

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Compress Loop Pattern
Auto-vectorization

int compress(double *a, double * __restrict b, int na)

{

int nb = 0;

for (int ia=0; ia <na; ia++)

{

if (a[ia] > 0.)

b[nb++] = a[ia];

}

return nb;

}

https://godbolt.org/z/x7gNfb

VCOMPRESSPD|PS|
D|Q

Store sparse packed floating-point
values into dense memory

VEXPANDPD|PS|D|Q
Load sparse packed floating-point
values from dense memory

double/single-precision/doubleword/quadword

vcompresspd YMMWORD PTR [rsi+rax*8]{k1}, ymm1

https://godbolt.org/z/x7gNfb

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Compress Loop Pattern
Auto-vectorization

Targeting Intel® AVX-512

-xcore-avx512 -qopt-report-file=stderr -qopt-report-phase=vec

LOOP BEGIN

remark #15300: LOOP WAS VECTORIZED

LOOP END

Targeting Intel® AVX2

-xcore-avx2 -qopt-report-file=stderr -qopt-report-phase=vec

LOOP BEGIN

remark #15344: loop was not vectorized: vector dependence prevents vectorization.

remark #15346: vector dependence: assumed FLOW dependence between b[nb] (7:4) and a[ia] (7:4)

LOOP END

Key Take Aways
Compress/Expand loop pattern doesn’t vectorize on architectures like

Intel® AVX2 and the previous ones and does with Intel® AVX-512

https://godbolt.org/z/x7gNfb

https://godbolt.org/z/x7gNfb

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Let’s try:
• Replace -xcore-avx512 with -xcascadelake
• Set -qopt-report=3 and check more detailed opt report
• Use -qopt-zmm-usage=high to target ZMM vector
• Remove __restrict
• gcc with -mcascadelake

4

Compress Loop Pattern
Auto-vectorization

https://godbolt.org/z/x7gNfb

https://godbolt.org/z/x7gNfb

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Compress Loop Pattern
Complex example

int compress(int n1, int n2, float a[][n2], float b[__restrict])

{

int nb = 0;

for (int i1 = 0; i1 < n1; i1++)

{

float sc = 0.f;

for (int i2 = 0; i2 < n2; i2++)

sc += a[i1][i2];

if (sc > 0.f)

b[nb++] = sc;

}

return nb;

}

https://godbolt.org/z/0kd2mT

https://godbolt.org/z/0kd2mT

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Compress Loop Pattern
Complex example

remark #15541: outer loop was not auto-vectorized: consider using SIMD directive

Key Take Aways
1. Outer loop vectorization can be achieved using OpenMP SIMD pragma.
2. The Compress/Expand loop pattern can hinted to compiler using monotonic clause.
3. The ordered clause takes into account the nb dependency (if omitted, wrong results)

#pragma omp simd

for (int i1 = 0; i1 < n1; i1++)

{

float sc = 0.f;

for (int i2 = 0; i2 < n2; i2++)

sc += a[i1][i2];

#pragma omp ordered simd monotonic(nb:1)

if (sc > 0.f)

b[nb++] = sc;

}

https://godbolt.org/z/0kd2mT

https://godbolt.org/z/0kd2mT

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Compress Loop Pattern
Complex example

Let’s try:
• Add simdlen(16) to control ZMM registers usage
• Remove simd monotonic clause for the nested loop
• Remove all simd pragmas

https://godbolt.org/z/0kd2mT

https://godbolt.org/z/0kd2mT

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Compress Loop Performance

Compiler Options
Speedup (in

C)
Speedup (in
FORTRAN)

Simple Loops (–O2 –xCORE-AVX2) 1.0x 1.0x

(-O2 –xCORE-AVX512) 12.8x 12.2x

Nested Loops (-O2 –xCORE-AVX512) 1.0x 1.0x

Ordered (-O2 –xCORE-AVX2 –qopenmp-simd) 1.8x

Monotonic (-O2 –xCORE-AVX512 –qopenmp-
simd)

7.3x

Key Take Aways
1. Ordered clause will serialize the execution of the compress logic
2. Monotonic clause hints the compiler on the specific loop pattern and helps

code generation in picking vcompress/vexpand vector instruction which
leads to better performance.

Performance tests are measured
using specific computer systems,
components, software, operations
and functions. Any change to any of
those factors may cause the results
to vary.
The results above were obtained on
an Intel® Xeon® Platinum 8168
system, frequency 2.7 GHz, running
Red Hat* Enterprise Linux* Server
7.2 and using the Intel® Fortran
Compiler version 18.0 update 1.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,
and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User
and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice Revision #20110804.

