

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Agenda

▪ Introduction

– Why Is Vectorization Important?

– Basic Vectorization Terms

– Evolution of SIMD for Intel® Processors

▪ Auto-vectorization of Intel® Compilers

▪ Reasons for Vectorization Failures and Inefficiency

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Single Instruction Multiple Data (SIMD)

SIMD from Intel has been key for data level parallelism for years:

▪ 128 bit Intel® Streaming SIMD Extensions (Intel® SSE, SSE2, SSE3, SSE4.1, SSE4.2) and
Supplemental Streaming SIMD Extensions (SSSE3)

▪ 256 bit Intel® Advanced Vector Extensions (Intel® AVX)

▪ 512 bit Intel® Advanced Vector Extensions 512 (Intel® AVX-512)

Scalar
Processing

Vector
Processing

A B

C

+
Ci

+

Ai Bi

Ci

Ai Bi

Ci

Ai Bi

Ci

Ai Bi

VL

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

SIMD Types for Intel® Architecture

Illustrations: Xi, Yi & results 32 bit integer

AVX
Vector size: 256 bit
Data types:
8, 16, 32, 64 bit integer
32 and 64 bit float
VL: 4, 8, 16, 32

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

0
X8

Y8

X8◦Y8

X7

Y7

X7◦Y7

X6

Y6

X6◦Y6

X5

Y5

X5◦Y5

255

Intel® AVX-512
Vector size: 512 bit
Data types:
8, 16, 32, 64 bit integer
32 and 64 bit float
VL: 8, 16, 32, 64

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

0
X8

Y8

X8◦Y8

X7

Y7

X7◦Y7

X6

Y6

X6◦Y6

X5

Y5

X5◦Y5

X16

Y16

X16◦Y16

511

…

…

…

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

127 0 SSE
Vector size: 128 bit
Data types:
8, 16, 32, 64 bit
integer
32 and 64 bit float
VL: 2, 4, 8, 16

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Evolution of SIMD for Intel Processors

MMX MMX MMX MMX MMX MMX MMX MMX

SSE SSE SSE SSE SSE SSE SSE SSE

SSE2 SSE2 SSE2 SSE2 SSE2 SSE2 SSE2 SSE2

SSE3 SSE3 SSE3 SSE3 SSE3 SSE3 SSE3

Prescott
2004

SSSE3 SSSE3 SSSE3 SSSE3 SSSE3 SSSE3

SSE4.1 SSE4.1 SSE4.1 SSE4.1 SSE4.1

SSE4.2 SSE4.2 SSE4.2 SSE4.2

AVX AVX AVX

MMX

SSE

SSE2

SSE3

SSSE3

SSE4.1

SSE4.2

AVX

Merom
2006

Willamette
2000

Penryn
2007

AVX2 AVX2 AVX2

AVX-512
F/CD

AVX-512
F/CD

AVX-512
ER/PR

AVX-512
VL/BW/DQ

Nehalem
2007

Sandy Bridge
2011

Haswell
2013

Knights
Landing

2015

Skylake
server
2015

128b
SIMD

256b
SIMD

512b
SIMD

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Intel® AVX and AVX-512 Registers

AVX-512 extends previous AVX and SSE registers to 512 bit:

ZMM0-31

512 bit

K0-7

64 bit

XMM0-15

128 bit

YMM0-15

256 bit3
2

 b
it

6
4

 b
it

OS support is required

AVX is a 256 bit vector extension to SSE:

256 bits (2010)

YMM

XMM

128 bits (1999)

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Agenda

▪ Introduction

▪ Auto-vectorization of Intel Compilers

– Basic Vectorization Switches

– Vectorization Hints

– Validating Vectorization Success

– Optimization Report

▪ Reasons for Vectorization Failures and Inefficiency

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Many Ways to Vectorize

Ease of useCompiler:
Auto-vectorization (no change of code)

Programmer control

Compiler:
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Compiler:
OpenMP* SIMD directives

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Auto-vectorization of Intel Compilers
void add(double *A, double *B, double *C)

{

for (int i = 0; i < 1000; i++)

C[i] = A[i] + B[i];

}

subroutine add(A, B, C)

real*8 A(1000), B(1000), C(1000)

do i = 1, 1000

C(i) = A(i) + B(i)

end do

end

.B2.14:

movups xmm1, XMMWORD PTR [edx+ebx*8]

movups xmm3, XMMWORD PTR [16+edx+ebx*8]

movups xmm5, XMMWORD PTR [32+edx+ebx*8]

movups xmm7, XMMWORD PTR [48+edx+ebx*8]

movups xmm0, XMMWORD PTR [ecx+ebx*8]

movups xmm2, XMMWORD PTR [16+ecx+ebx*8]

movups xmm4, XMMWORD PTR [32+ecx+ebx*8]

movups xmm6, XMMWORD PTR [48+ecx+ebx*8]

addpd xmm1, xmm0

addpd xmm3, xmm2

addpd xmm5, xmm4

addpd xmm7, xmm6

movups XMMWORD PTR [eax+ebx*8], xmm1

movups XMMWORD PTR [16+eax+ebx*8], xmm3

movups XMMWORD PTR [32+eax+ebx*8], xmm5

movups XMMWORD PTR [48+eax+ebx*8], xmm7

add ebx, 8

cmp ebx, esi

jb .B2.14

...

