
Computing and Plotting Libraries

scipy

● a powerful N-dimensional array object
● sophisticated (broadcasting) functions
● tools for integrating C/C++ and Fortran code
● useful linear algebra, Fourier transform, and random

number capabilities

numpy

>>> import numpy as np

>>> x = np.array([1, 2, 3])

>>> x

array([1, 2, 3])

>>> y = np.arange(10) # like Python's range, but returns an array

>>> y

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> a = np.array([1, 2, 3, 6])

>>> b = np.linspace(0, 2, 4)

create an array with four equally spaced points starting with 0 and ending
with 2.

>>> c = a - b

>>> c

array([1. , 1.33333333, 1.66666667, 4.])

>>> a**2

array([1, 4, 9, 36])

numpy

● DataFrame object for data manipulation with integrated indexing.
● Tools for reading and writing data between in-memory data structures

and different file formats.
● Data alignment and integrated handling of missing data.
● Reshaping and pivoting of data sets.
● Label-based slicing, fancy indexing, and subsetting of large data sets.
● Data structure column insertion and deletion.
● Group by engine allowing split-apply-combine operations on data sets.
● Data set merging and joining.
● Hierarchical axis indexing to work with high-dimensional data in a

lower-dimensional data structure.
● Time series-functionality: Date range generation and frequency

conversion, moving window statistics, moving window linear
regressions, date shifting and lagging.

pandas

>>> import pandas as pd
>>> df = pd.read_csv("ign.csv")
>>> df.head()
>>> df.tail()
>>> df.shape
>>> df.loc[0:5,:]
>>> df.iloc[0:5,:]
>>> df.index
>>> df.loc[:5,[“score“,“release_year“]]
>>> df[“score“].mean()
>>> df.corr()
>>> r1=df[“scores“] > 7
>>> df[r1]
>>> df[“score“].plot(kind=“hist“)

pandas

matplotlib

matplotlib

jupyter+scipy+matplotlib+latex

Data Analysis

dask

Familiar: Provides parallelized NumPy array and Pandas DataFrame objects
Flexible: Provides a task scheduling interface for more custom workloads and integration
with other projects.
Native: Enables distributed computing in Pure Python with access to the PyData stack.
Fast: Operates with low overhead, low latency, and minimal serialization necessary for
fast numerical algorithms
Scales up: Runs resiliently on clusters with 1000s of cores
Scales down: Trivial to set up and run on a laptop in a single process, even on a
smartphone running android
Responsive: Designed with interactive computing in mind it provides rapid feedback and
diagnostics to aid humans

● dask arrays are
composed of numpy
arrays.

● the subarrays can live
in the same process or
in another process on
a different node

● dask has a scheduler
which distributes the
work on a whole
cluster if needed

dask.array

>>> import dask.array as da
>>> a=da.random.uniform(size=1000, chunks=100)

● like dask.arrays uses numpy arrays,
dask.dataframe uses pandas

● dask.dataframes can be distributed
over a cluster of nodes and operations
on them are scheduled by the dask
scheduler

>>> import dask.dataframe as dd
>>> df=dd.read_csv('2014-*.csv')

dask.dataframe

>>> a=da.random.uniform(size=1000,chunks=100)
>>> b=a.sum()
>>> c=a.mean()*a.size
>>> d=b-c
>>> d.compute()

the computation starts at the last command. If you have
a dask cluster then all computations can be distributed to
the cluster.

dask execution graph

Data Streams

spark

text_file = spark.textFile("hdfs://...")

text_file.flatMap(lambda line: line.split())
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a+b)

Apache Spark™ is a fast and
general engine for large-scale
data processing.

Apache Spark is a fast and general engine for big data
processing, with built-in modules for streaming, SQL,
machine learning and graph processing
● written in java
● built on top of Hadoop cluster technology
● language bindings for python, R and scala
● plugs seamlessly into the python ecosystem (scipy,

matplotlib, jupyter)

spark

spark

Client/server
Architecture

RDD (Resilient Distributed Dataset)
read-only, partitioned collection of records

Spark: internals

● map
● filter
● flatMap
● mapPartitions
● union / intersection
● distinct
● groupByKey, reduceByKey, aggregateByKey
● sortByKey
● join

Spark - programming

Machine Learning Packages

Theano:
● numerical computation library for Python
● computations are expressed using a Numpy-esque

syntax
● compiled to run efficiently
● CPU or GPU architectures
● Dead since 2017, but still in use

theano

● TensorFlow
● open-source software library
● dataflow programming across a range of tasks
● symbolic math library
● used for machine learning applications
● neural networks
● research and production at Google
● very active
● steep learning curve

tensorflow

load TensorFlow
>>> import tensorflow as tf
Initialize two vectors
>>> x = tf.constant([1,2,3,4])
>>> y = tf.constant([5,6,7,8])
Multiply
z= tf.multiply(x, y)
Initialize Session and run
>>> with tf.Session() as sess:
. . . out = sess.run(z)
. . . print(out)
6

tensorflow

load TensorFlow
>>> import tensorflow as tf
Initialize two vectors
>>> x = tf.constant([1,2,3,4])
>>> y = tf.constant([5,6,7,8])
Multiply
z= tf.multiply(x, y)
Initialize Session and run
>>> with tf.Session() as sess:
. . . out = sess.run(z)
. . . print(out)
6

tensorflow

● Keras is a high-level neural networks API
● Running on top of TensorFlow, CNTK, or Theano
● Developed with a focus on enabling fast experimentation
● Allows for easy and fast prototyping (through user

friendliness, modularity, and extensibility)
● Supports both convolutional networks and recurrent

networks, as well as combinations of the two
● Runs seamlessly on CPU and GPU

Keras

from keras.models import Sequential
from keras.layers import Dense

model = Sequential()

model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))

model.compile(loss='categorical_crossentropy', optimizer='sgd',
metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5, batch_size=32)

classes = model.predict(x_test, batch_size=128)

Keras in 30 seconds

>>> from keras.models import Sequential
>>> model = Sequential()
>>> from keras.layers import Dense
>>> model_add = fn(model.add)

>>> Dense(units=64, activation='relu', input_dim=100)) >> model_add
>>> Dense(units=10, activation='softmax') >> model_add
>>> model.compile(loss='categorical_crossentropy', optimizer='sgd',
metrics=['accuracy'])
>>> model.fit(x_train, y_train, epochs=5, batch_size=32)
>>> classes = model.predict(x_test, batch_size=128)

Keras in 30 seconds

resnet50 pretrained application in keras

from keras.applications.resnet50 import ResNet50
from keras.preprocessing import image
from keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np

model = ResNet50(weights='imagenet')
img_path = 'elephant.jpg‘
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = model.predict(x)
decode the results into a list of tuples (class, description, probability)
(one such list for each sample in the batch)
print('Predicted:', decode_predictions(preds, top=3)[0])
Predicted: [(u'n02504013', u'Indian_elephant', 0.82658225), (u'n01871265',
u'tusker', 0.1122357), (u'n02504458', u'African_elephant', 0.061040461)]

Keras Applications

