
Parallel and distributed programming

Why?
● You have many independent tasks (easy)
or
● You want to accerelate single complex task (hard)

Recipe:
Turn the single complex task into many independent
simple tasks, but how?

How-to go parallel

Why?
● You have many independent tasks (easy)
or
● You want to accerelate single complex task (hard)

Recipe:
Turn the single complex task into many independent
simple tasks, but how?

How-to go parallel

LRZ from the system perspective

Node

Switch

Island

Fat Tree

Pruned Tree
Cluster

Accelerator: GPU, FPGA
Core
Sockets
Node

● multiprocessing
● dask.distributed
● Mpi4py
● Scoop
● Ipython parallel

See also:
https://chryswoods.com/parallel_python/README.html

Parallel and Distributed Programming

● The standard Python interpreter (called CPython)
does not support the use of threads well.

● The CPython Python interpreter uses a “Global
Interpreter Lock” to ensure that only a single line of a
Python script can be interpreted at a time, thereby
preventing memory corruption caused by multiple
threads trying to read, write or delete memory in
parallel.

● Because of the GIL, parallel Python is normally based
on running multiple forks of the Python interpreter,
each with their own copy of the script and their own
GIL.

Global Interpreter Lock (GIL)

Embarrassingly parallel

• many independent processes (10 - 100.000)
• no communication between processes
• individual tasklist for each process
• private memory for each process
• results are stored in a large storage medium

● Take as example the following script
myscript.sh:
#!/bin/bash

source /etc/profile.d/modules.sh

module load python

source activate py36

cd ~/mydir

python myscript.py

You can run it interactively by:
$./myscript.sh

Embarrassingly parallel (step-by-step)

Please do not block the login nodes with production jobs, but run the
script in an interactive slurm shell:
$ salloc –pmpp2_inter –n1 myscript.sh

Change the last line in the script:
#!/bin/bash

source /etc/profile.d/modules.sh

module load python

source activate py36

cd ~/mydir

srun python myscript.py

Embarrassingly parallel (step-by-step)

Run multiple copies of the the script in an interactive slurm shell:

$ salloc –pmpp2_inter –n4 myscript.sh
You will get 4 times the output of the same run.

To use different input files you can use the environment variable:

os.environ['SLURM_PROCID'] (it is set to 0,1,2,3,...)

Use this variable to select your workload.

Example:

$ salloc –pmpp2_inter –n2 srun

python –c "import os; os.environ['SLURM_PROCID']"
0

1

Embarrassingly parallel (step-by-step)

Run the script as slurm batch job:
$ sbatch -pmpp2_inter -n4 myscript.sh

You can put the options inside the slurm file:

#!/bin/bash

#SBATCH -pmpp2_inter
#SBATCH -n4
source /etc/profile.d/modules.sh

module load python

cd ~/mydir

srun python myscript.py

Embarrassingly parallel (step-by-step)

For serial (single node, multithreaded but not MPI) loads use the
serial queue and add options for the runtime:

#!/bin/bash
#SBATCH --clusters=serial
#SBATCH -n4 # 4 tasks
#SBATCH --time=01:00:00 # 1hour
source /etc/profile.d/modules.sh
module load python
cd ~/mydir
srun python myscript.py

$ sbatch myscript.slurm

Embarrassingly parallel (step-by-step)

If you want to send a large number of jobs then use Job
Arrays.

$ sbatch -array=0-31 myscript.slurm

The variable SLURM_ARRAY_TASK_ID is set to the
array index value. Get it in python via:

os.environ['SLURM_ARRAY_TASK_ID']

The maximum size of array job is 1000

SLURM Job Arrays

● List my jobs:
$ squeue –Mserial –u <uid>

● Cancel my job
$ scancel <jobid>

● Submit batch job
$ sbatch myscript.slurm

● Run interactive shell
$ salloc -n1 srun --pty bash -i

Important SLURM commands

The ipcluster command provides a simple way of
starting a controller and engines in the following
situations:
● When the controller and engines are all run on

localhost. This is useful for testing or running on a
multicore computer.