Intel® SSE4.2
.B2.15

vmovupd ymm0, YMMWORD PTR [ebx+eax*8]

vmovupd ymm2, YMMWORD PTR [32+ebx+eax*8]

vmovupd ymm4, YMMWORD PTR [64+ebx+eax*8]

vmovupd ymm6, YMMWORD PTR [96+ebx+eax*8]

vaddpd ymm1, ymm0, YMMWORD PTR [edx+eax*8]

vaddpd ymm3, ymm2, YMMWORD PTR [32+edx+eax*8]

vaddpd ymm5, ymm4, YMMWORD PTR [64+edx+eax*8]

vaddpd ymm7, ymm6, YMMWORD PTR [96+edx+eax*8]

vmovupd YMMWORD PTR [esi+eax*8], ymm1

vmovupd YMMWORD PTR [32+esi+eax*8], ymm3

vmovupd YMMWORD PTR [64+esi+eax*8], ymm5

vmovupd YMMWORD PTR [96+esi+eax*8], ymm7

add eax, 16

cmp eax, ecx

jb .B2.15

Intel® AVX

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

Basic Vectorization Switches I

Linux*, macOS*: -x<code>, Windows*: /Qx<code>

▪ Might enable Intel processor specific optimizations

▪ Processor-check added to “main” routine:
Application errors in case SIMD feature missing or non-Intel processor with
appropriate/informative message

<code> indicates a feature set that compiler may target (including instruction sets and
optimizations)

Microarchitecture code names: BROADWELL, HASWELL, IVYBRIDGE, KNL, KNM,
SANDYBRIDGE, SILVERMONT, SKYLAKE, SKYLAKE-AVX512

SIMD extensions: CORE-AVX512, CORE-AVX2, CORE-AVX-I, AVX, SSE4.2, etc.

Example: icc -xCORE-AVX2 test.c

ifort –xSKYLAKE test.f90

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

Basic Vectorization Switches II
Linux*, macOS*: -ax<code>, Windows*: /Qax<code>

▪ Multiple code paths: baseline and optimized/processor-specific

▪ Optimized code paths for Intel processors defined by <code>

▪ Multiple SIMD features/paths possible, e.g.: -axSSE2,AVX

▪ Baseline code path defaults to –msse2 (/arch:sse2)

▪ The baseline code path can be modified by –m<code> or –x<code> (/arch:<code> or
/Qx<code>)

▪ Example: icc -axCORE-AVX512 -xAVX test.c

icc -axCORE-AVX2,CORE-AVX512 test.c

Linux*, macOS*: -m<code>, Windows*: /arch:<code>

▪ No check and no specific optimizations for Intel processors:
Application optimized for both Intel and non-Intel processors for selected SIMD feature

▪ Missing check can cause application to fail in case extension not available

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Control Vectorization I

Disable vectorization:

▪ Globally via switch:
Linux*, macOS*: -no-vec, Windows*: /Qvec-

▪ For a single loop:
C/C++: #pragma novector, Fortran: !DIR$ NOVECTOR

▪ Compiler still can use some SIMD features

Using vectorization:

▪ Globally via switch (default for optimization level 2 and higher):
Linux*, macOS*: -vec, Windows*: /Qvec

▪ Vectorize even if compiler doesn’t expect a performance benefit:
C/C++: #pragma vector always, Fortran: !DIR$ VECTOR ALWAYS

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Control Vectorization II
Verify vectorization:

▪ Globally:
Linux*, macOS*: -qopt-report, Windows*: /Qopt-report

▪ Abort compilation if loop cannot be vectorized:
C/C++: #pragma vector always assert
Fortran: !DIR$ VECTOR ALWAYS ASSERT

Advanced:

▪ Ignore Vector DEPendencies (IVDEP):
C/C++: #pragma ivdep
Fortran: !DIR$ IVDEP

▪ “Enforce” vectorization:
C/C++: #pragma omp simd ...

Fortran:!$OMP SIMD ...

