
1
Advanced OpenMP

Programming OpenMP

Christian Terboven

Michael Klemm

Tasking

2
Advanced OpenMP

OpenMP Review

3
Advanced OpenMP

The OpenMP Execution Model

Fork and Join Model
Master

Thread

Worker

Threads
Parallel

region

Synchronization

Parallel

region

Worker

Threads

Synchronization

#pragma omp parallel
{

....
}

#pragma omp parallel
{

....
}

4
Advanced OpenMP

◼ The work is distributed over the threads

◼ Must be enclosed in a parallel region

◼ Must be encountered by all threads in

the team, or none at all

◼ No implied barrier on entry

◼ Implied barrier on exit (unless the nowait

clause is specified)

◼ A work-sharing construct does not launch

any new threads

The Worksharing Constructs

#pragma omp for
{

....
}

#pragma omp sections
{

....
}

#pragma omp single
{

....
}

5
Advanced OpenMP

◼ Single: only one thread in the team executes the code enclosed

◼Master: the master thread executes the code enclosed

The Single and Master Directives

#pragma omp single [private][firstprivate] \
[copyprivate][nowait]

{
<code-block>

}

#pragma omp master
{<code-block>}

There is no implied

barrier on entry or

exit !

6
Advanced OpenMP

◼ Several constructs have an implied barrier

→This is another safety net (has implied flush by the way)

the “nowait” clause

◼ This can help fine tuning the application

→But you’d better know what you’re doing

◼ The explicit barrier comes in quite handy then

The OpenMP Barrier

#pragma omp barrier

7
Advanced OpenMP7

Tasking Motivation

8
Advanced OpenMP

◼ Lets solve Sudoku puzzles with brute multi-core force

Sudoko for Lazy Computer Scientists

◼ (1) Search an empty field

◼ (2) Try all numbers:

◼ (2 a) Check Sudoku

◼ If invalid: skip

◼ If valid: Go to next field

◼ Wait for completion

9
Advanced OpenMP

◼ This parallel algorithm finds all valid solutions

Parallel Brute-force Sudoku

◼ (1) Search an empty field

◼ (2) Try all numbers:

◼ (2 a) Check Sudoku

◼ If invalid: skip

◼ If valid: Go to next field

◼ Wait for completion

first call contained in a
#pragma omp parallel

#pragma omp single

such that one tasks starts the
execution of the algorithm

#pragma omp task

needs to work on a new copy
of the Sudoku board

#pragma omp taskwait

wait for all child tasks

10
Advanced OpenMP

Performance Evaluation

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 16 24 32

Sp
ee

d
u

p

R
u

n
ti

m
e

[s
ec

]
fo

r
1

6
x1

6

#threads

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding

Is this the best
we can can do?

1
Advanced OpenMP

Tasking Overview

2
Advanced OpenMP

◼ Tasks are work units whose execution

→ may be deferred or…

→ … can be executed immediately

◼ Tasks are composed of

→ code to execute, a data environment (initialized at creation time), internal control variables (ICVs)

◼ Tasks are created…

… when reaching a parallel region → implicit tasks are created (per thread)

… when encountering a task construct → explicit task is created

… when encountering a taskloop construct → explicit tasks per chunk are created

… when encountering a target construct → target task is created

What is a task in OpenMP?

3
Advanced OpenMP

◼ Supports unstructured parallelism

→ unbounded loops

→ recursive functions

◼ Several scenarios are possible:

→ single creator, multiple creators, nested tasks (tasks & WS)

◼ All threads in the team are candidates to execute tasks

Tasking execution model

while (<expr>) {

...

}

void myfunc(<args>)

{

...; myfunc(<newargs>); ...;

}

Task pool

Parallel Team

#pragma omp parallel

#pragma omp master

while (elem != NULL) {

#pragma omp task

compute(elem);

elem = elem->next;

}

◼ Example (unstructured parallelism)

4
Advanced OpenMP

!$omp task [clause[[,] clause]...]

…structured-block…

!$omp end task

Synchronization

Cutoff Strategies

Data Environment

◼ Deferring (or not) a unit of work (executable for any member of the team)

◼ Where clause is one of:

The task construct

→ if(scalar-expression)

→ mergeable

→ final(scalar-expression)

→ depend(dep-type: list)

→ untied

→ priority(priority-value)

→ affinity(list)

→ private(list)

→ firstprivate(list)

→ shared(list)

→ default(shared | none)

→ in_reduction(r-id: list)

→ allocate([allocator:] list)

→ detach(event-handler)

#pragma omp task [clause[[,] clause]...]

{structured-block}

Task Scheduling
Miscellaneous

5
Advanced OpenMP

◼ Tasks are tied by default (when no untied clause present)

→ tied tasks are executed always by the same thread (not necessarily creator)

→ tied tasks may run into performance problems

◼ Programmers may specify tasks to be untied (relax scheduling)

→ can potentially switch to any thread (of the team)

→ bad mix with thread based features: thread-id, threadprivate, critical regions...

→ gives the runtime more flexibility to schedule tasks

→ but most of OpenMP implementations doesn’t “honor” untied 

Task scheduling: tied vs untied tasks

#pragma omp task untied

{structured-block}

6
Advanced OpenMP

◼ Task scheduling points (and the taskyield directive)

→ tasks can be suspended/resumed at TSPs → some additional constraints to avoid deadlock problems

→ implicit scheduling points (creation, synchronization, ...)

→ explicit scheduling point: the taskyield directive

◼ Scheduling [tied/untied] tasks: example

Task scheduling: taskyield directive

#pragma omp taskyield

#pragma omp parallel

#pragma omp single

{

#pragma omp task

{

foo();

#pragma omp taskyield

bar()

}

}

single

foo()

bar()

untied:

single

foo() bar()tied:

untied

(default)

7
Advanced OpenMP

◼ Programmers may specify a priority value when creating a task

→ pvalue: the higher → the best (will be scheduled earlier)

→ once a thread becomes idle, gets one of the highest priority tasks

Task scheduling: programmer’s hints

#pragma omp parallel

#pragma omp single

{

for (i = 0; i < SIZE; i++) {

#pragma omp task priority(1)

{ code_A; }

}

#pragma omp task priority(100)

{ code_B; }

...

}

#pragma omp task priority(pvalue)

{structured-block}

Task pool
priority-aware

Parallel Team

8
Advanced OpenMP

◼ The taskwait directive (shallow task synchronization)

→ It is a stand-alone directive

→ wait on the completion of child tasks of the current task; just direct children, not all descendant tasks;

includes an implicit task scheduling point (TSP)

Task synchronization: taskwait directive

#pragma omp taskwait

#pragma omp parallel

#pragma omp single

{

#pragma omp task

{

#pragma omp task

{ … }

#pragma omp task

{ … …}

#pragma omp taskwait

}

} // implicit barrier will wait for C.x

C.1 C.2

wait for…

A

: A

{ … #C.1; #C.2; …}

B C
: B

: C

9
Advanced OpenMP

◼ OpenMP barrier (implicit or explicit)

→ All tasks created by any thread of the current team are guaranteed to be completed at barrier exit

→ And all other implicit barriers at parallel, sections, for, single, etc…

Task synchronization: barrier semantics

#pragma omp barrier

10
Advanced OpenMP

◼ The taskgroup construct (deep task synchronization)

→ attached to a structured block; completion of all descendants of the current task; TSP at the end

→ where clause (could only be): reduction(reduction-identifier: list-items)

Task synchronization: taskgroup construct

#pragma omp taskgroup [clause[[,] clause]...]

{structured-block}

#pragma omp parallel

#pragma omp single

{

#pragma omp taskgroup

{

#pragma omp task

{ … }

#pragma omp task

{ … #C.1; #C.2; …}

} // end of taskgroup

}

wait for…

B C

C.1 C.2

A

:B

:C

: A

11
Advanced OpenMP

Data Environment

12
Advanced OpenMP

◼ Explicit data-sharing clauses (shared, private and firstprivate)

◼ If default clause present, what the clause says

→ shared: data which is not explicitly included in any other data sharing clause will be shared

→ none: compiler will issue an error if the attribute is not explicitly set by the programmer (very useful!!!)

Explicit data-sharing clauses

#pragma omp task shared(a)

{

// Scope of a: shared

}

#pragma omp task private(b)

{

// Scope of b: private

}

#pragma omp task firstprivate(c)

{

// Scope of c: firstprivate

}

#pragma omp task default(shared)

{

// Scope of all the references, not explicitly

// included in any other data sharing clause,

// and with no pre-determined attribute: shared

}

#pragma omp task default(none)

{

// Compiler will force to specify the scope for

// every single variable referenced in the context

}

Hint: Use default(none) to be forced to think about every
variable if you do not see clearly.

13
Advanced OpenMP

◼ threadprivate variables are threadprivate (1)

◼ dynamic storage duration objects are shared (malloc, new,…) (2)

◼ static data members are shared (3)

◼ variables declared inside the construct

→static storage duration variables are shared (4)

→automatic storage duration variables are private (5)

◼ the loop iteration variable(s)…

Pre-determined data-sharing attributes

void foo(void){

static int s = MN;

}

#pragma omp task

{

foo(); // s@foo(): shared

}

int A[SIZE];

#pragma omp threadprivate(A)

// ...