● When engines are started using the mpiexec
command that comes with most MPI implementations

● When engines are started using the SLURM batch
system

Ipython and ipcluster

Starting ipcluster:
$ ipcluster start -n 4

Then start ipython and connect to the cluster:
$ ipython
In [1]: from ipyparallel import Client
In [2]: c = Client()

...: c.ids

...: c[:].apply_sync(lambda: "Hello, world!")
Out[2]: ['Hello, world!', 'Hello, world!', 'Hello,
world!', 'Hello, world!']

Using ipcluster

Create a parallel profile:
ipython profile create --parallel --profile=slurm

cd into ~/.ipython/profile_slurm/ and add the following:

ipcontroller_config.py:

c.HubFactory.ip = u'*'
c.HubFactory.registration_timeout = 600
ipengine_config.py:

c.IPEngineApp.wait_for_url_file = 300
c.EngineFactory.timeout = 300

Ipcluster on SLURM

ipcluster_config.py:

c.IPClusterStart.controller_launcher_class =
'SlurmControllerLauncher'
c.IPClusterEngines.engine_launcher_class =
'SlurmEngineSetLauncher'
c.SlurmEngineSetLauncher.batch_template = """#!/bin/sh
#SBATCH --ntasks={n}
#SBATCH --clusters=serial
#SBATCH --time=01:00:00
#SBATCH --job-name=ipy-engine-
srun ipengine --profile-dir="{profile_dir}" --cluster-id=""
"""

Cont.

Start a python shell and import the client function
>>> from ipyparallel import Client

Connect to the ipcluster
>>> c=Client(profile="slurm")

Generate a view on the cluster
>>> dview=c[:]

The view can now be used to perform parallel
computations on the cluster

Usage of ipcluster

Run a string containing python code on the ipcluster:
>>> dview.execute("import time")

Run a single function and wait for the result:
>>> dview.apply_sync(time.sleep, 10)

Or return immediately:
>>> dview.apply_async(time.sleep, 10)

Map a function on a list by reusing the nores of the cluster:
>>> dview.map_sync(lambda x: x**10, range(32))

Usage of ipcluster

Define a function that executes in parallel on the
ipcluster:
In [10]: @dview.remote(block=True)

....: def getpid():

....: import os

....: return os.getpid()

....:
In [11]: getpid()
Out[11]: [12345, 12346, 12347, 12348]

Defining parallel functions

The @parallel decorator parallel functions, that break up
an element-wise operations and distribute them,
reconstructing the result.
In [12]: import numpy as np

In [13]: A = np.random.random((64,48))

In [14]: @dview.parallel(block=True)

....: def pmul(A,B):

....: return A*B

Usage of ipcluster with NumPy

You can create a view of the ipcluster that allows for
loadbalancing of the work:
>>> lv=c.load_balanced_view()

This view can be used with all the above mentioned
methods, auch as: execute, apply, map and the
decorators.
The load balancer can even have different scheduling
strategies like "Least Recently Used", "Plain Random",
"Two-Bin Random", "Least Load" and "Weighted"

Loadbalancing

In [3]: view = c[:]
In [4]: view.activate() # enable magics
run the contents of the file on each engine:
In [5]: view.run('psum.py')
In [6]: view.scatter('a',np.arange(16,dtype='float'))
In [7]: view['a']
Out[7]: [array([0., 1., 2., 3.]),

array([4., 5., 6., 7.]),
array([8., 9., 10., 11.]),
array([12., 13., 14., 15.])]

In [7]: %px totalsum = psum(a)
Parallel execution on engines: [0,1,2,3]
In [8]: view['totalsum']
Out[8]: [120.0, 120.0, 120.0, 120.0]

Example

Shared Memory (your laptop)

• a few threads working closely
together (10-100)

• shared memory
• single tasklist (program)
• cache coherent non-uniform

memory architecture aka ccNUMA
• results are kept in shared memory

● Multiprocessing allows your script running multiple
copies in parallel, with (normally) one copy per
processor core on your computer.

● One is known as the master copy, and is the one that
is used to control all of worker copies.

● It is not recommended to run a multiprocessing
python script interactively, e.g. via ipython or ipython
notebook.