Developer is responsible to verify the correctness of the code
Enabled with option (default):
Linux*, macOS*: -qopenmp-simd
Windows*: /Qopenmp-simd

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

Validating Vectorization Success I

Optimization report:

▪ Linux*, macOS*: -qopt-report=<n>, Windows*: /Qopt-report:<n>
n: 0, …, 5 specifies level of detail; 2 is default (more later)

▪ Prints optimization report with vectorization analysis

Optimization report phase:

▪ Linux*, macOS*: -qopt-report-phase=<p>,
Windows*: /Qopt-report-phase:<p>

▪ <p> is all by default; use vec for just the vectorization report

Optimization report file:

▪ Linux*, macOS*: -opt-report-file=<f>, Windows*: /Qopt-report-file:<f>

▪ <f> can be stderr, stdout or a file (default: *.optrpt)

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Validating Vectorization Success II

Assembler code inspection (Linux*, macOS*: -S, Windows*: /Fa):

▪ Most reliable way and gives all details of course

▪ Check for scalar/packed or (E)VEX encoded instructions:
Assembler listing contains source line numbers for easier navigation

▪ Compiling with -qopt-report-embed (Linux*, macOS*) or /Qopt-report-embed
(Windows*) helps interpret assembly code

Intel® Advisor

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Optimization Report Example

Example novec.f90:

1: subroutine fd(y)

2: integer :: i

3: real, dimension(10), intent(inout) :: y

4: do i=2,10

5: y(i) = y(i-1) + 1

6: end do

7: end subroutine fd

$ ifort novec.f90 -c -qopt-report=5 -qopt-report-phase=vec

ifort: remark #10397: optimization reports are generated in *.optrpt files in the output location

$ cat novec.optrpt

…

Begin optimization report for: FD

Report from: Vector optimizations [vec]

LOOP BEGIN at novec.f90(4,3)

remark #15344: loop was not vectorized: vector dependence prevents vectorization

remark #15346: vector dependence: assumed FLOW dependence between y(i) (5:5) and y(i-1) (5:5)

LOOP END

…

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Agenda

▪ Introduction

▪ Auto-vectorization of Intel® Compilers

▪ Reasons for Vectorization Failures and Inefficiency

– Data Dependence

– Alignment

– Unsupported Loop Structure

– Non-Unit Stride Access

– Mathematical Functions

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Reasons for Vectorization Failures and Inefficiency

Most frequent reasons:

Data dependence

Alignment

Unsupported loop structure

Non-unit stride access

Function calls

Non-vectorizable mathematical functions

All those are common and will be explained in detail next!

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Data Dependency and vectorization

Example:
Despite cyclic dependency, the loop can be vectorized for SSE or AVX
in case of VL being max. 3 times the data type size of array A.

X = …

… = X

… = X

X = …

X = …

X = …

Anti DependencyFlow Dependency Output Dependency

read-after-write
RAW

write-after-read
WAR

write-after-write
WAW

DO I = 1, 10000

A(I) = B(I) * 17

X(I+1) = X(I) + A(I)

ENDDO

Loop-independent dependence

Loop-carried dependence

DO I = 1, N

A(I + 3) = A(I) + C

END DO

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Failing Disambiguation

Many potential dependencies detected by the compiler result from unresolved memory disambiguation:

The compiler has to be conservative and has to assume the worst case regarding “aliasing”!

Example:

Without additional information (like inter-procedural knowledge) the compiler has to assume a and b to be
aliased!

Use directives, switches and attributes to aid disambiguation!

This is programming language and operating system specific

Use with care as the compiler might generate incorrect code in case the hints are not fulfilled!

void scale(int *a, int *b)

{

for (int i = 0; i < 10000; i++) b[i] = z * a[i];

}

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

21

Disambiguation Hints I
Disambiguating memory locations of pointers in C99:
Linux*, macOS*: –std=c99, Windows*: /Qstd=c99

Intel® C++ Compiler also allows this for other modes
(e.g. -std=c89, -std=c++0x, …), too - not standardized, though:
Linux*, macOS*: -restrict, Windows*: /Qrestrict

Declaring pointers with keyword restrict asserts compiler that they only reference individually
assigned, non-overlapping memory areas

Also true for any result of pointer arithmetic (e.g. ptr + 1 or ptr[1])

Examples: void scale(int *a, int *restrict b)

{

for (int i = 0; i < 10000; i++) b[i] = z * a[i];

}

void mult(int a[][NUM], int b[restrict][NUM])

{ ... }

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

Disambiguation Hints II
Directive:

#pragma ivdep (C/C++) or !DIR$ IVDEP (Fortran)

For C/C++:

▪ Assume no aliasing at all (dangerous!):
Linux*, macOS*: -fno-alias, Windows*: /Oa

▪ Assume ISO C Standard aliasing rules:
Linux*, macOS*: -ansi-alias, Windows*: /Qansi-alias
Default on Linux, not on Windows

– Turns on ANSI aliasing checker

▪ No aliasing between function arguments:
Linux*, macOS*: -fargument-noalias, Windows*: /Qalias-args-

▪ No aliasing between function arguments and global storage:
Linux*, macOS*: -fargument-noalias-global, Windows*: N/A

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

Multiversioning for data dependence

Example test.cpp:

1: void add(double *A, double *B, double *C)

2: {

3: for (int i = 0; i < 1000; i++)

4: C[i] = A[i] + B[i];

5: }

$ icpc test.cpp -c -qopt-report=5 -qopt-report-phase=vec

icpc: remark #10397: optimization reports are generated in *.optrpt files in the output location

$ cat test.optrpt

...

