
Igor Vorobtsov

Senior Technical Consulting Engineer

PRACE Workshop 8-10 June 2020

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Agenda

• 10:30 Introduction: Code modernization approach

• 11.00 Basic compiler optimizations

11.30 Lab exercises

• 13.00 Vectorization – part I

13.30 Lab exercises

• 14.00 Vectorization – part II

14.30 Lab exercises

• 15.00 Skylake optimizations

15.30 Lab exercises

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Overview

This is a unique hands-on workshop where you are going to learn techniques,
methods and solutions for code modernization.

▪ Where does the performance of my application lay?

– hardware features for Skylake, Intel compiler, optmization report

▪ What is the maximum speed-up achievable on the architecture I am using?

– Advisor profiling, roofline model

▪ Is my implementation matching the HPC objectives?

– Use optimized software on latest Intel hardware

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

What is code modernization?

– Leverage optimization tools and libraries

– Scalar, serial optimization

– Vectorization

– Thread parallelism

– Scale your application from multicore to many core

https://software.intel.com/en-us/articles/what-is-code-modernization

▪ The Code Modernization optimization framework takes a systematic
approach to application performance improvement.

▪ This framework takes an application though five optimization stages, each
stage iteratively improving the application performance.

https://software.intel.com/en-us/articles/what-is-code-modernization

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

CPU complexity

The clock frequency cannot increase indefinitely due to the power consumption

Increasing transistor count requires architectural changes which increasing the CPU performance:

▪ Instruction level parallelism (ILP)

– Pipeline

– Superscalarity

– Out of order engine

▪ Branch prediction and hardware prefetching

▪ Single instruction multiple data (SIMD)

▪ Simultaneous multi-threading (SMT)

▪ Memory hierarchy (Caches)

▪ Multi-core hardware

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Why SIMD vector parallelism?

The vectorization is crucial for
keeping perfomance

▪ 2000: SSE

▪ 2004: Multi-core chips

▪ 2011: AVX

▪ 2014: AVX+FMA

▪ 2017: AVX-512

Skylake:

24 cores, 32 DP FLOPs/cycle: two 8-
wide FMA -> 1613GFs

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

SIMD processing

Single instruction multiple data (SIMD) allows to execute the same operation on
multiple data elements using larger registers.

• Scalar mode

– one instruction produces one result

– E.g. vaddss, (vaddsd)

• Vector (SIMD) mode

– one instruction can produce multiple results

– E.g. vaddps, (vaddpd)

for (i=0; i<n; i++) z[i] = x[i] + y[i];

▪ SSE (128 Bits reg.):
-> 4 floats

▪ AVX (256 Bits reg.):
-> 8 floats

▪ AVX512 (512 Bits reg.):
-> 16 floats

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Processor Architecture Basics
Pipeline Execution

Characteristics of pipeline execution:
• Multiple instructions for the entire pipeline (one per stage)
• Efficient because all stages kept active at every point in time
• Execution time: ninstructions * ts

Instructions

F
e

tc
h

L
o

a
d

 o
r

S
to

re

D
e

co
d

e

E
x

e
cu

te

C
o

m
m

it

ts

65
4
32

1

MemoryRegisters

Problem:
• Reality check: What happens if ts

is not constant?

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Pipeline stalls:
• Caused by pipeline stages to take longer than a cycle
• Caused by dependencies: order has to be maintained
• Execution time: ninstructions * tavg with ts ≤ tavg ≤ tp

10

Processor Architecture Basics
Pipeline Stalls

Instructions

Memory

F
e

tc
h

L
o

a
d

 o
r

S
to

re

D
e

co
d

e

E
x

e
cu

te

C
o

m
m

it

tpts

65
4
32

1

1: mov $0x1, %rax

2: mov 0x1234, %rbx

3: add %rbx, %rax

4: …

5: …

6: …

Registers

Problem:
• Stalls slow down pipeline throughput

and put stages idle.

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Conditional execution causes pipeline stalls:
• Conditional branches/jumps require condition codes (CC)
• Those codes (flags) are set by previous instruction once committed
• Leave most of the pipeline idle

11

Processor Architecture Basics
Branch Prediction: Motivation

Instructions

Memory

F
e

tc
h

L
o

a
d

 o
r

S
to

re

D
e

co
d

e

E
x

e
cu

te

C
o

m
m

it65
4
32

1

1: test %rax, %rax

2: jne <6>

3: …

4: …

5: …

6: …

Registers

Sets/unsets CC’s
zero flag

Jumps if CC’s zero
flag is not set

CC

Problem:
• Large amount of instructions in

code can be conditional
branches/jumps!