#pragma omp task

{

// A: threadprivate

}

int *p;

p = malloc(sizeof(float)*SIZE);

#pragma omp task

{

// *p: shared

}

#pragma omp task

{

int x = MN;

// Scope of x: private

}

#pragma omp task

{

static int y;

// Scope of y: shared

}

1 2 3

4

5

14
Advanced OpenMP

Implicit data-sharing attributes (in-practice)

int a = 1;

void foo() {

int b = 2, c = 3;

#pragma omp parallel private(b)

{

int d = 4;

#pragma omp task

{

int e = 5;

// Scope of a: shared

// Scope of b: firstprivate

// Scope of c: shared

// Scope of d: firstprivate

// Scope of e: private

}

}

}

◼ (in-practice) variable values within the task:

→ value of a: 1

→ value of b: x // undefined (undefined in parallel)

→ value of c: 3

→ value of d: 4

→ value of e: 5

◼ Implicit data-sharing rules for the task region

→ the shared attribute is lexically inherited

→ in any other case the variable is firstprivate

→ Pre-determined rules (could not change)

→ Explicit data-sharing clauses (+ default)

→ Implicit data-sharing rules

15
Advanced OpenMP

Task reductions (using taskgroup)
int res = 0;
node_t* node = NULL;
...
#pragma omp parallel
{

#pragma omp single
{

#pragma omp taskgroup task_reduction(+: res)
{ // [1]

while (node) {
#pragma omp task in_reduction(+: res) \

firstprivate(node)
{ // [2]

res += node->value;
}
node = node->next;

}
} // [3]

}
}

◼ Reduction operation

→ perform some forms of recurrence calculations

→ associative and commutative operators

◼ The (taskgroup) scoping reduction clause

→ Register a new reduction at [1]

→ Computes the final result after [3]

◼ The (task) in_reduction clause [participating]

→ Task participates in a reduction operation [2]

#pragma omp task in_reduction(op: list)

{structured-block}

#pragma omp taskgroup task_reduction(op: list)

{structured-block}

16
Advanced OpenMP

Task reductions (+ modifiers)
int res = 0;
node_t* node = NULL;
...
#pragma omp parallel reduction(task,+: res)
{ // [1][2]

#pragma omp single
{

#pragma omp taskgroup
{

while (node) {
#pragma omp task in_reduction(+: res) \

firstprivate(node)
{ // [3]

res += node->value;
}
node = node->next;

}
}

}
} // [4]

◼ Reduction modifiers

→ Former reductions clauses have been extended

→ task modifier allows to express task reductions

→ Registering a new task reduction [1]

→ Implicit tasks participate in the reduction [2]

→ Compute final result after [4]

◼ The (task) in_reduction clause [participating]

→ Task participates in a reduction operation [3]

#pragma omp task in_reduction(op: list)

{structured-block}

17
Advanced OpenMP

Tasking illustrated

18
Advanced OpenMP

◼Only one Task / Thread enters fib() from main(), it is responsible for

creating the two initial work tasks

◼ Taskwait is required, as otherwise x and y would get lost

Fibonacci illustrated
14 int fib(int n) {

15 if (n < 2) return n;

16 int x, y;

17 #pragma omp task shared(x)

18 {

19 x = fib(n - 1);

20 }

21 #pragma omp task shared(y)

22 {

23 y = fib(n - 2);

24 }

25 #pragma omp taskwait

26 return x+y;

27 }

1 int main(int argc,

2 char* argv[])

3 {

4 [...]

5 #pragma omp parallel

6 {

7 #pragma omp single

8 {

9 fib(input);

10 }

11 }

12 [...]

13 }

19
Advanced OpenMP

◼ T1 enters fib(4)

fib(4)
◼ T1 creates tasks for

fib(3) and fib(2)

Task Queue

fib(3) fib(2)

◼ T1 and T2 execute tasks

from the queue

fib(3) fib(2)◼ T1 and T2 create 4 new

tasks

fib(2) fib(1) fib(1) fib(0)

◼ T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)

20
Advanced OpenMP

◼ T1 enters fib(4)

fib(4)
◼ T1 creates tasks for

fib(3) and fib(2)

◼ T1 and T2 execute tasks

from the queue

fib(3) fib(2)◼ T1 and T2 create 4 new

tasks

◼ T1 - T4 execute tasks

fib(2) fib(1) fib(1) fib(0)◼ …

fib(1) fib(0)

1
Advanced OpenMP

The taskloop Construct

2
Advanced OpenMP

◼ Worksharing constructs do not compose well

◼ Pathological example: parallel dgemm in MKL

◼ Writing such code either
→oversubscribes the system,

→yields bad performance due to OpenMP overheads, or

→needs a lot of glue code to use sequential dgemm only for sub-matrixes

Traditional Worksharing

void example() {

#pragma omp parallel

{

compute_in_parallel(A);

compute_in_parallel_too(B);

// dgemm is either parallel or sequential,

// but has no orphaned worksharing

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,

m, n, k, alpha, A, k, B, n, beta, C, n);

} }

3
Advanced OpenMP

Example: Sparse CG

for (iter = 0; iter < sc->maxIter; iter++) {

precon(A, r, z);

vectorDot(r, z, n, &rho);

beta = rho / rho_old;

xpay(z, beta, n, p);

matvec(A, p, q);

vectorDot(p, q, n, &dot_pq);

alpha = rho / dot_pq;

axpy(alpha, p, n, x);

axpy(-alpha, q, n, r);

sc->residual = sqrt(rho) * bnrm2;

if (sc->residual <= sc->tolerance)

break;

rho_old = rho;

}

void matvec(Matrix *A, double *x, double *y) {

// ...

#pragma omp parallel for \

private(i,j,is,ie,j0,y0) \

schedule(static)

for (i = 0; i < A->n; i++) {

y0 = 0;

is = A->ptr[i];

ie = A->ptr[i + 1];

for (j = is; j < ie; j++) {

j0 = index[j];

y0 += value[j] * x[j0];

}

y[i] = y0;

}

// ...

}

4
Advanced OpenMP

Tasking use case: saxpy (taskloop)

#pragma omp parallel

#pragma omp single

for (i = 0; i<SIZE; i+=TS) {

UB = SIZE < (i+TS)?SIZE:i+TS;

#pragma omp task private(ii) \

firstprivate(i,UB) shared(S,A,B)

for (ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;

}

}

◼ Difficult to determine grain

→ 1 single iteration → to fine

→ whole loop → no parallelism

◼ Manually transform the code

→ blocking techniques

◼ Improving programmability

→ OpenMP taskloop

→ Hiding the internal details

→ Grain size ~ Tile size (TS) → but implementation

decides exact grain size

for (i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

for (i = 0; i<SIZE; i+=TS) {

UB = SIZE < (i+TS)?SIZE:i+TS;

for (ii=i; ii<UB; ii++) {

A[ii]=A[ii]*B[ii]*S;

}

}

#pragma omp taskloop grainsize(TS)

for (i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

5
Advanced OpenMP

◼ Task generating construct: decompose a loop into chunks, create a task for each loop chunk

◼ Where clause is one of:

!$omp taskloop [clause[[,] clause]…]

…structured-do-loops…

!$omp end taskloop

Scheduler (R/H)

Cutoff Strategies

Data Environment

The taskloop Construct

→ if(scalar-expression)

→ final(scalar-expression)

→ mergeable

→ untied

→ priority(priority-value)

→ collapse(n)

→ nogroup

→ allocate([allocator:] list)

→ shared(list)

→ private(list)

→ firstprivate(list)

→ lastprivate(list)

→ default(sh | pr | fp | none)

→ reduction(r-id: list)

→ in_reduction(r-id: list)

→ grainsize(grain-size)

→ num_tasks(num-tasks)

#pragma omp taskloop [clause[[,] clause]…]

{structured-for-loops}

Chunks/Grain

Miscellaneous

6
Advanced OpenMP

Worksharing vs. taskloop constructs (1/2)
subroutine worksharing

integer :: x

integer :: i

integer, parameter :: T = 16

integer, parameter :: N = 1024

x = 0

!$omp parallel shared(x) num_threads(T)

!$omp do

do i = 1,N

!$omp atomic

x = x + 1

!$omp end atomic

end do

!$omp end do

!$omp end parallel

write (*,'(A,I0)') 'x = ', x

end subroutine

subroutine taskloop

integer :: x

integer :: i

integer, parameter :: T = 16

integer, parameter :: N = 1024

x = 0

!$omp parallel shared(x) num_threads(T)

!$omp taskloop

do i = 1,N

!$omp atomic

x = x + 1

!$omp end atomic

end do

!$omp end taskloop

!$omp end parallel

write (*,'(A,I0)') 'x = ', x

end subroutine

7
Advanced OpenMP

Worksharing vs. taskloop constructs (2/2)
subroutine worksharing

integer :: x

integer :: i

integer, parameter :: T = 16

integer, parameter :: N = 1024

x = 0

!$omp parallel shared(x) num_threads(T)