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

Multiversioning for data dependence
LOOP BEGIN at test.cpp(3,2)

Multiversioned v1

test.cpp(4,3):remark #15388: vectorization support: reference C[i] has aligned access

test.cpp(4,3):remark #15389: vectorization support: reference A[i] has unaligned access

test.cpp(4,3):remark #15388: vectorization support: reference B[i] has aligned access

test.cpp(3,2):remark #15381: vectorization support: unaligned access used inside loop body

test.cpp(3,2):remark #15305: vectorization support: vector length 2

test.cpp(3,2):remark #15399: vectorization support: unroll factor set to 4

test.cpp(3,2):remark #15309: vectorization support: normalized vectorization overhead 0.607

test.cpp(3,2):remark #15300: LOOP WAS VECTORIZED

test.cpp(3,2):remark #15442: entire loop may be executed in remainder

test.cpp(3,2):remark #15448: unmasked aligned unit stride loads: 1

test.cpp(3,2):remark #15449: unmasked aligned unit stride stores: 1

test.cpp(3,2):remark #15450: unmasked unaligned unit stride loads: 1

test.cpp(3,2):remark #15475: --- begin vector cost summary ---

test.cpp(3,2):remark #15476: scalar cost: 8

test.cpp(3,2):remark #15477: vector cost: 3.500

test.cpp(3,2):remark #15478: estimated potential speedup: 2.250

test.cpp(3,2):remark #15488: --- end vector cost summary ---

LOOP END

...

LOOP BEGIN at test.cpp(3,2)

Multiversioned v2

test.cpp(3,2):remark #15304: loop was not vectorized: non-vectorizable loop instance from

multiversioning

LOOP END

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

Optimization Report – An Example
$ icc -c -xcommon-avx512 -qopt-report=3 -qopt-report-phase=loop,vec foo.c

Creates foo.optrpt summarizing which optimizations the compiler performed or tried to perform.
Level of detail from 0 (no report) to 5 (maximum).
-qopt-report-phase=loop,vec asks for a report on vectorization and loop optimizations only
Extracts:

LOOP BEGIN at foo.c(4,3)
Multiversioned v1

remark #25228: Loop multiversioned for Data Dependence…
remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 1
remark #15451: unmasked unaligned unit stride stores: 1
…. (loop cost summary) ….

LOOP END

LOOP BEGIN at foo.c(4,3)
<Multiversioned v2>

remark #15304: loop was not vectorized: non-vectorizable loop instance from multiversioning
LOOP END

#include <math.h>
void foo (float * theta, float * sth) {
int i;
for (i = 0; i < 512; i++)

sth[i] = sin(theta[i]+3.1415927);
}

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Optimization Report – An Example

$ icc -c -xcommon-avx512 -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias foo.c
…

LOOP BEGIN at foo.c(4,3)
…

remark #15417: vectorization support: number of FP up converts: single precision to double precision 1 [foo.c(5,17)]
remark #15418: vectorization support: number of FP down converts: double precision to single precision 1 [foo.c(5,8)]
remark #15300: LOOP WAS VECTORIZED
remark #15450: unmasked unaligned unit stride loads: 1
remark #15451: unmasked unaligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 111
remark #15477: vector cost: 10.310
remark #15478: estimated potential speedup: 10.740
remark #15482: vectorized math library calls: 1
remark #15487: type converts: 2
remark #15488: --- end vector cost summary ---
remark #25015: Estimate of max trip count of loop=32

LOOP END

#include <math.h>
void foo (float * theta, float * sth) {
int i;
for (i = 0; i < 512; i++)

sth[i] = sin(theta[i]+3.1415927);
}

report to stderr
instead of foo.optrpt

https://godbolt.org/z/aMtp9T

https://godbolt.org/z/aMtp9T

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

Optimization Report – An Example
$ icc -S -xcommon-avx512 -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -
fargument-noalias foo.c
LOOP BEGIN at foo2.c(4,3)
…
remark #15305: vectorization support: vector length 32
remark #15300: LOOP WAS VECTORIZED

remark #15450: unmasked unaligned unit stride loads: 1
remark #15451: unmasked unaligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 109
remark #15477: vector cost: 5.250
remark #15478: estimated potential speedup: 20.700
remark #15482: vectorized math library calls: 1
remark #15488: --- end vector cost summary ---
remark #25015: Estimate of max trip count of loop=32

LOOP END

$ grep sin foo.s
call __svml_sinf16_b3
call __svml_sinf16_b3

#include <math.h>
void foo (float * theta, float * sth) {
int i;
for (i = 0; i < 512; i++)

sth[i] =
sinf(theta[i]+3.1415927f);
}

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

Compiler helps with alignment
SSE: 16 bytes

AVX: 32 bytes

AVX512 64 bytes

A[0] A[1] A[2] A[3] A[4] A[5]

