
Dr. Fabio Baruffa

Sr. HPC Apps. Engineer, Intel IAGS

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

“Automatic” Vectorization Often Not Enough
A good compiler can still benefit greatly from vectorization optimization

Compiler will not always vectorize

▪ Check for Loop Carried Dependencies
using Intel® Advisor

▪ All clear? Force vectorization.
C++ use: pragma simd, Fortran use: SIMD directive

Not all vectorization is efficient vectorization

▪ Stride of 1 is more cache efficient than stride of 2 and
greater. Analyze with Intel® Advisor.

▪ Consider data layout changes
Intel® SIMD Data Layout Templates can help

Benchmarks on prior slides did
not all “auto vectorize.” Compiler
directives were used to force
vectorization and get more
performance.

Arrays of structures are great for
intuitively organizing data, but
are much less efficient than
structures of arrays. Use the
Intel® SIMD Data Layout
Templates (Intel® SDLT) to map
data into a more efficient layout
for vectorization.

https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/intel-advisor-xe
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/intel-sdlt
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/intel-sdlt

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Faster Vectorization Optimization
▪ Vectorize where it will pay off most

▪ Quickly ID what is blocking vectorization

▪ Tips for effective vectorization

▪ Safely force compiler vectorization

▪ Optimize memory stride

Data & Guidance You Need
▪ Compiler diagnostics +

Performance Data + SIMD efficiency

▪ Detect problems & recommend fixes

▪ Loop-Carried Dependency Analysis

▪ Memory Access Patterns Analysis

Get Breakthrough Vectorization Performance
Intel® Advisor—Vectorization Advisor

Optimize for Intel® AVX-512 with or without access to AVX-512 hardware http://intel.ly/advisor-xe

http://intel.ly/advisor-xe

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

FMA Peak

Vector Add Peak

Scalar Add Peak

6

Cache-Aware Roofline
Next Steps

If under or near a
memory roof…

If just above the
Scalar Add Peak

If Under the Vector Add Peak

If under the
Scalar Add Peak…

FLOPS

Arithmetic Intensity

• Try a MAP analysis.
Make any appropriate
cache optimizations.

• If cache optimization
is impossible, try
reworking the
algorithm to have a
higher AI.

Check “Traits” in the Survey to see if FMAs are
used. If not, try altering your code or compiler
flags to induce FMA usage.

Check vectorization
efficiency in the Survey.
Follow the
recommendations to
improve it if it’s low.

Check the Survey Report
to see if the loop
vectorized. If not, try to
get it to vectorize if
possible. This may involve
running Dependencies to
see if it’s safe to force it.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Find Effective Optimization Strategies
Intel® Advisor—Cache-aware Roofline Analysis

Roofline Performance Insights

▪ Highlights poor performing loops

▪ Shows performance ‘headroom’

for each loop

– Which can be improved

– Which are worth improving

▪ Shows likely causes of bottlenecks

▪ Suggests next optimization steps “I am enthusiastic about the new "integrated roofline" in
Intel® Advisor. It is now possible to proceed with a step-by-
step approach with the difficult question of memory transfers
optimization & vectorization which is of major importance.”Nicolas Alferez, Software Architect

Onera – The French Aerospace Lab

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
10

Validating Vectorization Success I: Compiler report

▪ -qopt-report[=n]: tells the compiler to generate an optimization report
▪ n: (Optional) Indicates the level of detail in the report. You can specify values 0 through 5. If you

specify zero, no report is generated. For levels n=1 through n=5, each level includes all the
information of the previous level, as well as potentially some additional information. Level 5
produces the greatest level of detail. If you do not specify n, the default is level 2, which
produces a medium level of detail.

▪ -qopt-report-phase[=list]: specifies one or more optimizer phases for which
optimization reports are generated.
▪ loop: the phase for loop nest optimization

▪ vec: the phase for vectorization

▪ par: the phase for auto-parallelization

▪ all: all optimizer phases

▪ -qopt-report-filter=string: specified the indicated parts of your application,
and generate optimization reports for those parts of your application.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

Validating Vectorization Success II

▪ -S: assembler code inspection
▪ Most reliable way and gives all details of course

▪ Check for scalar/packed or (E)VEX encoded instructions:
Assembler listing contains source line numbers for easier navigation

▪ Compiling with -qopt-report-embed (Linux*, macOS*) helps interpret assembly code

▪ Performance validation
▪ Compile and benchmark with -no-vec –qno-openmp-simd or on a loop by loop basis via

#pragma novector or !DIR$ NOVECTOR

▪ Compile and benchmark with selected SIMD feature

▪ Compare runtime differences

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Let’s consider a distribution of point masses located at r_1,…,r_n and have
masses m_1,…,m_n