!$omp do

do i = 1,N

!$omp atomic

x = x + 1

!$omp end atomic

end do

!$omp end do

!$omp end parallel

write (*,'(A,I0)') 'x = ', x

end subroutine

subroutine taskloop

integer :: x

integer :: i

integer, parameter :: T = 16

integer, parameter :: N = 1024

x = 0

!$omp parallel shared(x) num_threads(T)

!$omp single

!$omp taskloop

do i = 1,N

!$omp atomic

x = x + 1

!$omp end atomic

end do

!$omp end taskloop

!$omp end single

!$omp end parallel

write (*,'(A,I0)') 'x = ', x

end subroutine

8
Advanced OpenMP

◼ Clause: grainsize(grain-size)

→ Chunks have at least grain-size iterations

→ Chunks have maximum 2x grain-size iterations

Taskloop decomposition approaches

int TS = 4 * 1024;

#pragma omp taskloop grainsize(TS)

for (i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

◼ Clause: num_tasks(num-tasks)

→ Create num-tasks chunks

→ Each chunk must have at least one iteration

int NT = 4 * omp_get_num_threads();

#pragma omp taskloop num_tasks(NT)

for (i = 0; i<SIZE; i+=1) {

A[i]=A[i]*B[i]*S;

}

◼ If none of previous clauses is present, the number of chunks and the number of iterations per chunk

is implementation defined

◼ Additional considerations:

→ The order of the creation of the loop tasks is unspecified

→ Taskloop creates an implicit taskgroup region; nogroup → no implicit taskgroup region is created

9
Advanced OpenMP

◼ The collapse clause in the taskloop construct

→ Number of loops associated with the taskloop construct (n)

→ Loops are collapsed into one larger iteration space

→ Then divided according to the grainsize and num_tasks

◼ Intervening code between any two associated loops

→ at least once per iteration of the enclosing loop

→ at most once per iteration of the innermost loop

Collapsing iteration spaces with taskloop

#pragma omp taskloop collapse(n)

{structured-for-loops}

#pragma omp taskloop collapse(2)

for (i = 0; i<SX; i+=1) {

for (j= 0; i<SY; j+=1) {

for (k = 0; i<SZ; k+=1) {

A[f(i,j,k)]=<expression>;

}

}

}

#pragma omp taskloop

for (ij = 0; i<SX*SY; ij+=1) {

for (k = 0; i<SZ; k+=1) {

i = index_for_i(ij);

j = index_for_j(ij);

A[f(i,j,k)]=<expression>;

}

}

10
Advanced OpenMP

◼ Clause: reduction(r-id: list)

→ It defines the scope of a new reduction

→ All created tasks participate in the reduction

→ It cannot be used with the nogroup clause

◼ Clause: in_reduction(r-id: list)

→ Reuse an already defined reduction scope

→ All created tasks participate in the reduction

→ It can be used with the nogroup* clause, but it

is user responsibility to guarantee result

Task reductions (using taskloop)

double dotprod(int n, double *x, double *y) {

double r = 0.0;

#pragma omp taskloop reduction(+: r)

for (i = 0; i < n; i++)

r += x[i] * y[i];

return r;

}

double dotprod(int n, double *x, double *y) {

double r = 0.0;

#pragma omp taskgroup task_reduction(+: r)

{

#pragma omp taskloop in_reduction(+: r)*

for (i = 0; i < n; i++)

r += x[i] * y[i];

}

return r;

}

11
Advanced OpenMP

◼ Task generating construct: decompose a loop into chunks, create a task for each loop chunk

◼ Each generated task will apply (internally) SIMD to each loop chunk

→ C/C++ syntax:

→ Fortran syntax:

◼ Where clause is any of the clauses accepted by taskloop or simd directives

Composite construct: taskloop simd

!$omp taskloop simd [clause[[,] clause]…]

…structured-do-loops…

!$omp end taskloop

#pragma omp taskloop simd [clause[[,] clause]…]

{structured-for-loops}

1
Advanced OpenMP

Improving Tasking Performance:

Task dependences

2
Advanced OpenMP

◼ Task dependences as a way to define task-execution constraints

Motivation

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(in: x)

std::cout << x << std::endl;

#pragma omp task depend(inout: x)

x++;

}

OpenMP 4.0int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task

std::cout << x << std::endl;

#pragma omp task

x++;

}

OpenMP 3.1

OpenMP 3.1

OpenMP 4.0

#pragma omp taskwait

t1

t2

t1

t2

Task’s creation time

Task’s execution time

3
Advanced OpenMP

◼ Task dependences as a way to define task-execution constraints

Motivation

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(in: x)

std::cout << x << std::endl;

#pragma omp task depend(inout: x)

x++;

}

OpenMP 4.0int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task

std::cout << x << std::endl;

#pragma omp taskwait

#pragma omp task

x++;

}

OpenMP 3.1

t1

t2

t1

t2

Task’s creation time

Task’s execution time

OpenMP 3.1

OpenMP 4.0

Task dependences can help us to remove

“strong” synchronizations, increasing the look

ahead and, frequently, the parallelism!!!!

4
Advanced OpenMP

Motivation: Cholesky factorization
void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

#pragma omp task depend(inout: a[k][k])

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task depend(in: a[k][k])

depend(inout: a[k][i])

trsm(a[k][k], a[k][i], ts, ts);

}

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task depend(inout: a[j][i])

depend(in: a[k][i], a[k][j])

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task depend(inout: a[i][i])

depend(in: a[k][i])

syrk(a[k][i], a[i][i], ts, ts);

}

}

} OpenMP 4.0

void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task

trsm(a[k][k], a[k][i], ts, ts);

}

#pragma omp taskwait

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task

syrk(a[k][i], a[i][i], ts, ts);

}

#pragma omp taskwait

}

}

OpenMP 3.1

nt

nt

ts

ts

ts

ts

5
Advanced OpenMP

Motivation: Cholesky factorization
void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

#pragma omp task depend(inout: a[k][k])

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task depend(in: a[k][k])

depend(inout: a[k][i])

trsm(a[k][k], a[k][i], ts, ts);

}

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task depend(inout: a[j][i])

depend(in: a[k][i], a[k][j])

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task depend(inout: a[i][i])

depend(in: a[k][i])

syrk(a[k][i], a[i][i], ts, ts);

}

}

} OpenMP 4.0

void cholesky(int ts, int nt, double* a[nt][nt]) {

for (int k = 0; k < nt; k++) {

// Diagonal Block factorization

potrf(a[k][k], ts, ts);

// Triangular systems

for (int i = k + 1; i < nt; i++) {

#pragma omp task

trsm(a[k][k], a[k][i], ts, ts);

}

#pragma omp taskwait

// Update trailing matrix

for (int i = k + 1; i < nt; i++) {

for (int j = k + 1; j < i; j++) {

#pragma omp task

dgemm(a[k][i], a[k][j], a[j][i], ts, ts);

}

#pragma omp task

syrk(a[k][i], a[i][i], ts, ts);

}

#pragma omp taskwait

}

}

OpenMP 3.1

nt

nt

ts

ts

ts

ts

Using 2017 Intel compiler

6
Advanced OpenMP

What’s in the spec

7
Advanced OpenMP

What’s in the spec: a bit of history

• The depend clause was added to the

target constructs

• Support to doacross loops

OpenMP 4.5

• The depend clause was added

to the task construct

OpenMP 4.0

• lvalue expressions in the depend clause

• New dependency type: mutexinoutset

• Iterators were added to the depend clause

• The depend clause was added to the taskwait construct

• Dependable objects

OpenMP 5.0

8
Advanced OpenMP

depend([depend-modifier,] dependency-type: list-items)

where:

→ depend-modifier is used to define iterators

→ dependency-type may be: in, out, inout, mutexinoutset and depobj

→ A list-item may be:

• C/C++: A lvalue expr or an array section depend(in: x, v[i], *p, w[10:10])

• Fortran: A variable or an array section depend(in: x, v(i), w(10:20))

What’s in the spec: syntax depend clause

9
Advanced OpenMP

◼ A task cannot be executed until all its predecessor tasks are completed

◼ If a task defines an in dependence over a list-item

→ the task will depend on all previously generated sibling tasks that reference that list-item in an out or

inout dependence

◼ If a task defines an out/inout dependence over list-item

→ the task will depend on all previously generated sibling tasks that reference that list-item in an in, out or

inout dependence

What’s in the spec: sema depend clause (1)

10
Advanced OpenMP

◼ A task cannot be executed until all its predecessor tasks are completed

◼ If a task defines an in dependence over a variable

→ the task will depend on all previously generated sibling tasks that reference at least one of the list items in

an out or inout dependence

◼ If a task defines an out/inout dependence over a variable

→ the task will depend on all previously generated sibling tasks that reference at least one of the list items in

an in, out or inout dependence

What’s in the spec: depend clause (1)

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: x) //T1

{ ... }

#pragma omp task depend(in: x) //T2

{ ... }

#pragma omp task depend(in: x) //T3

{ ... }

#pragma omp task depend(inout: x) //T4

{ ... }

}

T1

T2 T3

T4

11
Advanced OpenMP

◼ New dependency type: mutexinoutset

What’s in the spec: depend clause (2)

int x = 0, y = 0, res = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(out: res) //T0

res = 0;

