Number of arguments: ", len(sys.argv)
print "The arguments are: " , str(sys.argv)

in larger scripts use the argparse library

interaction with the shell

● Lists are what they seem - a list of values. Each one
of them is numbered, starting from zero. You can
remove values from the list, and add new values to
the end. Example: Your many cats' names.

● Tuples are just like lists, but you can't change their
values. The values that you give it first up, are the
values that you are stuck with for the rest of the
program.

● Dictionaries are similar to what their name suggests
- a dictionary, or aka associative array or key-value
store

lists, tuples, dictionaries

Simple list:
>>> x=[1,2,3]
>>> x.append(“one”)
>>> y=x
>>> y[0]=2
>>> x[0]
2
>>> x.append(x)
>>> x
[2, 2, 3, 'one', [...]]

lists

tuples are immutable lists
>>> a=(1,2,3)
>>> a[1]=3
-> error

reason for tuples: faster access

lists and tuples

● a list is defined by square brackets
● a list comprehension uses square brackets and for

>>> x=[1,2,3,4,5]
>>> y=[i for i in x]

>>> “
”.join([s.split(“\n”) for s in open(“file.txt”).readlines()])

>>> import random.uniform as r
>>> np=1000000
>>> sum([(r(0,1)**2+r(0,1)**2 < 1) for i in range(np)])/np*4.
3.141244

list comprehensions

dictionaries aka associative arrays aka key/value stores

>>> a={‘one’:1, ‘two’:2.0, ‘three’:[3,3,3]}

dictionary comprehensions:
>>> {i:i**2 for i in range(4)}
{0: 0, 1: 1, 2: 4, 3: 9}
>>> a.keys()
>>> a.values()

dicts

you can loop over a dict by:
>>> knights = {'gallahad': 'the pure',
'robin': 'the brave'}
>>> for k, v in knights.items():
... print(k, v)

or

>>> {k+” ”+v for k,v in knights.items()}
>>> [k+” ”+v for k,v in knights.items()]

for loops with dicts

arrays are lists with the same type of elements
there exists a special library for numeric arrays (numpy)
which never made it into the official distribution.

they serve as an interface to c-code. If you need
numerical arrays use the numpy library (see below)

arrays

sets are unordered lists. They provide all the methods
from set theory like intersection and union. Elements are
unique.

>>> x=set((1,2,3,4,1,2,3,4))
>>> x
{1, 2, 3, 4}
>>> x & y
>>> x | y
>>> x-y
>>> x ^ y

sets

