Leibniz-Rechenzentrum

der Bayerischen Akademie der Wissenschaften

e

- Parallel and distributed programming




m How-to go parallel

Why?

e You have many independent tasks (easy)

or

e You want to accerelate single complex task (hard)

Recipe:

Turn the single complex task into many independent
simple tasks, but how?



How-to go parallel

Why?
e You have many independent tasks (easy)
or

e You want to accerelate single complex task (hard)

Recipe:

Turn the single complex task into many independent
simple tasks, but how?



m LRZ from the system perspective

Cluster

Switch /

Fat Tree

Pruned Tree

AN

Node

Island
E Accelerator: GPU, FPGA
Core
O0Onaao Sockets
O0jao Node



Parallel and Distributed Programming

e multiprocessing
e dask.distributed
e Mpidpy
e Scoop
e |[python parallel

See also:
https://chryswoods.com/parallel _python/README.html



Global Interpreter Lock (GIL)

e The standard Python interpreter (called CPython)
does not support the use of threads well.

e The CPython Python interpreter uses a “Global
Interpreter Lock” to ensure that only a single line of a
Python script can be interpreted at a time, thereby
preventing memory corruption caused by multiple
threads trying to read, write or delete memory in
parallel.

e Because of the GIL, parallel Python is normally based
on running multiple forks of the Python interpreter,

each with their own copy of the script and their own
GIL.



* many independent processes (10 - 100.000)
* N0 communication between processes
 individual tasklist for each process

 private memory for each process

* results are stored in a large storage medium



Embarrassingly parallel (step-by-step)

e Take as example the following script
myscript.sh:

#!/bin/bash

source /etc/profile.d/modules.sh
module load python

source activate py36

cd ~/mydir

python myscript.py

You can run it interactively by:
S ./myscript.sh



Embarrassingly parallel (step-by-step)

Please do not block the login nodes with production jobs, but run the
script in an interactive slurm shell:

$ salloc —pmpp2 inter —nl myscript.sh

Change the last line in the script:
#!/bin/bash

source /etc/profile.d/modules.sh
module load python

source activate py36

cd ~/mydir

srun python myscript.py



Embarrassingly parallel (step-by-step)

Run multiple copies of the the script in an interactive slurm shell:
$ salloc —pmpp2 inter —n4 myscript.sh
You will get 4 times the output of the same run.

To use different input files you can use the environment variable:
os.environ[ 'SLURM PROCID'] (itis setto0,1,2,3,...)

Use this variable to select your workload.

Example:

$ salloc —pmpp2 inter —n2 srun

python —c "import os; os.environ[ SLURM PROCID']"
0

1



Embarrassingly parallel (step-by-step)

Run the script as slurm batch job:
S sbatch -pmpp2 inter -n4 myscript.sh

You can put the options inside the slurm file:

#!/bin/bash

#SBATCH -pmpp2 inter

#SBATCH -n4

source /etc/profile.d/modules.sh

module load python
cd ~/mydir
srun python myscript.py



Embarrassingly parallel (step-by-step)

For serial (single node, multithreaded but not MPI) loads use the
serial queue and add options for the runtime:

#!/bin/bash

#SBATCH --clusters=serial
#SBATCH -n4 # 4 tasks

#SBATCH --time=01:00:00 # lhour
source /etc/profile.d/modules.sh
module load python

cd ~/mydir

srun python myscript.py

S sbatch myscript.slurm



SLURM Job Arrays

If you want to send a large number of jobs then use Job
Arrays.

S sbatch -array=0-31 myscript.slurm

The variable SLURM_ARRAY_TASK ID is set to the
array index value. Get it in python via:

os.environ[ 'SLURM ARRAY TASK ID']

The maximum size of array job is 1000



Important SLURM commands

List my jobs:
S squeue —Mserial —u <uid>

Cancel my job
S scancel <jobid>

Submit batch job
S sbatch myscript.slurm

Run interactive shell
$ salloc -nl srun --pty bash -1



Ipython and ipcluster

The ipcluster command provides a simple way of
starting a controller and engines in the following
situations:

e \When the controller and engines are all run on
localhost. This is useful for testing or running on a
multicore computer.

e \When engines are started using the mpiexec
command that comes with most MPI implementations

e \When engines are started using the SLURM batch
system



Using ipcluster

Starting ipcluster:
S ipcluster start -n 4

Then start ipython and connect to the cluster:
S ipython
In [1l]: from ipyparallel import Client
In [2]: ¢ = Client()
c.1ids
c[:].apply sync(lambda: "Hello, world!")