#pragma omp task depend(out: x) //T1

long_computation(x);

#pragma omp task depend(out: y) //T2

short_computation(y);

#pragma omp task depend(in: x)

res += x;

#pragma omp task depend(in: y)

res += y;

#pragma omp task depend(in: res) //T5

std::cout << res << std::endl;

}

T3

T4

T5

T1 T2T0

depend(mutexinoutset: res) //T3depend(inout: res) //T3

depend(inout: res) //T4depend(mutexinoutset: res) //T4

T3

T4

1. inoutset property: tasks with a mutexinoutset

dependence create a cloud of tasks (an inout set) that

synchronizes with previous & posterior tasks that

dependent on the same list item

2. mutex property: Tasks inside the inout set can be

executed in any order but with mutual exclusion

12
Advanced OpenMP

What’s in the spec: depend clause (4)

◼ Task dependences are

defined among sibling tasks

//test1.cc

int x = 0;

#pragma omp parallel

#pragma omp single

{

#pragma omp task //T1

{

#pragma omp task depend(inout: x) //T1.1

x++;

#pragma omp taskwait

}

#pragma omp task depend(in: x) //T2

std::cout << x << std::endl;

}

depend(inout: x)

//test2.cc

int a[100] = {0};

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(inout: a[50:99]) //T1

compute(/* from */ &a[50], /*elems*/ 50);

#pragma omp task depend(in: a) //T2

print(/* from */ a, /* elem */ 100);

}

◼ List items used in the depend

clauses […] must indicate identical

or disjoint storage

T1

T2

???

13
Advanced OpenMP

What’s in the spec: depend clause (5)

◼ Iterators + deps: a way to define a dynamic number of dependences

std::list<int> list = ...;

int n = list.size();

#pragma omp parallel

#pragma omp single

{

for (int i = 0; i < n; ++i)

#pragma omp task depend(out: list[i]) //Px

compute_elem(list[i]);

#pragma omp task

print_elems(list);

}

depend(in: ???) //C

P1 PnP2 ...

C

???

depend(iterator(j=0:n), in : list[j]) //C

It seems innocent but it’s not:
depend(out: list.operator[](i))

Equivalent to:
depend(in: list[0], list[1], …, list[n-1])

14
Advanced OpenMP

Use case

15
Advanced OpenMP

void serial_gauss_seidel(int tsteps, int size, int (*p)[size]) {

for (int t = 0; t < tsteps; ++t) {

for (int i = 1; i < size-1; ++i) {

for (int j = 1; j < size-1; ++j) {

p[i][j] = 0.25 * (p[i][j-1] + // left

p[i][j+1] + // right

p[i-1][j] + // top

p[i+1][j]); // bottom

}

}

}

}

Use case: intro to Gauss-seidel

For a specific t, i and j

Access pattern analysis

tn

Each cell depends on:

- two cells (north & west) that are

computed in the current time step, and

- two cells (south & east) that were

computed in the previous time step

16
Advanced OpenMP

void serial_gauss_seidel(int tsteps, int size, int (*p)[size]) {

for (int t = 0; t < tsteps; ++t) {

for (int i = 1; i < size-1; ++i) {

for (int j = 1; j < size-1; ++j) {

p[i][j] = 0.25 * (p[i][j-1] + // left

p[i][j+1] + // right

p[i-1][j] + // top

p[i+1][j]); // bottom

}

}

}

}

Use case: Gauss-seidel (2)

For an specific t

We can exploit the wavefront to

obtain parallelism!!

1st parallelization strategy

tn

17
Advanced OpenMP

Use case : Gauss-seidel (3)
void gauss_seidel(int tsteps, int size, int TS, int (*p)[size]) {

int NB = size / TS;

#pragma omp parallel

for (int t = 0; t < tsteps; ++t) {

// First NB diagonals

for (int diag = 0; diag < NB; ++diag) {

#pragma omp for

for (int d = 0; d <= diag; ++d) {

int ii = d;

int jj = diag – d;

for (int i = 1+ii*TS; i < ((ii+1)*TS); ++i)

for (int j = 1+jj*TS; i < ((jj+1)*TS); ++j)

p[i][j] = 0.25 * (p[i][j-1] + p[i][j+1] +

p[i-1][j] + p[i+1][j]);

}

}

// Lasts NB diagonals

for (int diag = NB-1; diag >= 0; --diag) {

// Similar code to the previous loop

}

}

}

18
Advanced OpenMP

void serial_gauss_seidel(int tsteps, int size, int (*p)[size]) {

for (int t = 0; t < tsteps; ++t) {

for (int i = 1; i < size-1; ++i) {

for (int j = 1; j < size-1; ++j) {

p[i][j] = 0.25 * (p[i][j-1] + // left

p[i][j+1] + // right

p[i-1][j] + // top

p[i+1][j]); // bottom

}

}

}

}

Use case : Gauss-seidel (4)

2nd parallelization strategy

multiple time iterations

We can exploit the wavefront

of multiple time steps to obtain MORE

parallelism!!

tn

tn+1

tn+2

tn+3

19
Advanced OpenMP

void gauss_seidel(int tsteps, int size, int TS, int (*p)[size]) {

int NB = size / TS;

#pragma omp parallel

#pragma omp single

for (int t = 0; t < tsteps; ++t)

for (int ii=1; ii < size-1; ii+=TS)

for (int jj=1; jj < size-1; jj+=TS) {

#pragma omp task depend(inout: p[ii:TS][jj:TS])

depend(in: p[ii-TS:TS][jj:TS], p[ii+TS:TS][jj:TS],

p[ii:TS][jj-TS:TS], p[ii:TS][jj+TS:TS])

{

for (int i=ii; i<(1+ii)*TS; ++i)

for (int j=jj; j<(1+jj)*TS; ++j)

p[i][j] = 0.25 * (p[i][j-1] + p[i][j+1] +

p[i-1][j] + p[i+1][j]);

}

}

}

Use case : Gauss-seidel (5)
inner matrix region

Q: Why do the input dependences
depend on the whole block rather

than just a column/row?

vs

20
Advanced OpenMP

void gauss_seidel(int tsteps, int size, int TS, int (*p)[size]) {

int NB = size / TS;

#pragma omp parallel

#pragma omp single

for (int t = 0; t < tsteps; ++t)

for (int ii=1; ii < size-1; ii+=TS)

for (int jj=1; jj < size-1; jj+=TS) {

#pragma omp task depend(inout: p[ii:TS][jj:TS])

depend(in: p[ii-TS:TS][jj:TS], p[ii+TS:TS][jj:TS],

p[ii:TS][jj-TS:TS], p[ii:TS][jj:TS])

{

for (int i=ii; i<(1+ii)*TS; ++i)

for (int j=jj; j<(1+jj)*TS; ++j)

p[i][j] = 0.25 * (p[i][j-1] + p[i][j+1] +

p[i-1][j] + p[i+1][j]);

}

}

}

Use case : Gauss-seidel (5)
inner matrix region

Q: Why do the input dependences
depend on the whole block rather

than just a column/row?

vs

1
Advanced OpenMP

Improving Tasking Performance:

Cutoff clauses and strategies

2
Advanced OpenMP

Example: Sudoku revisited

3
Advanced OpenMP

◼ This parallel algorithm finds all valid solutions

Parallel Brute-force Sudoku

◼ (1) Search an empty field

◼ (2) Try all numbers:

◼ (2 a) Check Sudoku

◼ If invalid: skip

◼ If valid: Go to next

field

◼ Wait for completion

first call contained in a
#pragma omp parallel

#pragma omp single

such that one tasks starts the
execution of the algorithm

#pragma omp task

needs to work on a new copy
of the Sudoku board

#pragma omp taskwait

wait for all child tasks

4
Advanced OpenMP

Performance Evaluation

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sp
ee

d
u

p

R
u

n
ti

m
e

[s
ec

]
fo

r
1

6
x1

6

#threads

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding

5
Advanced OpenMP

Performance Analysis

Duration: 0.16 sec

Duration: 0.047 sec

Event-based profiling provides a
good overview :

Every thread is executing ~1.3m tasks…

… in ~5.7 seconds.
=> average duration of a task is ~4.4 μs

Tracing provides more details:

Duration: 0.001 sec

Duration: 2.2 μs

Tasks get much smaller
down the call-stack.

lvl 6

lvl 12

lvl 48

lvl 82

6
Advanced OpenMP

Performance Analysis

Duration: 0.16 sec

Duration: 0.047 sec

Event-based profiling provides a
good overview :

Every thread is executing ~1.3m tasks…

… in ~5.7 seconds.
=> average duration of a task is ~4.4 μs

Tracing provides more details:

Duration: 0.001 sec

Duration: 2.2 μs

Tasks get much smaller
down the call-stack.

lvl 6

lvl 12

lvl 48

lvl 82

If you have enough parallelism, stop creating more tasks!!
• if-clause, final-clause, mergeable-clause
• natively in your program code

7
Advanced OpenMP

Performance Evaluation (with cutoff)

0

2

4

6

8

10

12

14

16

18

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Sp
ee

d
u

p

R
u

n
ti

m
e

[s
ec

]
fo

r
1

6
x1

6

#threads

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding Intel C++ 13.1, scatter binding, cutoff

speedup: Intel C++ 13.1, scatter binding speedup: Intel C++ 13.1, scatter binding, cutoff

8
Advanced OpenMP

◼ Rule of thumb: the if(expression)clause as a “switch off” mechanism

→ Allows lightweight implementations of task creation and execution but it reduces the parallelism

◼ If the expression of the if clause evaluates to false

→ the encountering task is suspended

→ the new task is executed immediately (task

dependences are respected!!)