● It forces you to write it in a particular way. All imports
should be at the top of the script, followed by all
function and class definitions.

multiprocessing

all imports should be at the top of your script

import multiprocessing, sys, os

all function and class definitions must be next

def sum(x, y):

return x+y

if __name__ == "__main__":

You must now protect the code being run by

the master copy of the script by placing it

a = [1, 2, 3, 4, 5]

b = [6, 7, 8, 9, 10]

Now write your parallel code... etc. etc.

multiprocessing

Multiprocessing pool
from multiprocessing import Pool, current_process

def square(x):
print("Worker %s calculating square of %d" % (current_process().pid, x))

return x*x

if __name__ == "__main__":
nprocs = 2

print the number of cores
print("Number of workers equals %d" % nprocs)

create a pool of workers
pool = Pool(processes=nprocs)

create an array of 10 integers, from 1 to 10
a = range(1,11)

result = pool.map(square, a)
total = reduce(lambda x,y: x+y, result)

print("The sum of the square of the first 10 integers is %d" % total)

● Use futures and a context manager:

from concurrent.futures import ThreadPoolExecutor

with ThreadPoolExecutor(max_workers=1) as ex:

future = ex.submit(pow, 323, 1235)

print(future.result())

Multiprocessing futures

● Scoop is a developing third-party Python module that
supports running parallel Python scripts across
clouds, distributed compute clusters, HPC machines
etc.

● conda install scoop
if you are using anaconda python

● pip install scoop
if you have installed pip

● easy_install scoop
in all other cases (i.e. if the other two commands
don’t work)

scoop

http://scoop.readthedocs.org/en/0.7/

scoop
from scoop import futures

def product(x, y):
return x*y

def sum(x, y):
return x+y

if __name__ == "__main__":

a = range(1,101)
b = range(101, 201)

results = futures.map(product, a, b)
total = reduce(sum, results)

print("Sum of the products equals %d" % total)

● Run this script using the command

$ python -m scoop mapreduce.py

● You need to use -m scoop so that Scoop has time to set up the
distributed cluster before running your script.

$ python -m scoop --hostfile hostfile script.py

Running scoop

Scoop provides a very similar interface as multiprocessing, with
the same caveats, requirements and restrictions. For example:
● You must ensure that all use of Scoop is protected within an

if __name__ == "__main__"
● You must import all modules and declare all functions at the

top of your script, before the
if __name__ == "__main__"

● Scoop does not yet support anonymous (lambda) functions,
again because of Python’s poor support for pickling those
functions. Hopefully this will change soon.

Caveats

Message Passing

• many independent processes (10 - 100.000)
• one tasklist for all (program)
• everyone can talk to each other (in principle)
• private memory
• needs communication strategy in order to scale out
• very often: nearest neighbor communication
• beware of deadlocks!

$ mpiexec -n 4 python myapp.py

from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
if rank == 0:

data = {'a': 7, 'b': 3.14}
comm.send(data, dest=1, tag=11)

elif rank == 1:
data = comm.recv(source=0, tag=11)

mpi4py

Worker queue

• many independent processes (10 - 100.000)
• central task scheduler (database)
• private memory for each process
• results are sent back to task scheduler
• rescheduling of failed tasks possible

● Start a scheduler which organizes the computing
tasks

$ dask-scheduler
● dask workers
$ dask-worker localhost:8786
$ dask-ssh host.domain
$ mpirun --np 4 dask-mpi
$ dask-ec2
$ dask-kubernetes
$ dask-drmaa

dask.distributed

● Start a client
>>> from distributed import Client
>>> client = Client('localhost:8786')

now all dask operations will be
distributed to the scheduler which
distributes them to the cluster

dask.distributed

>>> a=da.random.uniform(size=1000,chunks=100)
>>> b=a.sum()
>>> c=a.mean()*a.size
>>> d=b-c
>>> d.compute()

the computation starts at the last command. If you have
a dask cluster then all computations can be distributed to
the cluster.

dask execution graph

● install qpython
● open pip console
● install dask
● install toolz
● install ipython

dask mobile

The End:
XKCD

Course Evaluation

Please visit
https://survey.lrz.de/index.php/6939

73
and rate this course!

Your feedback is highly appreciated!
Thank you!