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Branch prediction reduced pipeline stalls:
• Branch prediction unit (BPU) holds logic which determines likelihood of the branch being taken or not
• Branch target buffer (BTB) remembers branch targets (state of the BPU logic)
• Correct prediction: no latency; incorrect prediction: large latency
• Probability of correct branch prediction can be more than 90%!

12

Processor Architecture Basics
Branch Prediction

BPU

Instructions

Memory

F
e

tc
h

L
o

a
d

 o
r

S
to

re

D
e

co
d

e

E
x

e
cu

te

C
o

m
m

it65
4
32

1

1: test %rax, %rax

2: jne <6>

3: …

4: …

5: …

6: …

RegistersCCBTB

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Characteristics of a superscalar architecture:
• Improves throughput by covering latency (ports are independent)
• Ports can have different functionalities (floating point, integer, addressing, …)
• Requires multiple issue fetch & decode (here: 2 issue)
• Execution time: ninstructions * tavg / nports
Problem:
• More complex and prone in case of dependencies

 Solution: Out of Order Execution

13

Processor Architecture Basics
Superscalar

L
S

E
x

e

C
o

m

F
e

tc
h

/D
e

co
d

e

S
ch

e
d

u
le L

S

E
x

e

C
o

m

P
o

rt
 0

P
o

rt
 1

Instructions

65
4
32

1

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Characteristics of out of order (OOO) execution:
• Instruction queue (I-Queue) moves stalling instructions out of pipeline
• Reorder buffer (ROB) maintains correct order of committing instructions
• Reduces pipeline stalls, but not entirely!
• Speculative execution possible
• Opposite of OOO execution is in order execution

14

Processor Architecture Basics
Out of Order Execution

D
e

co
d

e

L
o

a
d

 o
r

S
to

re

D
is

p
a

tc
h

E
x

e
cu

te

R
e

o
rd

e
r

I-Queue

1: mov $0x1, %rax

2: mov $0x2, %rbx

3: add %rbx, %rax

4: add $0x0, $r8

5: add $0x1, $r9

6: add $0x2, $r10

F
e

tc
h

C
o

m
m

it

ROB

Instructions

65
4
32

1

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Cache:
• Small, some KiB
• Faster than main memory
• Cache hierarchy: L1, L2 & L3 (LLC)
• Reused data can remain in cache (here: 0x1234)
Problem:
• Maintain data coherency

 Cache coherency protocol (e.g. MESI)

15

Processor Architecture Basics
Cache

Instructions

Cache

F
e

tc
h

L
o

a
d

 o
r

S
to

re

D
e

co
d

e

E
x

e
cu

te

C
o

m
m

it65
4
32

1

1: mov $0x1, %rax

2: mov 0x1234, %rbx

3: mov 0x1234, %rcx

4: …

5: …

6: …

Registers

Memory

Cache-miss

0x12340x1234

Cache-hit

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Cache-hierarchy:
• For data and instructions
• Usually inclusive caches
• Races for resources
• Can improve access speed
• Cache-misses & cache-hits

Cache-line:
• Always full 64 byte block
• Minimal granularity of every load/store
• Modifications invalidate entire cache-line (dirty bit)

16

Processor Architecture Basics
Cache-Hierarchy & Cache-Line

L2 Cache

L3 Cache

I DL1 Caches

Memory
F

e
tc

h

L
o

a
d

 o
r

S
to

re

D
e

co
d

e

E
x

e
cu

te

C
o

m
m

it

0x1234
0x5678

Instructions

…

Instructions

Instructions

Instructions

1: mov 0x1234, %rbx

2: mov 0x5678, %rcx

3: mov %rcx, 0x1234

4: …

5: …

6: …
Instructions

65
4
32

1

0x1234

0x1234

0x5678

0x5678

0x1234
0x5678

0x1234

0x1234

Cache-miss

Cache-miss

Cache-miss

Cache-miss

Cache-miss

Cache-miss

Cache-miss

Cache-miss

Cache-miss

Cache-miss

Cache-miss

Cache-hit

65
4
32

1

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Critical questions

▪ What is the real bottleneck?

