
OpenMP Tutorial 

Members of the OpenMP Language Committee
1

Programming OpenMP

Christian Terboven

Michael Klemm



OpenMP Tutorial 

Members of the OpenMP Language Committee
2

Agenda



OpenMP Tutorial

Members of the OpenMP Language Committee
1

Programming OpenMP

Christian Terboven

Michael Klemm

An Overview Of OpenMP



OpenMP Tutorial

Members of the OpenMP Language Committee
2

• De-facto standard for Shared-Memory Parallelization.

• 1997: OpenMP 1.0 for FORTRAN

• 1998: OpenMP 1.0 for C and C++

• 1999: OpenMP 1.1 for FORTRAN

• 2000: OpenMP 2.0 for FORTRAN

• 2002: OpenMP 2.0 for C and C++

• 2005: OpenMP 2.5 now includes
both programming languages.

• 05/2008: OpenMP 3.0

• 07/2011: OpenMP 3.1

• 07/2013: OpenMP 4.0

• 11/2015: OpenMP 4.5

• 11/2018: OpenMP 5.0

• 11/2020: OpenMP 5.1

History

http://www.OpenMP.org



OpenMP Tutorial

Members of the OpenMP Language Committee
3

What is OpenMP?

• Parallel Region & Worksharing

• Tasking

• SIMD / Vectorization

• Accelerator Programming

• …



OpenMP Tutorial

Members of the OpenMP Language Committee
4

Get your C/C++ and Fortran Reference Guide!

Covers all of OpenMP 5.1!



OpenMP Tutorial

Members of the OpenMP Language Committee
5

A book that covers all of the 
OpenMP 4.5 features, 2017

A new book about the OpenMP
Common Core, 2019 

Recent Books About OpenMP

A printed copy of the 5.1 
specifications, 2020



OpenMP Tutorial

Members of the OpenMP Language Committee
1

Programming OpenMP

Christian Terboven

Michael Klemm

Parallel Region



OpenMP Tutorial

Members of the OpenMP Language Committee
2

• OpenMP: Shared-Memory Parallel Programming Model.

All processors/cores access
a shared main memory.

Real architectures are
more complex, as we
will see later / as we

have seen.

Parallelization in OpenMP
employs multiple threads.

OpenMP‘s machine model

Memory

Cache Cache Cache Cache

Proc Proc Proc Proc

Crossbar / Bus



OpenMP Tutorial

Members of the OpenMP Language Committee
3

• All threads have access to
the same, globally shared
memory

• Data in private memory is
only accessible by the thread
owning this memory

• No other thread sees the
change(s) in private memory

• Data transfer is through shared
memory and is 100% transparent
to the application

The OpenMP Memory Model

T

private
memory

T

private
memory

T T
private

memory

private
memory

T

private
memory

Shared
Memory

accelerator
memory

PU

PU

PU

PU



OpenMP Tutorial

Members of the OpenMP Language Committee
4

• OpenMP programs start with
just one thread: The Master.

• Worker threads are spawned
at Parallel Regions, together
with the Master they form the
Team of threads.

• In between Parallel Regions the
Worker threads are put to sleep.
The OpenMP Runtime takes care
of all thread management work.

• Concept: Fork-Join.

• Allows for an incremental parallelization!

The OpenMP Execution Model

Master Thread Serial Part

Parallel
RegionSlave 

ThreadsSlave 
ThreadsWorker
Threads

Parallel
Region

Serial Part



OpenMP Tutorial

Members of the OpenMP Language Committee
5

◼ Specification of number of threads:

– Environment variable: OMP_NUM_THREADS=…

– Or: Via num_threads clause:

add num_threads(num) to the

parallel construct

• The parallelism has to be expressed explicitly.

• Structured Block

– Exactly one entry point at the top

– Exactly one exit point at the bottom

– Branching in or out is not allowed

– Terminating the program is allowed
(abort / exit)

Parallel Region and Structured Blocks

C/C++

#pragma omp parallel

{

...

structured block

...

}

Fortran

!$omp parallel

...

structured block

...