A[2] A[3] A[4] A[5]

A[6] A[7] A[8]

Vectorized body :

A[0] A[1]

Peel :

A[8]A[6] A[7]

Remainder :

Compiler can split loop in 3 parts to have aligned access in the loop body

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
29

Data Alignment for C/C++
Aligned heap memory allocation by intrinsic/library call:

void* aligned_alloc(std::size_t alignment, std::size_t size); (since C++17)

void* _mm_malloc(int size, int base)

Linux*, macOS* only:

int posix_memaligned(void **p, size_t base, size_t size)

Automatically allocate memory with the alignment of that type using new operator:

#include <aligned_new>

Align attribute for variable declarations:

alignas specifier (since C++11):

alignas(64) char line[128];

Linux*, macOS*, Windows*: __declspec(align(base)) <var>

Linux*, macOS*: <var> __attribute__((aligned(base)))

Portability caveat:
__declspec is not known for GCC and __attribute__ not for Microsoft Visual Studio*!

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
30

Compiler Alignment Hints for C/C++

Hint that start address of an array is aligned (Intel Compiler only):
__assume_aligned(<array>, base)

#pragma vector [aligned|unaligned]

▪ Only for Intel Compiler

▪ Asserts compiler that aligned memory operations can be used for all data accesses in loop
following directive

▪ Use with care:
The assertion must be satisfied for all(!) data accesses in the loop!

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Problems Defining Alignment

• Let’s assume a, b and c are be declared 16 byte aligned in calling routine

• Question: Would this be correct when compiled for Intel® SSE2?

• Answer: It depends on ROWWIDTH!

▪ ROWWIDTH is even: Yes

▪ ROWWIDTH is odd: No, vectorized code fails with alignment error after first row!

• Solution:
Instead of pragma, use __assume_aligned(<array>, base). This refers to the start address only.

void matvec(double a[][ROWWIDTH], double b[], double c[])

{

int i, j;

for(i = 0; i < size1; i++) {

b[i] = 0;

#pragma vector aligned

for(j = 0; j < size2; j++)

b[i] += a[i][j] * c[j];

}

}

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

Hands-on exercises

git clone https://github.com/ivorobts/compiler-optimization.git

Use Vectorization_Lab.pdf for instructions

• C++/Fortran – choose what you prefer

https://github.com/ivorobts/compiler-optimization.git
https://github.com/ivorobts/compiler-optimization.git

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
33

Unsupported Loop Structure
Loops where compiler does not know the iteration count:

▪ Upper/lower bound of a loop are not loop-invariant

▪ Loop stride is not constant

▪ Early bail-out during iterations (e.g. break, exceptions, etc.)

▪ Too complex loop body conditions for which no SIMD feature instruction exists

▪ Loop dependent parameters are globally modifiable during iteration
(language standards require load and test for each iteration)

Transform is possible, e.g.:

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

for(int i = 0; i < x->bound; i++)

a[i] = 0;

}

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

int local_ub = x->bound;

for(int i = 0; i < local_ub; i++)

a[i] = 0;

}

loop was not vectorized: loop control variable i was found, but loop iteration

count cannot be computed before executing the loop

https://godbolt.org/z/TAXULn

https://godbolt.org/z/TAXULn

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
34

Memory access patterns

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

Unit strided (contiguous):

A[7]

A[0] A[1] A[2] A[3]

A[0].x

Constant strided:

A[0].y A[1].x A[1].y A[2].x A[2].y

A[0].x A[1].x A[2].x A[3].x

A[3] A[0] A[1]

Arbitrary access:

A[2]

A[0] A[1] A[2] A[3]

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
35

Memory access patterns

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

Unit strided (contiguous):

A[7]

A[0] A[1] A[2] A[3]

A[0].x

Constant strided:

A[0].y A[1].x A[1].y A[2].x A[2].y

A[0].x A[1].x A[2].x A[3].x

A[3] A[0] A[1]

Arbitrary access:

A[2]

A[0] A[1] A[2] A[3]

Extract/insert, shuffle,
gather/scatter instructions

are used

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
36

What is Intel® SDLT?