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Store to h is a scatter

ih can have the same value for different values of i

Vectorization with a SIMD directive would cause incorrect results

for (i=0; i<n; i++)

{

y = sinf(x[i]*twopi);

ih = floor((y-bot)*invbinw);

ih = ih > 0 ? ih : 0;

ih = ih < nbin ? ih : nbin;

h[ih] = h[ih] + 1;

}

VPCONFLICT instruction detects
elements with previous conflicts in a
vector of indexes
• Allows to generate a mask with a

subset of elements that are
gurarnteed to be conflict free

vpconflictd zmm1{k1}, zmm2

Histogram Loop pattern
Auto-vectorization

https://godbolt.org/z/pqjYPM

https://godbolt.org/z/pqjYPM

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

https://godbolt.org/z/pqjYPM

10

Histogram Loop pattern
Auto-vectorization

Targeting Intel® AVX2

-xcore-avx2 -qopt-report-file=stderr -qopt-report-phase=vec -qopt-report=3

LOOP BEGIN

remark #15344: loop was not vectorized: vector dependence prevents vectorization.

remark #15346: vector dependence: assumed FLOW dependence between h[ih] (13:5) and h[ih] (13:5)

LOOP END Targeting Intel® AVX-512

-xcascadelake -qopt-report-file=stderr -qopt-report-phase=vec -qopt-report=3

LOOP BEGIN

remark #15300: LOOP WAS VECTORIZED

LOOP END

Key Take Aways
Histogram loop pattern doesn’t vectorize on architectures like

Intel® AVX2 and the previous ones and does with Intel® AVX512

https://godbolt.org/z/pqjYPM

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

for (int i=0; i<n; i++)

{

float y = myfun(x[i]);

int ih = floor((y-bot)*invbinw);

ih = ih >= 0 ? ih : 0;

ih = ih <= nbin-1 ? ih : nbin-1;

++contents[ih];

}

remark #15543: loop was not vectorized: loop with function call not considered an optimization candidate.

11

https://godbolt.org/z/7nc8aPHistogram Loop pattern
Complex example

https://godbolt.org/z/7nc8aP

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Can be vectorized with OpenMP* by:

• Making myfun() a SIMD function

• Using the OMP ORDERED SIMD
pragma/directive

• Add the OVERLAP hint to help compiler
vectorize more efficiently

Key Take Aways
1. Outer loop vectorization can be achieved using OpenMP SIMD pragma.
2. The Histogram loop pattern can hinted to compiler using overlap clause.
3. The ordered clause takes into account the nb dependency (if omitted, wrong results)

#pragma omp declare simd

float myfun(float x);

#pragma omp simd

for (int i=0; i<n; i++)

{

float y = myfun(x[i]);

int ih = floor((y-bot)*invbinw);

ih = ih >= 0 ? ih : 0;

ih = ih <= nbin-1 ? ih : nbin-1;

#pragma omp ordered simd overlap(ih)

++contents[ih];

}

https://godbolt.org/z/7nc8aPHistogram Loop pattern
Complex example

https://godbolt.org/z/7nc8aP

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Let’s try:
• Remove overlap clause
• Remove omp ordered pragma
• Use -qopt-zmm-usage=high to target ZMM vector
• Check optimization report carefully. Any calls to action?
• Replace function declaration with implementation

• add __attribute__((noinline))
• anything new in the opt report?

https://godbolt.org/z/uR-eB8

13

Histogram Loop pattern
Complex example

https://godbolt.org/z/uR-eB8

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Key Take Aways
1. Outer loop vectorization can be achieved using OpenMP SIMD pragma.
2. The Histogram loop pattern can hinted to compiler using overlap clause.
3. The ordered clause takes into account the nb dependency (if omitted, wrong results)

#pragma omp declare simd

float myfun(float x) {

float twopi=2.f*acosf(-1.f);

float y = sinf(x*twopi);

return y;

}

14

Histogram Loop pattern
vecabi compiler option

Compiler creates both vector and scalar versions

Use -vecabi=cmdtarget to target instruction set specified by –x switch

Else ABI requires arguments to be passed using xmm registers (Intel® SSE)

Linear(ref) clause avoids “gather” of vector of addresses

▪ Needed because Fortran default is pass by reference, not value

https://godbolt.org/z/uR-eB8

https://godbolt.org/z/uR-eB8

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Histogram Performance

15

Version of the program Performance in seconds

Intel® AVX2 (non-vectorized) 59 seconds

Intel® AVX512 (vectorized) 6.6 seconds (~9x speedup)

Key Take Aways
Speedup really depends on the data set being histogramed. Lesser the
conflict within the SIMD register, more is the speedup.

Performance tests are measured
using specific computer systems,
components, software, operations
and functions. Any change to any of
those factors may cause the results
to vary.
The results above were obtained on
an Intel® Xeon® Platinum 8168
system, frequency 2.7 GHz, running
Red Hat* Enterprise Linux* Server
7.2 and using the Intel® Fortran
Compiler version 18.0 update 1.Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3,

and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User
and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice Revision #20110804.