!$omp end parallel



OpenMP Tutorial

Members of the OpenMP Language Committee
6

• From within a shell, global setting of the number of threads:

export OMP_NUM_THREADS=4

./program

• From within a shell, one-time setting of the number of threads:

OMP_NUM_THREADS=4   ./program

Starting OpenMP Programs on Linux



OpenMP Tutorial

Members of the OpenMP Language Committee
7

Hello OpenMP World

Demo



OpenMP Tutorial

Members of the OpenMP Language Committee
1

Programming OpenMP

Christian Terboven

Michael Klemm

Worksharing



OpenMP Tutorial

Members of the OpenMP Language Committee
2

• If only the parallel construct is used, each thread executes the Structured Block.

• Program Speedup: Worksharing

• OpenMP‘s most common Worksharing construct: for

– Distribution of loop iterations over all threads in a Team.

– Scheduling of the distribution can be influenced.

• Loops often account for most of a program‘s runtime!

For Worksharing

C/C++

int i;

#pragma omp for

for (i = 0; i < 100; i++)

{

a[i] = b[i] + c[i];

}

Fortran

INTEGER :: i

!$omp do

DO i = 0, 99

a[i] = b[i] + c[i]

END DO



OpenMP Tutorial

Members of the OpenMP Language Committee
3

Worksharing illustrated

do i = 0, 99

a(i) = b(i) + c(i)

end do

do i = 0, 24

a(i) = b(i) + c(i)

end do

do i = 25, 49

a(i) = b(i) + c(i)

end do

do i = 50, 74

a(i) = b(i) + c(i)

end do

do i = 75, 99

a(i) = b(i) + c(i)

end do

MemoryPseudo-Code
Here: 4 Threads

Thread 1

Thread 2

Thread 3

Thread 4

Serial

A(0)
.
.
.

A(99)

B(0)
.
.
.

B(99)

C(0)
.
.
.

C(99)



OpenMP Tutorial

Members of the OpenMP Language Committee
4

• OpenMP barrier (implicit or explicit)

– Threads wait until all threads of the current Team have reached the barrier

• All worksharing constructs contain an implicit barrier at the end

The Barrier Construct

C/C++

#pragma omp barrier



OpenMP Tutorial

Members of the OpenMP Language Committee
5

• The single construct specifies that the enclosed structured block is executed by only on thread of the
team.

– It is up to the runtime which thread that is.

• Useful for:

– I/O

– Memory allocation and deallocation, etc. (in general: setup work)

– Implementation of the single-creator parallel-executor pattern as we will see later…

The Single Construct

C/C++

#pragma omp single [clause]

... structured block ...

Fortran

!$omp single [clause]

... structured block ...

!$omp end single



OpenMP Tutorial

Members of the OpenMP Language Committee
6

• The master construct specifies that the enclosed structured block is executed only by the master thread of 
a team.

• Note: The master construct is no worksharing construct and does not contain an implicit barrier at the end.

The Master Construct

C/C++

#pragma omp master[clause]

... structured block ...

Fortran

!$omp master[clause]

... structured block ...

!$omp end master



OpenMP Tutorial

Members of the OpenMP Language Committee
7

Vector Addition

Demo



OpenMP Tutorial

Members of the OpenMP Language Committee
8

• for-construct: OpenMP allows to influence how the iterations are scheduled among the threads of the
team, via the schedule clause:

– schedule(static [, chunk]): Iteration space divided into blocks of chunk size, blocks are assigned to

threads in a round-robin fashion. If chunk is not specified: #threads blocks.

– schedule(dynamic [, chunk]): Iteration space divided into blocks of chunk (not specified: 1) size, 

blocks are scheduled to threads in the order in which threads finish previous blocks.

– schedule(guided [, chunk]): Similar to dynamic, but block size starts with implementation-defined

value, then is decreased exponentially down to chunk.

• Default is schedule(static).

Influencing the For Loop Scheduling / 1



OpenMP Tutorial

Members of the OpenMP Language Committee
9

Influencing the For Loop Scheduling / 2

◼ Static Schedule

→ schedule(static [, chunk])

→ Decomposition 

depending on chunksize

→ Equal parts of size ‘chunksize’

distributed in round-robin 

fashion

◼ Pros?

→ No/low runtime overhead

◼ Cons?

→ No dynamic workload balancing



OpenMP Tutorial

Members of the OpenMP Language Committee
10

• Dynamic schedule

– schedule(dynamic [, chunk])

– Iteration space divided into blocks of chunk size

– Threads request a new block after finishing the previous one

– Default chunk size is 1

• Pros ?

