
Package Managers

● conda is a package manager in user space.
● tool to create isolated python installations
● it allows you to use multiple versions of python
● substitutes virtualenv (dead since 2016)
● commercial tool: anaconda
● 2 versions miniconda (free), anaconda (commercial)
● works on linux, MS-win, macOS
● packages are provided by channels (anaconda,

conda-forge, bioconda, intel

conda

python has a plentitude of package managers and
package formats (contradicts zen of python), so don’t get
confused

● easy_install (dead)
● pip (still alive)
● virtualenv (dead)
● conda (state of the art)
● wheel (official package format PEP427)
● egg (old package format)

package managers

$ conda create –n my_env python=3.6
$ conda install –c conda-forge scipy=0.15.0
$ conda list
$ conda search numpy
$ conda update –all
$ conda info numpy

conda

● simple packages management tool for python
● comes preinstalled with python
● complementary to conda
● packages are called *.whl (wheel)
● easy_install is dead

$ pip install SomePackage # latest version
$ pip install SomePackage==1.0.4 # specific version
$ pip install 'SomePackage>=1.0.4' # minimum version
$ pip install --upgrade SomePackage # upgrade

pip

Shells

the python interactive command line interface was not very
comfortable, so ipython was born. It evolved later on to a Web-
Interface (jupyter). You can enter even shell commands.

$ ipython
Python 3.6.2 |Continuum Analytics, Inc.| (default, Jul 20 2017, 13:51:32)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.1.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: pwd
Out[1]: '/home/hpc/pr28fa/a2815ah‘
In [2]: import os; os.getcwd()
Out[2]: '/home/hpc/pr28fa/a2815ah'

ipython

ipython is a hybrid between the python cli, a bash shell and macros.
It recognizes shell commands (ls, pwd, cp, ..) and macros (magic
commands) can be defined by %name or %%name.
In [2]: %timeit sum(range(1000))
20.8 µs ± 412 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
In [13]: %%timeit

...: x=sum(range(100))

...: y=x+1

...:
1.52 µs ± 5.34 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

ipython

help information can be retrieved by ?command and more detailed
information by ??command

In [17]: ?pprint
Docstring: Toggle pretty printing on/off.
File: ~/.conda/envs/py36/lib/python3.6/site-
packages/IPython/core/magics/basic.py

In [16]: ??pprint
Source:

@line_magic
def pprint(self, parameter_s=''):

"""Toggle pretty printing on/off."""
ptformatter = self.shell.display_formatter.formatters['text/plain']
ptformatter.pprint = bool(1 - ptformatter.pprint)
print('Pretty printing has been turned',....

ipython

finally ipython evolved into a web-service where you can
run any code through a browser interface and even plot.

jupyter

Functions

def myfun(a, b=1, c=[1,2], *args):
return a,b,c,args

>>> myfun(0)
(0,1,[1,2],())
>>> myfun(0,c=2)
(0,1,2,())
>>> myfun(0,1,2,3,4)
(0,1,2,(3,4))

functions: keywords

f1 = lambda x: x+1

def f2(x):
return x+1

f = lambda *x:x
>>> f(”one”,2,[])
(”one”,2,[])

functions: lambda functions

● function names with leading and trailing underscores
are special in python ("magic methods")

>>> print(a)
is translated to:
>>> a.__print__()
and
>>> a+b
>>> a.__add__(b)
>>> f(x)
>>> f.__call__(x)

special functions

● a list is defined by square brackets
● a list comprehension uses square brackets and for

>>> x=[1,2,3,4,5]
>>> y=[i for i in x]

>>> “
”.join([s.split(“\n”) for s in open(“file.txt”).readlines()])

>>> import random.uniform as r
>>> np=1000000
>>> sum([(r(0,1)**2+r(0,1)**2 < 1) for i in range(np)])/np*4.
3.141244

list comprehensions

Python / Bash hybrid
>>> $(ls -al)

$() captures and returns the stdout of the command
You can reuse the result in a python expression
>>> [x for x in $(ls -al).split("\n")]

Or construct bash expressions from python:
>>> x="hello"

>>> y="world"

>>> echo @(x+" "+y)

Xonsh: python+bash

Construction of bash pipes:
>>> ls -1 | @(lambda a,s: s.read().upper())

Or create alias commands:
>>> aliases['g'] = 'git status -sb'

For more information see:
https://xon.sh/tutorial.html

xonsh

Advanced Topics

● try-except
● decorators
● with
● yield
● aspect oriented programming

Advanced topics

using try you can catch an exception that would normally
stop the program

x=range(10)
y=[0]*10
for i in range(10):

try:
y[i]=1./x[i]

except:
y[i]=0.

try except

decorators are syntactic sugar for applying a function
and overwriting it.

@mydecorator
def myfunc():

pass
is the same as:

def myfunc():
pass

myfunc = mydecorator(myfunc)

@decorators

The with statement allows for different contexts
with EXPR as VAR:

BLOCK

roughly translates into this:

VAR = EXPR
VAR.__enter__()
try:

BLOCK
finally:

VAR.__exit__()

with statement motivation

You need a context manager (has enter and exit methods)
Examples:
● opening and automatically closing a file
with open("/etc/passwd") as f:

df=f.readlines()
● database transactions
● temporary option settings
● ThreadPoolExecutor
● log file on/off
● cd to a different folder and back
● set debug verbose level
● change the output format or output destination
with redirect_stdout(sys.stderr):

help(pow)

with statement examples

● range(10000) would generate a list of 10000 number although
they would later on not be needed.

● generators to the rescue!!
● only generate what you really need
● new keyword: yield (instead of return)
>>> def createGenerator():
... mylist = range(3)
... for i in mylist:
... yield i*i
...
>>> a=createGenerator()
>>> next(a)
0

generators

● like list comprehensions, but computed only when
needed

>>> a=(i**4 for i in range(8))
>>> next(a)
0
>>> next(a)
1
>>> list(a)
[16, 81]

generator comprehensions

● AOP is about separating out Aspects
● You can switch contexts (like log-file on/off)

from contextlib import contextmanager
@contextmanager
def tag(name):

print("<%s>" % name)
yield
print("</%s>" % name)

>>> with tag("h1"):
... print("foo")

<h1>foo</h1>

Aspect Oriented Programming in python