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Intel® AVX-512 generation for SKX

▪ Compile with processor-specific option [-/Q]xCORE-AVX512

▪ By default it will not optimize for more restrained ZMM register usage which
works best for certain applications

A new compiler option [-q/Q]opt-zmm-usage=low|high is added to enable a
smooth transition from AVX2 to AVX-512

void foo(double *a, double *b, int size) {

#pragma omp simd

for(int i=0; i<size; i++) {

b[i]=exp(a[i]);

}

}

icpc -c -xCORE-AVX512 -qopenmp -qopt-report:5 foo.cpp

remark #15305: vectorization support: vector length 4

…

remark #15321: Compiler has chosen to target XMM/YMM

vector. Try using -qopt-zmm-usage=high to override

…

remark #15478: estimated potential speedup: 5.260

https://tinyurl.com/tunesimd

https://tinyurl.com/tunesimd

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Lab exercises

• 2 options:

• Check generated ASM and opt report using Godbolt links

Complete “let’s try” tasks

• Try full version of examples from github on Intel DevCloud

git clone https://github.com/fbaru-dev/hpc-workshop.git

https://github.com/fbaru-dev/hpc-workshop.git

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Exercise 1 – skx_512

You should observe the difference between the two cases and look at the
assembly code

▪ Go to the folder skylake-avx512/compress/01

▪ Type make to compile the default case with AVX2. The compiler report is
generated and you can read/interpret it. It does not vectorize the compress
loop.

▪ Type make run to run the test and measure the timing.

▪ Type make AVX512=yes to compile for the AVX512, observe the change in
the compiler report, run the test with make run and measure the timing.

▪ Generate the assembly code with make AVX512 asm.

NB: Set ulimit –s unlimited before run

git clone https://github.com/fbaru-dev/hpc-workshop.git

https://github.com/fbaru-dev/hpc-workshop.git

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Exercise 2 – skx_512

You should observe the difference between the two cases

▪ Go to the folder skylake-avx512/compress/02

▪ Type make AVX512=yes to compile the default case with AVX512. The
compiler report is generated and you can read/interpret it. It vectorizes the
inner loop.

▪ Type make run to run the test and measure the timing.

▪ Type make AVX512=yes SIMD=yes to compile with openmp simd enabled,
observe the change in the compiler report, run the test with make run and
measure the timing.

NB: Set ulimit –s unlimited before run

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Exercise 3 – skx_512

You should observe the difference between the two cases and look at the
assembly code

▪ Go to the folder skylake-avx512/histo/01

▪ Type make to compile the default case with AVX2. The compiler report is
generated and you can read/interpret it. It does not vectorize the histogram
patetrn loop.

▪ Type make run to run the test and measure the timing.

▪ Type make AVX512=yes to compile for the AVX512, observe the change in
the compiler report, run the test with make run and measure the timing.

▪ Generate the assembly code with make AVX512 asm.

NB: Set ulimit –s unlimited before run

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Exercise 4 – skx_512

You should observe the difference between the two cases and look at the simd
vectorized code

▪ Go to the folder skylake-avx512/histo/02

▪ Type make to compile the default case with AVX512. The compiler report is
generated and you can read/interpret it. It does not vectorize the histogram
pattern loop.

▪ Type make run to run the test and measure the timing.

▪ Type make SIMD=yes to compile the SIMD version, observe the change in
the compiler report, run the test with make run and measure the timing.

NB: Set ulimit –s unlimited before run

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

Legal Disclaimers and Optimization Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR
A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility
applications.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

All products, platforms, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark
Limitations.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See www.intel.com/products/processor_number for details.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. § For more
information go to www.intel.com/benchmarks.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804.

The Intel Core and Itanium processor families may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

The benchmark results reported may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and workloads utilized in the testing, and may not be applicable to any particular user’s components, computer system or workloads.
The results are not necessarily representative of other benchmarks and other benchmark results may show greater or lesser impact from mitigations.

The code names Arrandale, Bloomfield, Boazman, Boulder Creek, Calpella, Chief River, Clarkdale, Cliffside, Cougar Point, Gulftown, Huron River, Ivy Bridge, Kilmer Peak, King’s Creek, Lewisville, Lynnfield, Maho Bay, Montevina, Montevina Plus, Nehalem, Penryn, Puma Peak, Rainbow
Peak, Sandy Bridge, Sugar Bay, Tylersburg, and Westmere presented in this document are only for use by Intel to identify a product, technology, or service in development, that has not been made commercially available to the public, i.e., announced, launched or shipped. It is not a
"commercial" name for products or services and is not intended to function as a trademark.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

Intel, Intel Core, Core Inside, Itanium, and the Intel Logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Intel collects and uses personal information from employees as part of SES, including capturing audio recording of sessions (both presenters and audience QA) as well as photographs and video recording of various event activities during the event. By registering and attending the SES
conference, you give your consent for this capture. This includes both speakers and attendees. Intel will not retain your personal information longer than is necessary for the purposes for which it is collected.

http://www.intel.com/benchmarks

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product