– Workload distribution

• Cons?

– Runtime Overhead

– Chunk size essential for performance

– No NUMA optimizations possible

Influencing the For Loop Scheduling / 3



OpenMP Tutorial

Members of the OpenMP Language Committee
11

• Can all loops be parallelized with for-constructs? No!

– Simple test: If the results differ when the code is executed backwards, the loop iterations are not independent. 
BUT: This test alone is not sufficient:

• Data Race: If between two synchronization points at least one thread writes to a memory location from 
which at least one other thread reads, the result is not deterministic (race condition).

Synchronization Overview

C/C++

int i, int s = 0;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

s = s + a[i];

}



OpenMP Tutorial

Members of the OpenMP Language Committee
12

• A Critical Region is executed by all threads, but by only one thread simultaneously (Mutual Exclusion).

• Do you think this solution scales well?

Synchronization: Critical Region

C/C++

#pragma omp critical (name)

{

... structured block ...

}

C/C++

int i, s = 0;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i];  }

}



OpenMP Tutorial

Members of the OpenMP Language Committee
1

Programming OpenMP

Christian Terboven

Michael Klemm

Scoping



OpenMP Tutorial

Members of the OpenMP Language Committee
2

• Managing the Data Environment is the challenge of OpenMP.

• Scoping in OpenMP: Dividing variables in shared and private:

– private-list and shared-list on Parallel Region

– private-list and shared-list on Worksharing constructs

– General default is shared for Parallel Region, firstprivate for Tasks.

– Loop control variables on for-constructs are private

– Non-static variables local to Parallel Regions are private

– private: A new uninitialized instance is created for the task or each thread executing the construct

• firstprivate: Initialization with the value before encountering the construct

• lastprivate: Value of last loop iteration is written back to Master

– Static variables are shared

Scoping Rules

Tasks are
introduced later



OpenMP Tutorial

Members of the OpenMP Language Committee
3

• Global / static variables can be privatized with the threadprivate directive

– One instance is created for each thread

• Before the first parallel region is encountered

• Instance exists until the program ends

• Does not work (well) with nested Parallel Region

– Based on thread-local storage (TLS)

• TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword __thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$omp threadprivate(i)



OpenMP Tutorial

Members of the OpenMP Language Committee
4

• Global / static variables can be privatized with the threadprivate directive

– One instance is created for each thread

• Before the first parallel region is encountered

• Instance exists until the program ends

• Does not work (well) with nested Parallel Region

– Based on thread-local storage (TLS)

• TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword __thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$omp threadprivate(i)



OpenMP Tutorial

Members of the OpenMP Language Committee
5

Back to our example

C/C++

int i, s = 0;

#pragma omp parallel for

for (i = 0; i < 100; i++)

{

#pragma omp critical

{ s = s + a[i];  }

}



OpenMP Tutorial

Members of the OpenMP Language Committee
6

#pragma omp parallel              

{

#pragma omp for

for (i = 0; i < 99; i++)

{   

s  = s   + a[i];

}

} // end parallel

It‘s your turn: Make It Scale!

do i = 0, 99

s = s + a(i)

end do

do i = 0, 24
s = s + a(i)

end do

do i = 25, 49
s = s + a(i)

end do

do i = 50, 74
s = s + a(i)

end do

do i = 75, 99
s = s + a(i)

end do



OpenMP Tutorial

Members of the OpenMP Language Committee
7

#pragma omp parallel              

{

double ps = 0.0;   // private variable

#pragma omp for

for (i = 0; i < 99; i++)

{   

ps = ps + a[i];

}

#pragma omp critical

{

s += ps;

}

} // end parallel

(done)

do i = 0, 99

s = s + a(i)

end do

do i = 0, 24
s1 = s1 + a(i)

end do
s = s + s1

do i = 25, 49
s2 = s2 + a(i)

end do
s = s + s2

do i = 50, 74
s3 = s3 + a(i)

end do
s = s + s3

do i = 75, 99
s4 = s4 + a(i)

end do
s = s + s4



OpenMP Tutorial

Members of the OpenMP Language Committee
8

• In a reduction-operation the operator is applied to all variables in the list. The variables have to be shared.