→ the encountering task resumes its execution

once the new task is completed

→ This is known as undeferred task

◼ Even if the expression is false, data-sharing clauses are honored

The if clause

int foo(int x) {

printf(“entering foo function\n”);

int res = 0;

#pragma omp task shared(res) if(false)

{

res += x;

}

printf(“leaving foo function\n”);

}

Really useful to debug tasking applications!

9
Advanced OpenMP

◼ The final(expression) clause

→ Nested tasks / recursive applications

→ allows to avoid future task creation → reduces overhead but also reduces parallelism

◼ If the expression of the final clause evaluates to true

→ The new task is created and executed normally but in its context all tasks will be executed immediately

by the same thread (included tasks)

◼ Data-sharing clauses are honored too!

The final clause

A

B C

C.1 C.2

e == false e == true A

…
Code_B;
Code_C;

code_c1;
code_c2;

...

#pragma omp task final(e)

{

#pragma omp task

{ … }

#pragma omp task

{ … #C.1; #C.2 … }

#pragma omp taskwait

}

10
Advanced OpenMP

◼ The mergeable clause

→ Optimization: get rid of “data-sharing clauses are honored”

→ This optimization can only be applied in undeferred or included tasks

◼ A Task that is annotated with the mergeable clause is called a mergeable task

→ A task that may be a merged task if it is an undeferred task or an included task

◼ A merged task is:

→ A task for which the data environment (inclusive of ICVs) may be the same as that of

its generating task region

◼ A good implementation could execute a merged task without adding any OpenMP-

related overhead

The mergeable clause

Unfortunately, there are no OpenMP

commercial implementations taking
advantage of final neither mergeable =(

Advanced OpenMP1

Programming OpenMP

Christian Terboven

Michael Klemm

Vectorization with OpenMP SIMD

Advanced OpenMP3

Evolution of Intel Hardware

Images not intended to reflect actual die sizes

64-bit Intel®
Xeon®

processor

Intel® Xeon®
processor

5100 series

Intel® Xeon®
processor

5500 series

Intel® Xeon®
processor

5600 series

Intel® Xeon®
processor E5-
2600v3 series

Intel® Xeon®
Scalable

Processor

Frequency 3.6 GHz 3.0 GHz 3.2 GHz 3.3 GHz 2.3 GHz 2.5 GHz

Core(s) 1 2 4 6 18 28

Thread(s) 2 2 8 12 36 56

SIMD width
128

(2 clock)
128

(1 clock)
128

(1 clock)
128

(1 clock)
256

(1 clock)
512

(1 clock)

Advanced OpenMP4

◼ OpenMP already supports several levels of parallelism in today’s hardware

Levels of Parallelism

Cluster Group of computers
communicating through fast interconnect

Coprocessors/Accelerators Special compute devices
attached to the local node through special interconnect

Node Group of processors
communicating through shared memory

Socket Group of cores
communicating through shared cache

Core Group of functional units
communicating through registers

Hyper-Threads Group of thread contexts sharing functional units

Superscalar Group of instructions sharing functional units

Pipeline Sequence of instructions sharing functional units

Vector Single instruction using multiple functional units

Advanced OpenMP5

◼Width of SIMD registers has been growing in the past:

SIMD on Intel® Architecture

SSE

AVX

AVX-512

128 bit

256 bit

512 bit

2 x DP

4 x SP

4 x DP

8 x SP

8 x DP

16 x SP

Advanced OpenMP6

◼ SIMD instructions become more powerful

◼One example is the Intel® Xeon Phi™ Coprocessor

More Powerful SIMD Units

vaddpd dest, source1, source2

a7 a6 a5 a4 a3 a2 a1 a0

b7 b6 b5 b4 b3 b2 b1 b0

a7+b7 a6+b6 a5+b5 a4+b4 a3+b3 a2+b2 a1+b1 a0+b0

+

=

source1

source2

dest

512 bit

Advanced OpenMP7

◼ SIMD instructions become more powerful

◼One example is the Intel® Xeon Phi™ Coprocessor

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

b7 b6 b5 b4 b3 b2 b1 b0

a7*b7
+c7

a6*b6
+c6

a5*b5
+c5

a4 *b4
+c4

a3*b3
+c3

a2*b2
+c2

a1*b1
+c1

a0*b0
+c0

*

=

source1

source2

dest

c7 c6 c5 c4 c3 c2 c1 c0 source3

+

vfmadd213pd source1, source2, source3

Advanced OpenMP8

◼ SIMD instructions become more powerful

◼One example is the Intel® Xeon Phi™ Coprocessor

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

b7 b6 b5 b4 b3 b2 b1 b0

a7+b7 d6 a5+b5 d4 d3 a2+b2 d1 a0+b0

+

=

source1

source2

dest

1 0 1 0 0 1 0 1 mask

vaddpd dest{k1}, source2, source3

Advanced OpenMP9

◼ SIMD instructions become more powerful

◼One example is the Intel® Xeon Phi™ Coprocessor

More Powerful SIMD Units

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

source

a7 a4 a6 a5 a3 a0 a2 a1 “tmp”

a7 a4 a6 a5 a3 a0 a2 a1 dest

swizzle

move

vmovapd dest, source{dacb}

Advanced OpenMP10

◼ Compilers offer auto-vectorization as an optimization pass

→Usually part of the general loop optimization passes

→Code analysis detects code properties that inhibit SIMD vectorization

→Heuristics determine if SIMD execution might be beneficial

→If all goes well, the compiler will generate SIMD instructions

◼ Example: Intel® Composer XE

→-vec (automatically enabled with –O2)

→-qopt-report

Auto-vectorization

?

Advanced OpenMP11

◼ Data dependencies

◼Other potential reasons
→Alignment

→Function calls in loop block

→Complex control flow / conditional branches

→Loop not “countable”
→e.g., upper bound not a runtime constant

→Mixed data types

→Non-unit stride between elements

→Loop body too complex (register pressure)

→Vectorization seems inefficient

◼Many more … but less likely to occur

Why Auto-vectorizers Fail

Advanced OpenMP12

◼ Suppose two statements S1 and S2

◼ S2 depends on S1, iff S1 must execute before S2

→Control-flow dependence

→Data dependence

→Dependencies can be carried over between loop iterations

◼ Important flavors of data dependencies
FLOW ANTI

s1: a = 40 b = 40

b = 21 s1:a = b + 1

s2: c = a + 2 s2:b = 21

Data Dependencies

Advanced OpenMP13

◼ Dependencies may occur across loop iterations

→Loop-carried dependency

◼ The following code contains such a dependency:

◼ Some iterations of the loop have to

complete before the next iteration can run

→Simple trick: Can you reverse the loop w/o getting wrong results?

Loop-Carried Dependencies

void lcd_ex(float* a, float* b, size_t n, float c1, float c2)

{

size_t i;

for (i = 0; i < n; i++) {

a[i] = c1 * a[i + 17] + c2 * b[i];

}

}
Loop-carried dependency for a[i] and

a[i+17]; distance is 17.

Advanced OpenMP14

◼ Can we parallelize or vectorize the loop?

→Parallelization: no

(except for very specific loop schedules)

→Vectorization: yes

(iff vector length is shorter than any distance of any dependency)

Loop-carried Dependencies

0 1 2 3 17 18 19 20

void lcd_ex(float* a, float* b, size_t n, float c1, float c2) {
for (int i = 0; i < n; i++) {

a[i] = c1 * a[i + 17] + c2 * b[i];
} }

Thread 1 Thread 2

Advanced OpenMP15

◼ “Loop not Countable” plus “Assumed Dependencies”

Example: Loop not Countable

typedef struct {

float* data;

size_t size;

} vec_t;

void vec_eltwise_product(vec_t* a, vec_t* b, vec_t* c) {

size_t i;

for (i = 0; i < a->size; i++) {

c->data[i] = a->data[i] * b->data[i];

}

}

Advanced OpenMP16

◼ Support required vendor-specific extensions

→Programming models (e.g., Intel® Cilk Plus)

→Compiler pragmas (e.g., #pragma vector)

→Low-level constructs (e.g., _mm_add_pd())

#pragma omp parallel for

#pragma vector always

#pragma ivdep

for (int i = 0; i < N; i++) {

a[i] = b[i] + ...;

}

In a Time Before OpenMP 4.0

You need to trust
your compiler to do

the “right” thing.