▪ What is the theoretical instruction throughput ?

▪ What is the impact of the memory transfer ?

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Memory system

Performance always depends on which is the slowest: processor or memory

▪ CPU performance doubles
every 18 months

▪ Access to RAM doubles every
120 months

▪ Loading data is very slow

▪ Intermediate fast memory
layers improves performancesource: Hennessy and Patterson. Computer Architecture:

A Quantitative Approach (2006)

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Basic performance considerations

Let’s calculate some performance numbers:

▪ Intel® Xeon E5-2630 v4 : 10 cores at 2.2 GHz in a 2 sockets

Theoretical peak performance: (2.2 x 10 cores x 16 DP Flops/cycle x 2 sockets) = 704 GF/s
704 x 8 bytes = 5.6 TB/s

Theoretical memory bandwidth: 68.3 GB/s

The peak throughput is: 82 FP / memory access !!!

▪ > 82 FP / mem is a compute bound application

▪ < 82 FP / mem is a bandwidth bound application

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Tuning for the Intel® Xeon® Scalable processor

All the new features requires good use of the available resources

▪ Core

– Vectorization is critical with 512bit FMA vector units (32 DP ops/cycle)

– Targeting the current ISA is fundamental to fully exploit vectorization

▪ Socket

‒ Using all cores in a processor requires parallelization (MPI, OMP, …)

‒ Up to 28 Physical cores and 56 logical processors per socket!

▪ Node

‒ Minimize remote memory access (extra Intel® UPI hops)

‒ Minimize resource sharing (tune local memory access, disk IO and network traffic)

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Tuning Workflow

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

Code Modernization

Stage 1: Use Optimized Libraries

Stage 2: Compile with Architecture-specific
Optimizations

Stage 3: Analysis and Tuning

Stage 4: Check Correctness

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

Resources for Lab exercises

RRZE Meggie cluster - cshpc.rrze.fau.de

Intel DevCloud - http://devcloud.intel.com/

Source files for exercises:

https://github.com/fbaru-dev/nbody-demo.git

https://github.com/fbaru-dev/hpc-workshop.git

https://github.com/ivorobts/compiler-optimization.git

http://devcloud.intel.com/
https://github.com/fbaru-dev/nbody-demo.git
https://github.com/fbaru-dev/hpc-workshop.git
https://github.com/ivorobts/compiler-optimization.git

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

24

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of
Intel Corporation or its subsidiaries in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

Jump on DevCloud

$ ssh devcloud

...login to the devcloud...

$ pbsnodes -l free

...list of free nodes...

$ pbsnodes s001-145

...information about node s001-145...

$ pbsnodes | more

...lots more detail...

$ pbsnodes | grep properties

...useful properties list...

$ pbsnodes | grep fpga

...useful fpga oriented list...

http://devcloud.intel.com/

http://devcloud.intel.com/

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Hello qsub

$ mkdir mytst

$ cd mytst

$ cat - > myhello.sh

echo "HELLO, WORLD!"

^D

$ qsub myhello.sh

$ qstat

Job ID Name ...

------ ----------

3463 myhello.sh ...

$ qstat

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

$ ls -l

total 8

-rw-r--r-- 1 u27938 u27938 21 Oct 14 22:58 myhello.sh

-rw------- 1 u27938 u27938 0 Oct 14 22:58 myhello.sh.e3463

-rw------- 1 u27938 u27938 603 Oct 14 22:58 myhello.sh.o3463

$ cat myhello.sh.o3463

##
Date:

Job ID:

User:

Mon Oct 14 22:58:58 PDT 2019

3463.v-qsvr-nda.aidevcloud

u27938

Resources: neednodes=1:ppn=2,nodes=1:ppn=2,walltime=06:00:00

##

HELLO, WORLD!

##

End of output for job 3463.v-qsvr-nda.aidevcloud

Date: Mon Oct 14 22:58:59 PDT 2019

##

Hello qsub

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

...use a particular node...

$ qsub -lnodes=s001-n155:ppn=2

...use a node based on a property...

$ qsub -lnodes=1:ppn=2:fpga_compile

$ qsub -lnodes=1:ppn=2:gpu

$ qsub -lnodes=1:ppn=2:skl

$ qsub -lnodes=1:ppn=2:cfl

Hello qsub