– reduction(operator:list)

– The result is provided in the associated reduction variable

– Possible reduction operators with initialization value:

+ (0), * (1), - (0), & (~0), | (0), && (1), || (0), ^ (0), min 

(largest number), max (least number)

– Remark: OpenMP also supports user-defined reductions (not covered here)

The Reduction Clause

C/C++

int i, s = 0;

#pragma omp parallel for reduction(+:s)

for(i = 0; i < 99; i++)

{

s = s + a[i];

}



OpenMP Tutorial

Members of the OpenMP Language Committee
9

PI

Example



OpenMP Tutorial

Members of the OpenMP Language Committee
10

Example: Pi (1/2)

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

𝜋 = න

0

1
4

1 + 𝑥2



OpenMP Tutorial

Members of the OpenMP Language Committee
11

Example: Pi (2/2)

double f(double x)

{

return (4.0 / (1.0 + x*x));

}

double CalcPi (int n)

{

const double fH = 1.0 / (double) n;

double fSum = 0.0;

double fX;

int i;

#pragma omp parallel for private(fX,i) reduction(+:fSum)

for (i = 0; i < n; i++)

{

fX = fH * ((double)i + 0.5);

fSum += f(fX);

}

return fH * fSum;

}

𝜋 = න

0

1
4

1 + 𝑥2



OpenMP Tutorial

Members of the OpenMP Language Committee
1

Programming OpenMP

Christian Terboven

Michael Klemm

OpenMP Tasking Introduction



OpenMP Tutorial

Members of the OpenMP Language Committee
2

◼ Tasks are work units whose execution

→ may be deferred or…

→ … can be executed immediately

◼ Tasks are composed of

→ code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

◼ Tasks are created…

… when reaching a parallel region → implicit tasks are created (per thread)

… when encountering a task construct → explicit task is created

… when encountering a taskloop construct → explicit tasks per chunk are created

… when encountering a target construct → target task is created

What is a Task in OpenMP?



OpenMP Tutorial

Members of the OpenMP Language Committee
3

◼ Supports unstructured parallelism

→ unbounded loops

→ recursive functions

◼ Several scenarios are possible:

→ single creator, multiple creators, nested tasks (tasks & WS)

◼ All threads in the team are candidates to execute tasks

Tasking Execution Model

while ( <expr> ) {

...

}

void myfunc( <args> )

{

...; myfunc( <newargs> ); ...;

}

Task pool

Parallel Team

#pragma omp parallel

#pragma omp master

while (elem != NULL) {

#pragma omp task

compute(elem);

elem = elem->next;

}

◼ Example (unstructured parallelism)



OpenMP Tutorial

Members of the OpenMP Language Committee
4

◼ OpenMP programmers need a specific idiom to kick off task-parallel execution: parallel master

→ OpenMP version 5.0 introduced the parallel master construct

→ With OpenMP version 5.1 this becomes parallel masked

OpenMP Tasking Idiom

1 int main(int argc, char* argv[])

2 {

3 [...]

4 #pragma omp parallel

5 {

6 #pragma omp single

7 {

9 start_task_parallel_execution();

9 }

10 }

11 [...]

12 }

1 int main(int argc, char* argv[])

2 {

3 [...]

4 #pragma omp parallel

5 {

6 #pragma omp master

7 {

9 start_task_parallel_execution();

9 }

10 }

11 [...]

12 }



OpenMP Tutorial

Members of the OpenMP Language Committee
5

◼ Only one thread enters fib() from main().

◼ That thread creates the two initial work tasks and starts the parallel recursion.

◼ The taskwait construct is required to wait for the result for x and y before the task can sum up.

Fibonacci Numbers (in a Stupid Way ☺)
14 int fib(int n)   {

15 if (n < 2) return n;

16 int x, y;

17 #pragma omp task shared(x)

18 {

19 x = fib(n - 1);

20 }

21 #pragma omp task shared(y)

22 {

23 y = fib(n - 2);

24 }

25 #pragma omp taskwait

26 return x+y;

27 }

1 int main(int argc,

2 char* argv[])

3 {

4 [...]

5 #pragma omp parallel

6 {

7 #pragma omp master

8 {

9 fib(input);

10 }

11 }

12 [...]