Advanced OpenMP17

◼ Vectorize a loop nest

→Cut loop into chunks that fit a SIMD vector register

→No parallelization of the loop body

◼ Syntax (C/C++)
#pragma omp simd [clause[[,] clause],…]

for-loops

◼ Syntax (Fortran)
!$omp simd [clause[[,] clause],…]

do-loops

[!$omp end simd]

SIMD Loop Construct

Advanced OpenMP18

Example

float sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp simd reduction(+:sum)

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

vectorize

Advanced OpenMP19

◼ private(var-list):

Uninitialized vectors for variables in var-list

◼ firstprivate(var-list):

Initialized vectors for variables in var-list

◼ reduction(op:var-list):

Create private variables for var-list and apply reduction operator op at the end of the construct

Data Sharing Clauses

42x: ? ? ? ?

42x: 42 42 42 42

42x:12 5 8 17

Advanced OpenMP20

◼ safelen (length)

→Maximum number of iterations that can run concurrently without breaking a

dependence

→In practice, maximum vector length

◼ linear (list[:linear-step])

→The variable’s value is in relationship with the iteration number

→xi = xorig + i * linear-step

◼ aligned (list[:alignment])

→Specifies that the list items have a given alignment

→Default is alignment for the architecture

◼ collapse (n)

SIMD Loop Clauses

Advanced OpenMP21

◼ Parallelize and vectorize a loop nest

→Distribute a loop’s iteration space across a thread team

→Subdivide loop chunks to fit a SIMD vector register

◼ Syntax (C/C++)
#pragma omp for simd [clause[[,] clause],…]

for-loops

◼ Syntax (Fortran)
!$omp do simd [clause[[,] clause],…]

do-loops

[!$omp end do simd [nowait]]

SIMD Worksharing Construct

Advanced OpenMP22

Example

float sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp for simd reduction(+:sum)

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

parallelize

vectorize

Thread 0 Thread 1 Thread 2

Remainder Loop Peel Loop

Advanced OpenMP23

◼ You should choose chunk sizes that are multiples of the SIMD length

→ Remainder loops are not triggered

→ Likely better performance

◼ In the above example …

→ and AVX2, the code will only execute the remainder loop!

→ and SSE, the code will have one iteration in the SIMD loop plus one in the remainder loop!

Be Careful What You Wish For…

float sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp for simd reduction(+:sum) \

schedule(static, 5)

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

Advanced OpenMP24

◼ Chooses chunk sizes that are multiples of the SIMD length

→First and last chunk may be slightly different to fix alignment and to handle

loops that are not exact multiples of SIMD width

→Remainder loops are not triggered

→Likely better performance

OpenMP 4.5 Simplifies SIMD Chunks

float sprod(float *a, float *b, int n) {

float sum = 0.0f;

#pragma omp for simd reduction(+:sum) \

schedule(simd: static, 5)

for (int k=0; k<n; k++)

sum += a[k] * b[k];

return sum;

}

Advanced OpenMP25

SIMD Function Vectorization

float min(float a, float b) {

return a < b ? a : b;

}

float distsq(float x, float y) {

return (x - y) * (x - y);

}

void example() {

#pragma omp parallel for simd

for (i=0; i<N; i++) {

d[i] = min(distsq(a[i], b[i]), c[i]);

} }

Advanced OpenMP26

◼ Declare one or more functions to be compiled for calls from a SIMD-

parallel loop

◼ Syntax (C/C++):
#pragma omp declare simd [clause[[,] clause],…]

[#pragma omp declare simd [clause[[,] clause],…]]

[…]

function-definition-or-declaration

◼ Syntax (Fortran):

!$omp declare simd (proc-name-list)

SIMD Function Vectorization

Advanced OpenMP27

#pragma omp declare simd

float min(float a, float b) {

return a < b ? a : b;

}

#pragma omp declare simd

float distsq(float x, float y) {

return (x - y) * (x - y);

}

void example() {

#pragma omp parallel for simd

for (i=0; i<N; i++) {

d[i] = min(distsq(a[i], b[i]), c[i]);

} }

SIMD Function Vectorization

_ZGVZN16vv_min(%zmm0, %zmm1):

vminps %zmm1, %zmm0, %zmm0

ret

_ZGVZN16vv_distsq(%zmm0, %zmm1):

vsubps %zmm0, %zmm1, %zmm2

vmulps %zmm2, %zmm2, %zmm0

ret

vmovups (%r14,%r12,4), %zmm0

vmovups (%r13,%r12,4), %zmm1

call _ZGVZN16vv_distsq

vmovups (%rbx,%r12,4), %zmm1

call _ZGVZN16vv_min

Advanced OpenMP28

◼ simdlen (length)

→ generate function to support a given vector length

◼ uniform (argument-list)

→ argument has a constant value between the iterations of a given loop

◼ inbranch

→ function always called from inside an if statement

◼ notinbranch

→ function never called from inside an if statement

◼ linear (argument-list[:linear-step])

◼ aligned (argument-list[:alignment])

SIMD Function Vectorization

Advanced OpenMP29

inbranch & notinbranch

#pragma omp declare simd inbranch

float do_stuff(float x) {

/* do something */

return x * 2.0;

}

void example() {

#pragma omp simd

for (int i = 0; i < N; i++)

if (a[i] < 0.0)

b[i] = do_stuff(a[i]);

}

vec8 do_stuff_v(vec8 x, mask m) {

/* do something */

vmulpd x{m}, 2.0, tmp

return tmp;

}

for (int i = 0; i < N; i+=8) {

vcmp_lt &a[i], 0.0, mask

b[i] = do_stuff_v(&a[i], mask);

}

Advanced OpenMP30

M.Klemm, A.Duran, X.Tian, H.Saito, D.Caballero, and X.Martorell. Extending OpenMP with Vector Constructs for Modern

Multicore SIMD Architectures. In Proc. of the Intl. Workshop on OpenMP, pages 59-72, Rome, Italy, June 2012. LNCS 7312.

SIMD Constructs & Performance

3,66x

2,04x
2,13x

4,34x

1,47x

2,40x

0,00x

0,50x

1,00x

1,50x

2,00x

2,50x

3,00x

3,50x

4,00x

4,50x

5,00x

Mandelbrot Volume Rendering BlackScholes Fast Walsh Perlin Noise SGpp

re
la

ti
ve

 s
p

e
e

d
-u

p
(h

ig
h

e
r

is
 b

e
tt

e
r)

ICC auto-vec

ICC SIMD directive

Advanced OpenMP1

Programming OpenMP

Christian Terboven

Michael Klemm

Memory Access in OpenMP

Advanced OpenMP2

◼ Assume the following: you have learned that load imbalances can

severely impact performance and a dynamic loop schedule may

prevent this:

→What is the issue with the following code:

→How is A accessed? Does that affect performance?

Example: Loop Parallelization

double* A;

A = (double*) malloc(N * sizeof(double));

/* assume some initialization of A */

#pragma omp parallel for schedule(dynamic, 1)

for (int i = 0; i < N; i++) {

A[i] += 1.0;

}

Advanced OpenMP3

◼ False Sharing: Parallel accesses to the same cache line may have a significant performance

impact!

False Sharing

Caches are organized in lines of typically

64 bytes: integer array a[0-4] fits into

one cache line.

Whenever one element of a cache line

is updated, the whole cache line is

Invalidated.

Local copies of a cache line have to be

re-loaded from the main memory and

the computation may have to be

repeated.

Core

memory

Core

on-chip cache

Core Core

on-chip cacheon-chip cache

bus

1: A[0]+=1;2: A[1]+=1;
3: A[2]+=1;4: A[3]+=1;

A[0-7]

Advanced OpenMP4

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

How To Distribute The Data ?

Advanced OpenMP5

◼ Serial code: all array elements are allocated in the memory of the NUMA node closest to the

core executing the initializer thread (first touch)

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]

Advanced OpenMP6

◼ Important aspect on cc-NUMA systems

→If not optimal, longer memory access times and hotspots

◼ Placement comes from the Operating System

→This is therefore Operating System dependent

◼Windows, Linux and Solaris all use the “First Touch” placement policy

by default

→May be possible to override default (check the docs)

About Data Distribution

Advanced OpenMP7

◼ Serial code: all array elements are allocated in the memory of the NUMA node closest to the

core executing the initializer thread (first touch)

double* A;

A = (double*)

malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]

Advanced OpenMP8

◼ First Touch w/ parallel code: all array elements are allocated in the memory of the NUMA

node that contains the core that executes the

thread that initializes the partition

double* A;

A = (double*)

malloc(N * sizeof(double));

omp_set_num_threads(2);

#pragma omp parallel for

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

First Touch Memory Placement

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N/2] A[N/2] … A[N]

Advanced OpenMP9

◼ Stream example on 2 socket sytem with Xeon X5675 processors, 12

OpenMP threads:

Serial vs. Parallel Initialization

copy scale add triad

ser_init 18.8 GB/s 18.5 GB/s 18.1 GB/s 18.2 GB/s

par_init 41.3 GB/s 39.3 GB/s 40.3 GB/s 40.4 GB/s

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,N-1]

b[0,N-1]

c[0,N-1]

CPU 0

T1 T2 T3

T4 T5 T6

CPU 1

T7 T8 T9

T10 T11 T12

MEM

a[0,(N/2)-1]

b[0,(N/2)-1]

c[0,(N/2)-1]

ser_init:

par_init:

MEM

MEM

a[N/2,N-1]

b[N/2,N-1]

c[N/2,N-1]

Advanced OpenMP10

◼ Before you design a strategy for thread binding, you should have a basic

understanding of the system topology. Please use one of the following

options on a target machine:

→Intel MPI‘s cpuinfo tool

→ cpuinfo

→Delivers information about the number of sockets (= packages) and the mapping of processor

ids to cpu cores that the OS uses.