Out[2]: [ 'Hello, world!', 'Hello, world!', 'Hello,
world!', 'Hello, world!']



lpcluster on SLURM

Create a parallel profile:
ipython profile create --parallel --profile=slurm

cd into ~/.ipython/profile _slurm/ and add the following:

ipcontroller config.py:

c.HubFactory.ip = u'*'
c.HubFactory.registration timeout = 600
ipengine config.py:
c.IPEngineApp.wait for url file = 300
c.EngineFactory.timeout = 300



Cont.

ipcluster config.py:

c.IPClusterStart.controller launcher class =
'SlurmControllerLauncher’

c.IPClusterEngines.engine launcher class =
'SlurmEngineSetLauncher’

c.SlurmEngineSetLauncher.batch template = """#!/bin/sh
#SBATCH --ntasks={n}

#SBATCH --clusters=serial

#SBATCH --time=01:00:00

#SBATCH --job-name=ipy-engine-

srun ipengine --profile-dir="{profile dir}" --cluster-id=



Usage of ipcluster

Start a python shell and import the client function
>>> from ipyparallel import Client

Connect to the ipcluster
>>> c=Client(profile="slurm")

Generate a view on the cluster
>>> dview=c][ :]

The view can now be used to perform parallel
computations on the cluster



Usage of ipcluster

Run a string containing python code on the ipcluster:
>>> dview.execute("import time")

Run a single function and wait for the result:
>>> dview.apply sync(time.sleep, 10)

Or return immediately:
>>> dview.apply async(time.sleep, 10)

Map a function on a list by reusing the nores of the cluster:
>>> dview.map sync(lambda x: x**10, range(32))



Defining parallel functions

Define a function that executes in parallel on the
ipcluster:

In [10]: @dview.remote(block=True)

ce..: def getpid():
ceeal import os
c el return os.getpid()

In [11]: getpid()
Out[11]: [12345, 12346, 12347, 12348]



Usage of ipcluster with NumPy

The @parallel decorator parallel functions, that break up
an element-wise operations and distribute them,
reconstructing the result.

In [12]: import numpy as np

In [13]: A = np.random.random( (64,48))

In [14]: @dview.parallel(block=True)
ce..: def pmul(A,B):

c oo oo return A*B




Loadbalancing

You can create a view of the ipcluster that allows for
loadbalancing of the work:

>>> lv=c.load balanced view()

This view can be used with all the above mentioned

methods, auch as: execute, apply, map and the
decorators.

The load balancer can even have different scheduling
strategies like "Least Recently Used", "Plain Random”,
"Two-Bin Random", "Least Load" and "Weighted"



Example

In [3]: view = c[:]
In [4]: view.activate() # enable magics
# run the contents of the file on each engine:
In [5]: view.run('psum.py')
In [6]: view.scatter('a',np.arange(l6,dtype='£float'))
In [7]: view['a']
Out([(7]: [array([ 0., 1., 2., 3.1),
array([ 4., 5., 6., 7.1),
array([ 8., 9., 10., 11.1),
array([ 12., 13., 14., 15.1)]
In [7]: %px totalsum = psum(a)
Parallel execution on engines: [0,1,2,3]
In [8]: view[ ' 'totalsum']
out[8]: [120.0, 120.0, 120.0, 120.0]



Shared Memory (your laptop)

a few threads working closely
together (10-100)

shared memory ( QI /,;z o
single tasklist (program) %«wﬁzﬁm‘fb
cache coherent non-uniform

memory architecture aka ccNUMA

results are kept in shared memory




multiprocessing

e Multiprocessing allows your script running multiple
copies in parallel, with (normally) one copy per
Processor core on your computer.

e One is known as the master copy, and is the one that
Is used to control all of worker copies.

e [t is not recommended to run a multiprocessing
python script interactively, e.g. via ipython or ipython
notebook.

e |t forces you to write it in a particular way. All imports
should be at the top of the script, followed by all
function and class definitions.



multiprocessing

# all imports should be at the top of your script
import multiprocessing, sys, OS
# all function and class definitions must be next
def sum(x, y):

return x+y

main :

if name ==
# You must now protect the code being run by
# the master copy of the script by placing it

[1, 2, 3, 4, 5]
(6, 7, 8, 9, 10]

o o
(I

# Now write your parallel code... etc. etc.



Multiprocessing pool

from multiprocessing import Pool, current process

def square(x):
print( "Worker %s calculating square of %d" % (current process().pid, x))
return x*x

if name = __main__":

nprocs = 2

# print the number of cores
print( "Number of workers equals %d" % nprocs)

# create a pool of workers
pool = Pool (processes=nprocs)

# create an array of 10 integers, from 1 to 10
a = range(1l,11)

result = pool.map( square, a )
total = reduce( lambda x,y: x+y, result )

print( "The sum of the square of the first 10 integers is %d" % total)



@, python

Multiprocessing futures

e Use futures and a context manager:

from concurrent.futures import ThreadPoolExecutor
with ThreadPoolExecutor (max workers=1) as ex:
future = ex.submit(pow, 323, 1235)
print (future.result())



SCO0p

o Is a developing third-party Python module that
supports running parallel Python scripts across
clouds, distributed compute clusters, HPC machines
etc.

