Leibniz-Rechenzentrum

der Bayerischen Akademie der Wissenschaften

I

conda

e conda is a package manager in user space.

e tool to create isolated python installations

e it allows you to use multiple versions of python

e substitutes virtualenv (dead since 2016)

e commercial tool: anaconda

e 2 versions miniconda (free), anaconda (commercial)
e works on linux, MS-win, macOS

e packages are provided by channels (anaconda,
conda-forge, bioconda, intel

package Managers

python has a plentitude of package managers and
package formats (contradicts zen of python), so don’t get
confused

e casy_install (dead)

e pip (still alive)

e Vvirtualenv (dead)

e conda (state of the art)

e wheel (official package format PEP427)
e egg (old package format)

A A A A A A

conda

conda
conda
conda
conda
conda
conda

create -n my env python=3.6

install -c conda-forge scipy=0.15.0
list

search numpy

update -all

info numpy

pip

simple packages management tool for python

comes preinstalled with python

complementary to conda

packages are called *.whl (wheel)

easy_install is dead
pip install SomePackage # latest version
pip install SomePackage==1.0.4 # specific version
pip install 'SomePackage>=1.0.4" # minimum version
pip install --upgrade SomePackage # upgrade

Leibniz-Rechenzentrum

der Bayerischen Akademie der Wissenschaften

Shells

ipython

the python interactive command line interface was not very
comfortable, so ipython was born. It evolved later on to a Web-
Interface (jupyter). You can enter even shell commands.

$ ipython

Python 3.6.2 |Continuum Analytics, Inc.| (default, Jul 20 2017, 13:51:32)
Type 'copyright', 'credits' or 'license' for more information

IPython 6.1.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: pwd

Out[1]: '/home/hpc/pr28fa/a2815ah*
In [2]: import os; os.getcwd()
Out[2]: '/home/hpc/pr28fa/a2815ah’

ipython

Ipython is a hybrid between the python cli, a bash shell and macros.
It recognizes shell commands (Is, pwd, cp, ..) and macros (magic
commands) can be defined by %name or %%name.
In [2]: %timeit sum(range(1000))
20.8 pus * 412 ns per loop (mean = std. dev. of 7 runs, 10000 loops each)
In [13]: %%timeit

: x=sum(range(100))

P y=x+1

1.52 pus = 5.34 ns per loop (mean % std. dev. of 7 runs, 1000000 loops each)

ipython

help information can be retrieved by ?command and more detailed
information by ??command

In [17]: ?pprint
Docstring: Toggle pretty printing on/off.

File: ~/.conda/envs/py36/1ib/python3.6/site-
packages/IPython/core/magics/basic.py

In [16]: ??pprint
Source:
@line_magic
def pprint(self, parameter_s='"):
"""Toggle pretty printing on/off."""
ptformatter = self.shell.display formatter.formatters['text/plain']
ptformatter.pprint = bool(1 - ptformatter.pprint)

print('Pretty printing has been turned',....

jupyter

finally ipython evolved into a web-service where you can
run any code through a browser interface and even plot.

File

Z Jupyter Weloometo;

View nsert Cel

B + x99 B 2+ 9+ »1

In[J:

= Jupyter

Welcome to the
This Notebook Server wa

WARNING

Don't rely on this seny

Your server is hosted that

Run some Python (
To run the code below:

1. Click on the cell to s¢
2. Press SHIFT+ENTER

A full tutorial for using the

tmatplotlib inline

import pandas as pd
import numpy as np
import matplotlib

- Ju pyter Lorenz Differential Equations s

File Edit

B+ ¥ @B 2+ % > B C Coke

In (7]

A

View Insert Cell Kernel Help Python3 O

¥ Cell Toolbar: = None

Exploring the Lorenz System

In this Notebook we explore the Lorenz system of differential equations:

i=aly-x)
y=px-y-xz
I=—fz+xy

This is one of the classic systems in non-linear differential equations. It exhibits a range of