We want to calculate the position of the particles after a certain time interval using
the Newton law of gravity

struct Particle

{

public:

Particle() { init();}

void init()

{

pos[0] = 0.; pos[1] = 0.; pos[2] = 0.;

vel[0] = 0.; vel[1] = 0.; vel[2] = 0.;

acc[0] = 0.; acc[1] = 0.; acc[2] = 0.;

mass = 0.;

}

real_type pos[3];

real_type vel[3];

real_type acc[3];

real_type mass;

};

Demo: Nbody gravity simulation

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Demo: Nbody kernel implementation
GSimulation.cpp:

...

for (i = 0; i < n; i++) { // update acceleration

for (j = 0; j < n; j++) {

real_type distance, dx, dy, dz;

real_type distanceSqr = 0.0;

real_type distanceInv = 0.0;

dx = particles[j].pos[0] - particles[i].pos[0];

dy = particles[j].pos[1] - particles[i].pos[1];

dz = particles[j].pos[2] - particles[i].pos[2];

distSqr = dx*dx + dy*dy + dz*dz + softeningSquared;

distInv = 1.0 / sqrt(distanceSqr);

particles[i].acc[0] += dx * G * particles[j].mass * distInv * distInv * distInv;

particles[i].acc[1] += …

particles[i].acc[2] += …

}

}

...

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

Demo – nbody-sim/ver0

▪ Go to the folder nbody-sim/ver0

▪ Type make to compile code.

▪ Type make survey to run the Survey Analysis of Advisor.

▪ Once you have setup the VNC connection (see previous instructions), open
the Advisor results via the GUI, typing make open-gui .

▪ For the Roofline Analysis, run make roofline .

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Demo – nbody-sim/ver0: Advisor Summary

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Demo – nbody-sim/ver0: Code Analytics

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

Demo – nbody-sim/ver-avx512

▪ Go to the folder nbody-sim/ver-avx512

▪ Type make to compile code.

▪ Type make survey to run the Survey Analysis of Advisor.

▪ Once you have setup the VNC connection (see previous instructions), open
the Advisor results via the GUI, typing make open-gui .

▪ For the Roofline Analysis, run make roofline .

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Demo – nbody-sim/ver-avx512: Code Analytics

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

Demo – nbody-sim/ver-avx512: Recommendations

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
20

Demo – nbody-sim/ver-avx512

▪ Go to the folder nbody-sim /ver-avx512

▪ Type make clean-results to delete the previous data.

▪ Generate a new Survey Analysis of Advisor and Roofline:

▪ make roofline

▪ To run the MAP Analysis: make map

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
21

Demo – nbody-sim/ver-avx512: Map Analysis

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

Memory access pattern
How should I access data ?

▪ Unit stride access are faster

▪ Constant stride are more complex

▪ Non predictable access are usually bad

for (i=0; i<N; i++)

A[i] = B[i]*d

for (i=0; i<N; i+=2)

A[i] = B[i]*d

for (i=0; i<N; i++)

A[i] = B[C[i]]*d

B

For B, 1 cache line load computes 4 DP

B

For B, 2 cache line loads compute 4 DP with
reconstructions

B

For B, 4 cache line loads compute 4 DP with
reconstructions, prefetching might not work

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

Non-unit stride load: AoS vs SoA
The compiler might generate gather/scatter instructions for loops automatically vectorized
where memory locations are not contiguous

struct Particle

{

public:

...

real_type pos[3];

real_type vel[3];

real_type acc[3];

real_type mass;

};

struct ParticleSoA

{

public:

...

real_type *pos_x,*pos_y,*pos_z;

real_type *vel_x,*vel_y,*vel_z;

real_type *acc_x,*acc_y;*acc_z

real_type *mass;

};

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

Demo – nbody-sim/ver-soa: Report

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

Demo – nbody-sim/ver-soa: Code Analytics

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
26

Demo – Roofline Comparison

baseline

avx-512

no-fp-converts

soa

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

Performance comparison

▪ Precision of constant and variables: consistent use of single and double precision

Optimization Options Performance

Baseline 1.3 GFs

-O2 -xcore-avx512 –qopt-zmm-usage=high 9.0 GFs

No FP converts 21.1 GFs

Data-layout optimization (100% vec. eff.) 37.7 GFs

Memory alignment 47.7 GFs

Performance tests are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary.
The results above were obtained on Google* Cloud Platform, compute engine, n1-standard-2 (2 vCPUs, 7.5 GB memory), CPU platform Intel® Skylake, Zone us-east1-b, running Ubuntu
16.4 and using the Intel® C++ Compiler version 19.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does
not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice Revision #20110804.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

Q&A

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
29

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO
ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