The SIMD Data Layout Template library is a C++11 template library to quick convert Array
of Structures to Structure of Arrays representation

SDLT vectorizes your code by making memory access contiguous, which can lead to more
efficient code and better performance

A

Z[i+0] Z[i+1] Z[i+2] Z[…]

Y[i+0] Y[i+1] Y[i+2] Y[…]

X[i+0] X[i+1] X[i+2] X[…]

X

A[i+0]

Y Z X

A[i+1]

Y Z X

A[i+2]

Y Z

vector_register_10 1 2 3

X

A[i+3]

Y Z

vector_register_10 1 2 3

AOS SOA

https://tinyurl.com/intelsdlt

https://tinyurl.com/intelsdlt

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
37

Use function calls inside loop

Success of in-lining can be verified using the optimization report:
Linux*, macOS*: -qopt-report=<n> -qopt-report-phase=ipo
Windows*: /Qopt-report:<n> /Qopt-report-phase:ipo

Intel compilers offer a large set of switches, directives and language extensions to
control in-lining globally or locally, e.g.:

▪ #pragma [no]inline (C/C++), !DIR$ [NO]iNLINE (Fortran):
Instructs compiler that all calls in the following statement can be in-lined or may never be in-
lined

▪ #pragma forceinline (C/C++), !DIR$ FORCEINLINE (Fortran):
Instructs compiler to ignore the heuristic for in-lining and to inline all calls in the following
statement

▪ See section “Inlining Options” in compiler manual for full list of options

IPO offers additional advantages to vectorization

▪ Inter-procedural alignment analysis

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
38

Vectorizable Mathematical Functions

Calls to most mathematical functions in a loop body can be vectorized using “Short
Vector Math Library” (SVML):

▪ SVML (libsvml) provides vectorized implementations of different mathematical functions

▪ Optimized for latency compared to the VML library component of Intel® MKL which realizes same
functionality but optimized for throughput

Routines in libsvml can also be called explicitly, using intrinsics (C/C++)

These mathematical functions are currently supported:

acos acosh asin asinh atan atan2 atanh cbrt

ceil cos cosh erf erfc erfinv exp exp2

fabs floor fmax fmin log log10 log2 pow

round sin sinh sqrt tan tanh trunc

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
39

Many Ways to Vectorize

Ease of useCompiler:
Auto-vectorization (no change of code)

Programmer control

Compiler:
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Compiler:
OpenMP* SIMD directives

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
40

Obstacles to Auto-Vectorization

Multiple loop exits
▪ Or trip count unknown at loop entry

Dependencies between loop iterations
▪ Mostly, avoid read-after-write “flow” dependencies

Function or subroutine calls
▪ Except where inlined

Nested (Outer) loops
▪ Unless inner loop fully unrolled

Complexity
▪ Too many branches
▪ Too hard or time-consuming for compiler to analyze

https://software.intel.com/articles/requirements-for-vectorizable-loops

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
41

OpenMP* SIMD Programming

Vectorization is so important
➔ consider explicit vector programming

Modeled on OpenMP* for threading (explicit parallel programming)

Enables reliable vectorization of complex loops the compiler can’t auto-vectorize

E.g. outer loops

Directives are commands to the compiler, not hints

E.g. #pragma omp simd or !$OMP SIMD

Compiler does no dependency and cost-benefit analysis !!

Programmer is responsible for correctness (like OpenMP threading)

E.g. PRIVATE, REDUCTION or ORDERED clauses

Incorporated in OpenMP since version 4.0  portable

-qopenmp or -qopenmp-simd (default starting 19.0 version) to enable

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
42

OpenMP* SIMD pragma
Use #pragma omp simd with -qopenmp-simd

Use when you KNOW that a given loop is safe to vectorize

The Intel® Compiler will vectorize if at all possible

▪ (ignoring dependency or efficiency concerns)

▪ Minimizes source code changes needed to enforce vectorization

void addit(double* a, double* b, int

m, int n, int x)

{

for (int i = m; i < m+n; i++) {

a[i] = b[i] + a[i-x];

}

}

void addit(double* a, double * b, int m,

int n, int x)

{

#pragma omp simd // I know x<0

for (int i = m; i < m+n; i++) {

a[i] = b[i] + a[i-x];

}

}

loop was not vectorized:
existence of vector dependence. SIMD LOOP WAS VECTORIZED

https://godbolt.org/z/qfpHxb

https://godbolt.org/z/qfpHxb

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
43

Clauses for OMP SIMD directives

The programmer (i.e. you!) is responsible for correctness

▪ Just like for race conditions in loops with OpenMP* threading

Available clauses:

▪ PRIVATE

▪ LASTPRIVATE like OpenMP for threading

▪ REDUCTION

▪ COLLAPSE (for nested loops)

▪ LINEAR (additional induction variables)

▪ SIMDLEN (preferred number of iterations to execute concurrently)

▪ SAFELEN (max iterations that can be executed concurrently)

▪ ALIGNED (tells compiler about data alignment)

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
44

Example: Outer Loop Vectorization

#ifdef KNOWN_TRIP_COUNT

#define MYDIM 3

#else // pt input vector of points

#define MYDIM nd // ptref input reference point

#endif // dis output vector of distances

#include <math.h>

void dist(int n, int nd, float pt[][MYDIM], float dis[], float ptref[]) {

/* calculate distance from data points to reference point */

#pragma omp simd

for (int ipt=0; ipt<n; ipt++) {

float d = 0.;

for (int j=0; j<MYDIM; j++) {

float t = pt[ipt][j] - ptref[j];

d+= t*t;