→hwlocs‘ hwloc-ls tool

→ hwloc-ls

→Displays a graphical representation of the system topology, separated into NUMA nodes, along

with the mapping of processor ids to cpu cores that the OS uses and additional info on caches.

Get Info on the System Topology

Advanced OpenMP11

◼ Selecting the „right“ binding strategy depends not only on the topology,

but also on application characteristics.

→Putting threads far apart, i.e., on different sockets

→May improve aggregated memory bandwidth available to application

→May improve the combined cache size available to your application

→May decrease performance of synchronization constructs

→Putting threads close together, i.e., on two adjacent cores that possibly share

some caches

→May improve performance of synchronization constructs

→May decrease the available memory bandwidth and cache size

Decide for Binding Strategy

Advanced OpenMP12

◼ Define OpenMP Places

→set of OpenMP threads running on one or more processors

→can be defined by the user, i.e. OMP_PLACES=cores

◼ Define a set of OpenMP Thread Affinity Policies

→SPREAD: spread OpenMP threads evenly among the places,

partition the place list

→CLOSE: pack OpenMP threads near master thread

→MASTER: collocate OpenMP thread with master thread

◼ Goals

→user has a way to specify where to execute OpenMP threads

→ locality between OpenMP threads / less false sharing / memory bandwidth

Places + Binding Policies (1/2)

Advanced OpenMP13

◼ Assume the following machine:

→ 2 sockets, 4 cores per socket, 4 hyper-threads per core

◼ Abstract names for OMP_PLACES:

→ threads: Each place corresponds to a single hardware thread on the target machine.

→ cores: Each place corresponds to a single core (having one or more hardware threads) on the target

machine.

→ sockets: Each place corresponds to a single socket (consisting of one or more cores) on the target

machine.

→ ll_caches: Each place corresponds to a set of cores that share the last level cache.

→ numa_domains: Each place corresponds to a set of cores for which their closest memory is: the

same memory; and at a similar distance from the cores.

Places

p0 p1 p2 p3 p4 p5 p6 p7

Advanced OpenMP14

◼ Example‘s Objective:

→separate cores for outer loop and near cores for inner loop

◼ Outer Parallel Region: proc_bind(spread) num_threads(4)
Inner Parallel Region: proc_bind(close) num_threads(4)

→spread creates partition, compact binds threads within respective partition
OMP_PLACES=(0,1,2,3), (4,5,6,7), ... = (0-3):8:4 = cores

#pragma omp parallel proc_bind(spread) num_threads(4)
#pragma omp parallel proc_bind(close) num_threads(4)

◼ Example

→initial

→spread 4

→close 4

Places + Binding Policies (2/2)

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

Advanced OpenMP15

◼ Assume the following machine:

→2 sockets, 4 cores per socket, 4 hyper-threads per core

◼ Parallel Region with two threads, one per socket

→OMP_PLACES=sockets

→#pragma omp parallel num_threads(2) proc_bind(spread)

More Examples (1/3)

p0 p1 p2 p3 p4 p5 p6 p7

Advanced OpenMP16

◼ Assume the following machine:

◼ Parallel Region with four threads, one per core, but only on the first

socket

→OMP_PLACES=cores

→#pragma omp parallel num_threads(4) proc_bind(close)

More Examples (2/3)

p0 p1 p2 p3 p4 p5 p6 p7

Advanced OpenMP17

◼ Spread a nested loop first across two sockets, then among the cores

within each socket, only one thread per core

→OMP_PLACES=cores

→#pragma omp parallel num_threads(2) proc_bind(spread)

→#pragma omp parallel num_threads(4) proc_bind(close)

More Examples (3/3)

Advanced OpenMP18

◼ 1: Query information about binding and a single place of
all places with ids 0 … omp_get_num_places():

◼ omp_proc_bind_t omp_get_proc_bind(): returns the thread affinity policy

(omp_proc_bind_false, true, master, …)

◼ int omp_get_num_places(): returns the number of places

◼ int omp_get_place_num_procs(int place_num): returns the number of

processors in the given place

◼ void omp_get_place_proc_ids(int place_num, int* ids): returns the

ids of the processors in the given place

Places API (1/2)

Advanced OpenMP19

◼ 2: Query information about the place partition:

◼ int omp_get_place_num(): returns the place number of the place to which the

current thread is bound

◼ int omp_get_partition_num_places(): returns the number of places in the

current partition

◼ void omp_get_partition_place_nums(int* pns): returns the list of place

numbers corresponding to the places in the current partition

Places API (2/2)

Advanced OpenMP20

◼ Simple routine printing the processor ids of the place the calling thread

is bound to:

Places API: Example

void print_binding_info() {

int my_place = omp_get_place_num();

int place_num_procs = omp_get_place_num_procs(my_place);

printf("Place consists of %d processors: ", place_num_procs);

int *place_processors = malloc(sizeof(int) * place_num_procs);

omp_get_place_proc_ids(my_place, place_processors)

for (int i = 0; i < place_num_procs - 1; i++) {

printf("%d ", place_processors[i]);

}

printf("\n");

free(place_processors);

}

Advanced OpenMP21

◼ Set OMP_DISPLAY_AFFINITY=TRUE

→Instructs the runtime to display formatted affinity information

→Example output for two threads on two physical cores:

→Output can be formatted with OMP_AFFINITY_FORMAT env var or

corresponding routine

→Formatted affinity information can be printed with

omp_display_affinity(const char* format)

OpenMP 5.0 way to do this

nesting_level= 1, thread_num= 0, thread_affinity= 0,1

nesting_level= 1, thread_num= 1, thread_affinity= 2,3

Advanced OpenMP22

◼ Example:

→Possible output:

Affinity format specification

t omp_get_team_num()

T omp_get_num_teams()

L omp_get_level()

n omp_get_thread_num()

N omp_get_num_threads()

a omp_get_ancestor_thread_num() at level-1

H hostname

P process identifier

i native thread identifier

A thread affinity: list of processors (cores)

OMP_AFFINITY_FORMAT=“Affinity: %0.3L %.8n %.15{A} %.12H“

Affinity: 001 0 0-1,16-17 host003

Affinity: 001 1 2-3,18-19 host003

Advanced OpenMP23

◼ Everything under control?

◼ In principle Yes, but only if

→threads can be bound explicitly,

→data can be placed well by first-touch, or can be migrated,

→you focus on a specific platform (= OS + arch) → no portability

◼What if the data access pattern changes over time?

◼What if you use more than one level of parallelism?

A first summary

Advanced OpenMP24

◼ First Touch: Modern operating systems (i.e., Linux >= 2.4) decide for a
physical location of a memory page during the first page fault, when
the page is first „touched“, and put it close to the CPU causing the
page fault.

◼ Explicit Migration: Selected regions of memory (pages) are moved
from one NUMA node to another via explicit OS syscall.

◼ Next Touch: Binding of pages to NUMA nodes is removed and pages
are migrated to the location of the next „touch“. Well-supported in
Solaris, expensive to implement in Linux.

◼ Automatic Migration: No support for this in current operating systems.

NUMA Strategies: Overview

Advanced OpenMP25

◼ Explicit NUMA-aware memory allocation:

→By carefully touching data by the thread which later uses it

→By changing the default memory allocation strategy

→Linux: numactl command

→Windows: VirtualAllocExNuma() (limited functionality)

→By explicit migration of memory pages

→Linux: move_pages()

→Windows: no option

◼ Example: using numactl to distribute pages round-robin:

→ numactl –interleave=all ./a.out

User Control of Memory Affinity

Advanced OpenMP26

Improving Tasking Performance:

Task Affinity

Advanced OpenMP27

◼ Techniques for process binding & thread pinning available

→OpenMP thread level: OMP_PLACES & OMP_PROC_BIND

→OS functionality: taskset -c

OpenMP Tasking:

◼ In general: Tasks may be executed by any thread in the team

→Missing task-to-data affinity may have detrimental effect on performance

OpenMP 5.0:

◼ affinity clause to express affinity to data

Motivation

Advanced OpenMP28

◼ New clause: #pragma omp task affinity (list)

→Hint to the runtime to execute task closely to physical data location

→Clear separation between dependencies and affinity

◼ Expectations:

→Improve data locality / reduce remote memory accesses

→Decrease runtime variability

◼ Still expect task stealing

→In particular, if a thread is under-utilized

affinity clause

Advanced OpenMP29

◼ Excerpt from task-parallel STREAM

→Loops have been blocked manually (see tmp_idx_start/end)

→Assumption: initialization and computation have same blocking and same affinity

Code Example

1 #pragma omp task \
2 shared(a, b, c, scalar) \
3 firstprivate(tmp_idx_start, tmp_idx_end) \
4 affinity(a[tmp_idx_start])
5 {
6 int i;
7 for(i = tmp_idx_start; i <= tmp_idx_end; i++)
8 a[i] = b[i] + scalar * c[i];
9 }

Advanced OpenMP30

Selected LLVM implementation details

Encounter task
region …

Task with
data

affinity?