P lors as the (e, B, p) are varied, including what are known as chaotic
solutions. The system was originally ped as a
atmospheric convection in 1963,

model for

interact(Lorenz, N=fixed(10), angle=(0.,360.),
o=(0.0,50.0),B=(0.,5), p=(0.0,50.0))

angle 308.2
max_time 12
o 10
B 26
P 28

Leibniz-Rechenzentrum

der Bayerischen Akademie der Wissenschaften

Functions

functions: keywords

def myfun(a, b=1, c=[1,2], *args):
return a,b,c,args

>>> myfun(0)
(0,1,[1,2],())

>>> myfun(0,c=2)
(0,1,2,())

>>> myfun(0,1,2,3,4)
(@,1,2)(3)4))

functions: lambda functions

f1 = lambda x: x+1

def f2(x):
return x+1

f = lambda *x:Xx
>>> f(”one”,2,[])
(”one”,2,[1])

special functions

e function names with leading and trailing underscores
are special in python ("magic methods")

>>> print(a)

Is translated to:

>>> a.__print__ ()
and

>>> a+b

>>> a.__add__ (b)

>>> f(X)

>>> f. call (x)

@, python

list comprehensions

e a listis defined by square brackets
e a list comprehension uses square brackets and for

>>> x=[1,2,3,4,5]
>>> y=[1 for 1 in Xx]

>>> “4br>”.join([s.split(“\n”) for s in open(“file.txt”).readlines()])

>>> import random.uniform as r

>>> np=1000000

>>> sum([(r(0,1)**2+r(0,1)**2 < 1) for i in range(np)])/np*4.
3.141244

Xonsh: python+bash

Python / Bash hybrid
>>> S(1ls -al)

$() captures and returns the stdout of the command

You can reuse the result in a python expression
>>> [x for x in $(1ls -al).split("\n")]

Or construct bash expressions from python:
>>> x="hello"

>>> y="world"

>>> echo @(x+" "+y)

xonsh

Construction of bash pipes:
>>> 1s -1 | @(lambda a,s: s.read().upper())

Or create alias commands:
>>> aliases['g'] = 'git status -sb’

For more information see:
https://xon.sh/tutorial.html

Leibniz-Rechenzentrum

der Bayerischen Akademie der Wissenschaften

I

Advanced topics

o try-except

e decorators

e with

e Yyield

e aspect oriented programming

@ python

try except

using try you can catch an exception that would normally
stop the program

x=range(10)
y=[0]*10
for i1 in range(10):
try:
y[i]=1./x[1]
except:
y[i]=90.

@ python

@decorators

decorators are syntactic sugar for applying a function
and overwriting it.

@mydecorator

def myfunc():
pass

IS the same as:

def myfunc():
pass
myfunc = mydecorator(myfunc)

@, python

with statement motivation

The with statement allows for different contexts
with EXPR as VAR:
BLOCK

roughly translates into this:

VAR = EXPR
VAR. enter_ ()
try:
BLOCK
finally:
VAR. exit ()

@ python

with statement examples

You need a context manager (has enter and exit methods)

Examples:

e opening and automatically closing a file

with open("/etc/passwd") as f:
df=f.readlines()

e database transactions

e temporary option settings

e ThreadPoolExecutor

e log file on/off

e cd to a different folder and back

e set debug verbose level

e change the output format or output destination
with redirect stdout(sys.stderr):
help(pow)

generators

e range(10000) would generate a list of 10000 number although
they would later on not be needed.

e generators to the rescue!!
e only generate what you really need
e new keyword: yield (instead of return)
>>> def createGenerator():
mylist = range(3)
for 1 in mylist:
yield i*i

>>> a=createGenerator()
>>> next(a)
%)

m generator comprehensions

o like list comprehensions, but computed only when
needed

>>> a=(1**4 for 1 in range(8))
>>> next(a)

5

>>> next(a)

1

>>> list(a)

[16, 81]

Aspect Oriented Programming in python

e AOP is about separating out Aspects
e You can switch contexts (like log-file on/off)

from contextlib import contextmanager
@contextmanager
def tag(name):

print("<%s>" % name)

yield

print("</%s>" % name)

>>> with tag("h1"):
print("foo")

<hl1>foo</hl1>