}

dis[ipt] = sqrtf(d);

}

}

Inner loop with
low trip count

Outer loop with
high trip count

https://godbolt.org/z/nfS2c6

https://godbolt.org/z/nfS2c6

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
45

Outer Loop Vectorization
icc -std=c99 -xavx -qopt-report-phase=loop,vec -qopt-report-file=stderr -c dist.c
…
LOOP BEGIN at dist.c(26,2)

remark #15542: loop was not vectorized: inner loop was already vectorized
…

LOOP BEGIN at dist.c(29,3)
remark #15300: LOOP WAS VECTORIZED

We can vectorize the outer loop by activating the pragma using -qopenmp-simd

#pragma omp simd

Would need private clause for d and t if declared outside SIMD scope

icc -std=c99 -xavx -qopenmp-simd -qopt-report-phase=loop,vec -qopt-report-file=stderr -qopt-report=4 -c dist.c
…
LOOP BEGIN at dist.c(26,2)

remark #15328: … non-unit strided load was emulated for the variable <pt[ipt][j]>, stride is unknown to compiler
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
LOOP BEGIN at dist.c(29,3)

remark #25460: No loop optimizations reported

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
46

Unrolling the Inner Loop

There is still an inner loop.

If the trip count is fixed and the compiler knows it, the inner loop can be fully unrolled.
Outer loop vectorization is more efficient also because stride is now known

icc -std=c99 -xavx -qopenmp-simd -DKNOWN_TRIP_COUNT -qopt-report-phase=loop,vec -
qopt-report-file=stderr –qopt-report=4 -c dist.c

…
LOOP BEGIN at dist.c(26,2)

remark #15328: vectorization support: non-unit strided load was emulated for the variable <pt[ipt][j]>,
stride is 3 [dist.c(30,14)]

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

LOOP BEGIN at dist.c(29,3)
remark #25436: completely unrolled by 3 (pre-vector)

LOOP END
LOOP END

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
47

Loops Containing Function Calls

Function calls can have side effects that introduce a loop-carried dependency,
preventing vectorization

Possible remedies:

▪ Inlining
▪ best for small functions
▪ Must be in same source file, or else use -ipo

▪ OMP SIMD pragma or directive to vectorize rest of loop, while preserving scalar calls to
function (last resort)

▪ SIMD-enabled functions

▪ Good for large, complex functions and in contexts where inlining is difficult

▪ Call from regular “for” or “DO” loop

▪ In Fortran, adding “ELEMENTAL” keyword allows SIMD-enabled function to be called
with array section argument

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
48

SIMD-enabled Function

Compiler generates SIMD-enabled (vector) version of a scalar function
that can be called from a vectorized loop:

#pragma omp declare simd uniform(y,z,xp,yp,zp)
float func(float x, float y, float z, float xp, float yp, float zp)
{
float denom = (x-xp)*(x-xp) + (y-yp)*(y-yp) + (z-zp)*(z-zp);
denom = 1./sqrtf(denom);
return denom;

}

…
#pragma omp simd private(x) reduction(+:sumx)
for (i=1; i<nx; i++) {

x = x0 + (float) i * h;
sumx = sumx + func(x, y, z, xp, yp, zp);

}

#pragma omp simd may not be needed in simpler cases

These clauses are required for
correctness, just like for OpenMP*

FUNCTION WAS VECTORIZED with ...

SIMD LOOP WAS VECTORIZED.

y, z, xp, yp and zp are constant,
x can be a vector

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
49

Special Idioms

Dependency on an earlier iteration usually makes vectorization unsafe

▪ Some special patterns can still be handled by the compiler

– Provided the compiler recognizes them (auto-vectorization)

– Often works only for simple, ‘clean’ examples

– Or the programmer tells the compiler (explicit vector programming)

– May work for more complex cases

– Examples: reduction, compress/expand, search, histogram/scatter, minloc

▪ Sometimes, the main speed-up comes from vectorizing the rest of a large
loop, more than from vectorization of the idiom itself

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
50

Reduction – simple example

Auto-vectorizes with any instruction set:

icc -std=c99 -O2 -qopt-report-phase=loop,vec -qopt-report-file=stderr reduce.c;
…

LOOP BEGIN at reduce.c(17,6))

remark #15300: LOOP WAS VECTORIZED

double reduce(double a[], int na) {

/* sum all positive elements of a */

double sum = 0.;

for (int ia=0; ia <na; ia++) {

if (a[ia] > 0.) sum += a[ia]; // sum causes cross-iteration dependency

}

return sum;

}

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
51

Reduction – when auto-vectorization doesn’t work

icc -std=c99 -O2 -fp-model precise -qopt-report-phase=loop,vec -qopt-report-file=stderr reduce.c;
…

LOOP BEGIN at reduce.c(17,6))
remark #15331: loop was not vectorized: precise FP model implied by the command line or a directive

prevents vectorization. Consider using fast FP model [reduce.c(18,26)

Vectorization would change order of operations, and hence the result
▪ Can use a SIMD pragma to override and vectorize:

icc -std=c99 -O2 -fp-model precise –qopenmp-simd -qopt-report-file=stderr reduce.c;
LOOP BEGIN at reduce.c(18,6)

remark #15301: OpenMP SIMD LOOP WAS VECTORIZED

#pragma omp simd reduction(+:sum)

for (int ia=0; ia <na; ia++)

{

sum += …

Without the reduction clause, results would
be incorrect because of the flow dependency.
See “SIMD-Enabled Function” section for
another example.