Push to local
queue

Location
for data

reference in
map?

Identify NUMA
domain where
data is stored

Select thread
pinned to

NUMA domain

Save
{reference,

location} in map

Push task into
other threads

queue
end

Yes

No

Yes

No

A map is introduced to
store location information
of data that was previously
used

Jannis Klinkenberg, Philipp Samfass,
Christian Terboven, Alejandro Duran,
Michael Klemm, Xavier Teruel, Sergi
Mateo, Stephen L. Olivier, and Matthias
S. Müller. Assessing Task-to-Data Affinity
in the LLVM OpenMP Runtime.
Proceedings of the 14th International
Workshop on OpenMP, IWOMP 2018.
September 26-28, 2018, Barcelona,

Spain.

Advanced OpenMP31

Evaluation
Program runtime
Median of 10 runs

Distribution of single
task execution times

LIKWID: reduction of remote data volume from 69% to 13%

Speedup
of 4.3 X

Advanced OpenMP32

◼ Requirement for this feature: thread affinity enabled

◼ The affinity clause helps, if

→tasks access data heavily

→single task creator scenario, or task not created with data affinity

→high load imbalance among the tasks

◼ Different from thread binding: task stealing is absolutely allowed

Summary

Advanced OpenMP33

Managing Memory Spaces

Advanced OpenMP34

◼ Traditional DDR-based memory

◼ High-bandwidth memory

◼ Non-volatile memory

◼…

Different kinds of memory

Advanced OpenMP35

◼ Allocator := an OpenMP object that fulfills requests to allocate and

deallocate storage for program variables

◼OpenMP allocators are of type omp_allocator_handle_t

◼ Default allocator for Host

→via OMP_ALLOCATOR env. var. or corresponding API

◼OpenMP 5.0 supports a set of memory allocators

Memory Management

Advanced OpenMP36

◼ Selection of a certain kind of memory

OpenMP Allocators

Allocator name Storage selection intent

omp_default_mem_alloc use default storage

omp_large_cap_mem_alloc use storage with large capacity

omp_const_mem_alloc use storage optimized for read-only variables

omp_high_bw_mem_alloc use storage with high bandwidth

omp_low_lat_mem_alloc use storage with low latency

omp_cgroup_mem_alloc use storage close to all threads in the contention group
of the thread requesting the allocation

omp_pteam_mem_alloc use storage that is close to all threads in the same
parallel region of the thread requesting the allocation

omp_thread_local_mem_alloc use storage that is close to the thread requesting the
allocation

Advanced OpenMP37

◼ New clause on all constructs with data sharing clauses:

→ allocate([allocator:] list)

◼ Allocation:

→ omp_alloc(size_t size, omp_allocator_handle_t allocator)

◼ Deallocation:

→ omp_free(void *ptr, const omp_allocator_handle_t allocator)

→ allocator argument is optional

◼ allocate directive: standalone directive for allocation, or declaration of allocation

stmt.

Using OpenMP Allocators

Advanced OpenMP38

◼ Allocator traits control the behavior of the allocator

OpenMP Allocator Traits / 1

sync_hint contended, uncontended, serialized, private
default: contended

alignment positive integer value that is a power of two
default: 1 byte

access all, cgroup, pteam, thread
default: all

pool_size positive integer value

fallback default_mem_fb, null_fb, abort_fb, allocator_fb
default: default_mem_fb

fb_data an allocator handle

pinned true, false
default: false

partition environment, nearest, blocked, interleaved
default: environment

Advanced OpenMP39

◼ fallback: describes the behavior if the allocation cannot be fulfilled

→default_mem_fb: return system’s default memory

→Other options: null, abort, or use different allocator

◼ pinned: request pinned memory, i.e. for GPUs

OpenMP Allocator Traits / 2

Advanced OpenMP40

◼ partition: partitioning of allocated memory of physical storage

resources (think of NUMA)

→environment: use system’s default behavior

→nearest: most closest memory

→blocked: partitioning into approx. same size with at most one block per

storage resource

→interleaved: partitioning in a round-robin fashion across the storage

resources

OpenMP Allocator Traits / 3

Advanced OpenMP41

◼ Construction of allocators with traits via

→omp_allocator_handle_t omp_init_allocator(

omp_memspace_handle_t memspace,

int ntraits, const omp_alloctrait_t traits[]);

→Selection of memory space mandatory

→Empty traits set: use defaults

◼ Allocators have to be destroyed with *_destroy_*

◼ Custom allocator can be made default with
omp_set_default_allocator(omp_allocator_handle_t allocator)

OpenMP Allocator Traits / 4

Advanced OpenMP42

◼ Storage resources with explicit support in OpenMP:

→Exact selection of memory space is implementation-def.

→Pre-defined allocators available to work with these

OpenMP Memory Spaces

omp_default_mem_space System’s default memory resource

omp_large_cap_mem_space Storage with larg(er) capacity

omp_const_mem_space Storage optimized for variables with constant value

omp_high_bw_mem_space Storage with high bandwidth

omp_low_lat_mem_space Storage with low latency

Advanced OpenMP
1

Programming OpenMP

Christian Terboven

Michael Klemm

Cancellation

Advanced OpenMP
2

◼ Once started, parallel execution cannot be aborted in OpenMP 3.1

→Code regions must always run to completion

→ (or not start at all)

◼ Cancellation in OpenMP 4.0 provides a best-effort approach to

terminate OpenMP regions

→Best-effort: not guaranteed to trigger termination immediately

→Triggered “as soon as” possible

OpenMP 3.1 Parallel Abort

Advanced OpenMP
3

◼ Two constructs:

→Activate cancellation:
C/C++: #pragma omp cancel

Fortran: !$omp cancel

→Check for cancellation:
C/C++: #pragma omp cancellation point

Fortran: !$omp cancellation point

◼ Check for cancellation only a certain points

→Avoid unnecessary overheads

→Programmers need to reason about cancellation

→Cleanup code needs to be added manually

Cancellation Constructs

Advanced OpenMP
4

Cancellation Semantics

Thread A Thread B Thread C

p
a
ra

lle
l re

g
io

n

Advanced OpenMP
5

Cancellation Semantics

Thread A Thread B Thread C

p
a
ra

lle
l re

g
io

n

Advanced OpenMP
6

Cancellation Semantics

Thread A Thread B Thread C

p
a
ra

lle
l re

g
io

n

Advanced OpenMP
7

Cancellation Semantics

Thread A Thread B Thread C

p
a
ra

lle
l re

g
io

n

Advanced OpenMP
8

◼ Syntax:
#pragma omp cancel construct-type-clause [[,]if-clause]

!$omp cancel construct-type-clause [[,]if-clause]

◼ Clauses:
parallel

sections

for (C/C++)

do (Fortran)

taskgroup

if (scalar-expression)

◼ Semantics

→Requests cancellation of the inner-most OpenMP region of the type specified in

construct-type-clause

→ Lets the encountering thread/task proceed to the end of the canceled region

cancel Construct

Advanced OpenMP
9

◼ Syntax:
#pragma omp cancellation point construct-type-clause

!$omp cancellation point construct-type-clause

◼ Clauses:
parallel

sections

for (C/C++)

do (Fortran)

taskgroup

◼ Semantics

→ Introduces a user-defined cancellation point

→Pre-defined cancellation points:

→ implicit/explicit barriers regions

→ cancel regions

cancellation point Construct

Advanced OpenMP
10

◼ Cancellation only acts on tasks grouped by the taskgroup construct

→The encountering tasks jumps to the end of its task region

→Any executing task will run to completion

(or until they reach a cancellation point region)

→Any task that has not yet begun execution may be discarded

(and is considered completed)

◼ Tasks cancellation also occurs, if a parallel region is canceled.

→But not if cancellation affects a worksharing construct.

Cancellation of OpenMP Tasks

Advanced OpenMP
11

Task Cancellation Example

binary_tree_t* search_tree_parallel(binary_tree_t* tree, int value) {

binary_tree_t* found = NULL;

#pragma omp parallel shared(found,tree,value)

{

#pragma omp master

{

#pragma omp taskgroup

{

found = search_tree(tree, value);

}

}

}

return found;

}

Advanced OpenMP
12

Task Cancellation Example

binary_tree_t* search_tree(
binary_tree_t* tree, int value,
int level) {

binary_tree_t* found = NULL;

if (tree) {

if (tree->value == value) {

found = tree;

}

else {

#pragma omp task shared(found)

{

binary_tree_t* found_left;

found_left =
search_tree(tree->left, value);

if (found_left) {

#pragma omp atomic write

found = found_left;

#pragma omp cancel taskgroup

}

}

#pragma omp task shared(found)

{

binary_tree_t* found_right;

found_right =

search_tree(tree->right, value);

if (found_right) {

#pragma omp atomic write

found = found_right;

#pragma omp cancel taskgroup

}

}

#pragma omp taskwait

}

}

return found;

}