® conda install scoop

iIf you are using anaconda python
® pip install scoop

if you have installed pip

® casy install scoop

in all other cases (i.e. if the other two commands
don’t work)


http://scoop.readthedocs.org/en/0.7/

SCO0p

from scoop import futures

def

def

if name == " main :

product(x, Vy):
return x*y

sum(x, Y):
return x+y

n

a = range(1l,101)
b range(101, 201)

results = futures.map(product, a, b)
total = reduce(sum, results)

print( "Sum of the products equals 3d" ¢

total)



Running scoop

e Run this script using the command

$ python -m scoop mapreduce.py

e You need to use -m scoop so that Scoop has time to set up the
distributed cluster before running your script.

$ python -m scoop --hostfile hostfile script.py



Caveats

Scoop provides a very similar interface as multiprocessing, with
the same caveats, requirements and restrictions. For example:

e You must ensure that all use of Scoop is protected within an

if name == main

e You must import all modules and declare all functions at the
top of your script, before the

if name == main

e Scoop does not yet support anonymous (lambda) functions,
again because of Python’s poor support for pickling those
functions. Hopefully this will change soon.



Message Passing

many independent processes (10 - 100.000)

one tasklist for all (program)

everyone can talk to each other (in principle)
private memory

needs communication strategy in order to scale out
very often: nearest neighbor communication
beware of deadlocks!



$ mpiexec -n 4 python myapp.py

mpirun -np 4 ./myapp <args>

from mpidpy import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

if rank == 0:
data = {'a': 7, 'b': 3.14}
comm.send(data, dest=1, tag=11)

elif rank == 1:
data = comm.recv(source=0, tag=11) ' “&




* many independent processes (10 - 100.000)
« central task scheduler (database)

 private memory for each process

* results are sent back to task scheduler

* rescheduling of failed tasks possible



m dask.distributed [ 7, DASK

2 S - S - S N A

Start a scheduler which organizes the computing
tasks

dask-scheduler
dask workers
dask-worker localhost:8786 —
dask-ssh host.domain T
mpirun --np 4 dask-mpi
dask-ec2
dask-kubernetes

same
network

dask-drmaa



dask.distributed [f, DASK

e Start a client
>>> from distributed import Client

>>> client = Client('localhost:8786")

now all dask operations will be @
distributed to the scheduler which
distributes them to the cluster

same
network




dask execution graph

[/ DASK

>>>
>>>
>>>
>>>
>>>

a=da.random.uniform(size=1000, chunks=100)
b=a.sum()

c=a.mean()*a.size

d=b-c

d.compute()

the computation starts at the last command. If you have
a dask cluster then all computations can be distributed to
the cluster.




‘ . < Terminal 1 ~
7/, DASK mobile e
ll IPython on QPython

i
il IPython 5.5.0 - An enhanced Interactive Py1

i Type 'copyright', ‘'credits' or 'license
o & for e i ' '?' for helpy
® 1nsta11 qpython 'ex?'t'm?;i t;)r()ifct)fmatlon, Type or help
e open pip console
e install dask 00, chunks=10000) s sum() - compute
10 loops, best of 3: 69.6 ms per loop
e install toolz

® inStall ipython O & > bEF F e fL

P 2-"3" 4t S 6 7 8 9 0 &«
g W et ety u i

aipstd f - g h |j k

€ Zx c vamm , "}

Fn Ctrl Alt -Pl g4V Kb




r

\\_ ? %4 4 \N\\@.\\_\w\

I JUST TYPED
import ontigrawity

[

.. T ALSO SAMPLED

EVERYTHING IN THE

THATS ITY?

R

MEDICINE CABINET

FOR COMPARISON
[

BUT I THINK THIS

IS THE PYTHON.

-

T ‘.M\\_ % \\\\
) iy,

RE FLYING!

\.\\ 4 Wo P
' e
s /7 i p
o .\‘ \\n.\\\...\ 1/ o )
s&..\ oy s \\\.\\\ e ‘
2% % TERS
’~ \\ .“\\\. g \\s\\\ . . \\
Vi oy’ y

w \

.\W\.\ \\ \ iy
£ / \.. 7, /

The End

IS FUN AGAIN!
ITS A WHOLE
NEW WORLD
UP HERE!
BUT HOW ARE
YOU FLYING?

COME JOIN US!
PROGRAITING

\,

WHITEGPRCE?

|

DYNAMIC TYP!

I DUNNO...

.

/

T LEARNED IT LAST

/

HELLO WORLD 1S JUST

NIGHT! EVERYTHING
Prinf "Hello, world!"

1S S0 SIMPLE!

™

XKCD
@ python



Course Evaluation

Please visit
https://survey.lrz.de/index.php/6939
73
and rate this course!

Your feedback is highly appreciated!
Thank you!