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
52

Exercise – nbody-demo/ver4

▪ Go to the folder nbody-demo/ver4

▪ Type make to compile code.

▪ Type make run to run the test and measure the timing.

▪ Please have a look at the compiler report.

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
53

Compiler report result

LOOP BEGIN at GSimulation.cpp(145,6)

remark #15389: vectorization support: reference this->particles->pos_x[j] has

unaligned access [GSimulation.cpp(151,8)]

…

remark #15389: vectorization support: reference this->particles->mass[j] has

unaligned access [GSimulation.cpp(160,20)]

remark #15381: vectorization support: unaligned access used inside loop body

remark #15305: vectorization support: vector length 8

remark #15309: vectorization support: normalized vectorization overhead 1.055

remark #15300: LOOP WAS VECTORIZED

remark #15321: Compiler has chosen to target XMM/YMM vector. Try using -qopt-

zmm-usage=high to override

remark #15450: unmasked unaligned unit stride loads: 4

remark #15475: --- begin vector cost summary ---

remark #15476: scalar cost: 118

remark #15477: vector cost: 13.620

remark #15478: estimated potential speedup: 7.910

remark #15488: --- end vector cost summary ---

LOOP END

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
54

Exercise – nbody-demo/ver5

▪ Go to the folder nbody-demo/ver5

▪ Open the file GSimulation.cpp: all the memory allocations have been
replaced with _mm_malloc

▪ Type make to compile code.

▪ Type make run to run the test and measure the timing.

▪ Please have a look at the compiler report.

▪ Try to recompile the code removing the option –DASSUME_ALIGN from the
Makefile. Can you explain what is going on?

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
55

Exercise – nbody-demo/ver5

▪ Play with the alignment:

▪ alignment 64 bytes also with 32. 16 does not align

▪ Modify into the Makefile the OPTFLAG (ISA optimization) to –xCORE-AVX2

▪ What is changing in the alignment?

▪ What is the performance?

▪ Type make run to run the test and measure the timing.

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
56

Exercise – nbody-demo/ver5

▪ Recompile the code enabling the usage of the zmm registers

▪ make ZMM=yes

▪ Can you explain why the performance is higher?

▪ Please have a look at the compiler report for hints.

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
57

Exercise – nbody-demo/ver5

▪ Recompile the code enabling the usage of the zmm registers

▪ make ZMM=yes

▪ Can you explain why the performance is higher?

▪ Please have a look at the compiler report for hints.

▪ With the usage of AVX512 and ZMM registers, we have 22% more
performance!

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
58

Legal Disclaimers and Optimization Notices

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR
A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility
applications.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

All products, platforms, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual
performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark
Limitations.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See www.intel.com/products/processor_number for details.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. § For more
information go to www.intel.com/benchmarks.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804.

The Intel Core and Itanium processor families may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

The benchmark results reported may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and workloads utilized in the testing, and may not be applicable to any particular user’s components, computer system or workloads.
The results are not necessarily representative of other benchmarks and other benchmark results may show greater or lesser impact from mitigations.

The code names Arrandale, Bloomfield, Boazman, Boulder Creek, Calpella, Chief River, Clarkdale, Cliffside, Cougar Point, Gulftown, Huron River, Ivy Bridge, Kilmer Peak, King’s Creek, Lewisville, Lynnfield, Maho Bay, Montevina, Montevina Plus, Nehalem, Penryn, Puma Peak, Rainbow
Peak, Sandy Bridge, Sugar Bay, Tylersburg, and Westmere presented in this document are only for use by Intel to identify a product, technology, or service in development, that has not been made commercially available to the public, i.e., announced, launched or shipped. It is not a
"commercial" name for products or services and is not intended to function as a trademark.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

Intel, Intel Core, Core Inside, Itanium, and the Intel Logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Intel collects and uses personal information from employees as part of SES, including capturing audio recording of sessions (both presenters and audience QA) as well as photographs and video recording of various event activities during the event. By registering and attending the SES
conference, you give your consent for this capture. This includes both speakers and attendees. Intel will not retain your personal information longer than is necessary for the purposes for which it is collected.

http://www.intel.com/benchmarks

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

59

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of
Intel Corporation or its subsidiaries in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