13 }



OpenMP Tutorial

Members of the OpenMP Language Committee
6

◼ T1 enters fib(4)

fib(4)
◼ T1 creates tasks for 

fib(3) and fib(2)

Task Queue

fib(3) fib(2)

◼ T1 and T2 execute tasks 

from the queue

fib(3) fib(2)◼ T1 and T2 create 4 new 

tasks

fib(2) fib(1) fib(1) fib(0)

◼ T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)



OpenMP Tutorial

Members of the OpenMP Language Committee
7

◼ T1 enters fib(4)

fib(4)
◼ T1 creates tasks for 

fib(3) and fib(2)

◼ T1 and T2 execute tasks 

from the queue

fib(3) fib(2)◼ T1 and T2 create 4 new 

tasks

◼ T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)◼ …

fib(1) fib(0)



OpenMP Tutorial

Members of the OpenMP Language Committee
8

Programming OpenMP

Christian Terboven

Michael Klemm

Using OpenMP Compilers



OpenMP Tutorial

Members of the OpenMP Language Committee
9

◼ GCC

◼ clang/LLVM

◼ Intel Classic and Next-gen Compilers

◼ AOCC, AOMP, ROCmCC

◼ IBM XL

◼ … and many more

◼ See https://www.openmp.org/resources/openmp-compilers-tools/ for a list

Production Compilers w/ OpenMP Support

https://www.openmp.org/resources/openmp-compilers-tools/


OpenMP Tutorial

Members of the OpenMP Language Committee
10

◼ Enable OpenMP via the compiler’s command-line switches

→ GCC: -fopenmp

→ clang: -fopenmp

→ Intel: -fopenmp or –qopenmp (classic) or –fiopenmp (next-gen)

→ AOCC, AOCL, ROCmCC: -fopenmp

→ IBM XL: -qsmp=omp

◼ Switches have to be passed to both compiler and linker:

Compiling OpenMP

$ gcc [...] -fopenmp -o matmul.o -c matmul.c
$ gcc [...] -fopenmp -o matmul matmul.o
$./matmul 1024
Sum of matrix (serial):   134217728.000000, wall time 0.413975, speed-up 1.00
Sum of matrix (parallel): 134217728.000000, wall time 0.092162, speed-up 4.49



OpenMP Tutorial

Members of the OpenMP Language Committee
11

Programming OpenMP

Christian Terboven

Michael Klemm

Hands-on Exercises



OpenMP Tutorial

Members of the OpenMP Language Committee
12

◼ We have implemented a series of small hands-on examples that you can use and play with.

→ Download: git clone https://github.com/cterboven/OpenMP-tutorial-PRACE.git

→ Build: make

→ You can then find the compiled code in the “bin” folder to run it

→ We use the GCC compiler mostly, some examples require Intel’s Math Kernel Library

◼ Each hands-on exercise has a folder “solution”

→ It shows the OpenMP directive that we have added

→ You can use it to cheat ☺, or to check if you came up with the same solution

Webinar Exercises


	00-openmp-CT-welcome
	Programming OpenMP
	Slide 2 

	01-openmp-CT-overview
	Programming OpenMP
	History
	What is OpenMP?
	Slide 4 
	Slide 5 

	02-openmp-CT-parallel_region
	Programming OpenMP
	OpenMP‘s machine model
	The OpenMP Memory Model
	The OpenMP Execution Model
	Parallel Region and Structured Blocks
	Starting OpenMP Programs on Linux
	Slide 7 

	03-openmp-CT-worksharing
	Programming OpenMP
	For Worksharing
	Worksharing illustrated
	The Barrier Construct
	The Single Construct
	The Master Construct
	Slide 7 
	Influencing the For Loop Scheduling / 1
	Slide 9 
	Influencing the For Loop Scheduling / 3
	Synchronization Overview
	Synchronization: Critical Region

	04-openmp-CT-scoping
	Programming OpenMP
	Scoping Rules
	Privatization of Global/Static Variables
	Privatization of Global/Static Variables
	Back to our example
	Slide 6 
	Slide 7 
	The Reduction Clause
	Slide 9 
	Slide 10 
	Slide 11 

	05-openmp-MK-tasks&compilers
	Programming OpenMP
	Slide 2 
	Slide 3 
	Slide 4 
	Slide 5 
	Slide 6 
	Slide 7 
	Programming OpenMP
	Slide 9 
	Slide 10 
	Programming OpenMP
	Slide 12 


