

INTEL[®] ADVISOR

DEMO

Dr. Fabio Baruffa Sr. HPC Apps. Engineer, Intel IAGS

INTEL ADVISOR AND ROOFLINE

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

"Automatic" Vectorization Often Not Enough

A good compiler can still benefit greatly from vectorization optimization

Compiler will not always vectorize

- Check for Loop Carried Dependencies using <u>Intel[®] Advisor</u>
- All clear? Force vectorization.
 C++ use: pragma simd, Fortran use: SIMD directive

Not all vectorization is efficient vectorization

- Stride of 1 is more cache efficient than stride of 2 and greater. Analyze with <u>Intel[®] Advisor</u>.
- Consider data layout changes <u>Intel[®] SIMD Data Layout Templates</u> can help

Benchmarks on prior slides did not all "auto vectorize." Compiler directives were used to force vectorization and get more performance.

Arrays of structures are great for intuitively organizing data, but are much less efficient than structures of arrays. Use the Intel[®] SIMD Data Layout Templates (Intel[®] SDLT) to map data into a more efficient layout for vectorization.

Get Breakthrough Vectorization Performance

Intel® Advisor—Vectorization Advisor

Faster Vectorization Optimization

- Vectorize where it will pay off most
- Quickly ID what is blocking vectorization
- Tips for effective vectorization
- Safely force compiler vectorization
- Optimize memory stride

Data & Guidance You Need

- Compiler diagnostics + Performance Data + SIMD efficiency
- Detect problems & recommend fixes
- Loop-Carried Dependency Analysis
- Memory Access Patterns Analysis

FILT			t Vectorized And Functio		「hreads ▼			[OFF	Sn	nart M	ode [©] NTEL <i>I</i>	DVISOR	م 2019
Ē 9	Summary 🤌 Survey & Roofline 📲 Ref	inemen	t Reports											
2	Perfor		W		Why No	Vectorized Loops				Instruction Set				
PF	+ - Function Call Sites and Loops	•	Issues	Self Time▼	Total Time	Туре	Vectorization?	Vect	Efficiency	Gain	VL	Com	Traits	Dar
OFLINE	☑ ^O [loop in main at roofline.cpp:295]			18.538s 🗖	18.538s 0	Vectorized (B		AVX	~100%	5.34x	4	5.34x		Flo
	☑ ^[] [loop in main at roofline.cpp:310]			18.394s 💳	18.394s 0	Vectorized (Bo		AVX	~100%	5.34x	4	5.34x		Flo
	☑ ⁽⁵] [loop in main at roofline.cpp:221]	\checkmark		14.741s 📼	14.741s 0	Scalar	novector dire							Flo
	☑ ⁽⁵] [loop in main at roofline.cpp:234]			11.117s 🗖	11.117s I	Scalar	🖬 inner loop w							Flo
	☑ ^[] [loop in main at roofline.cpp:247]			6.967s 🗖	6.967s I	Vectorized (Bo		AVX	<mark>~31</mark> %	1.22x	4	1.22x	Inserts; U	Flo 🔽
	✓	•												
	Onti		forlot			فيرمط فليردعهم			E12 hav	duran	-			

Optimize for Intel[®] AVX-512 with or without access to AVX-512 hardware

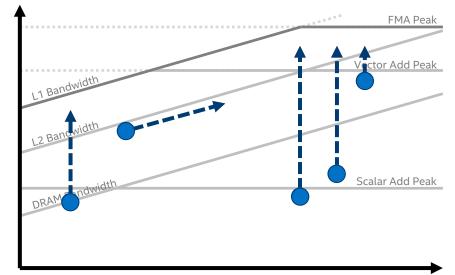
http://intel.ly/advisor-xe

Optimization Notice

ROOFLINE MODEL

Cache-Aware Roofline

FLOPS


Next Steps

If under or near a memory roof...

- Try a MAP analysis. Make any appropriate **cache optimizations**.
- If cache optimization is impossible, try reworking the algorithm to have a higher Al.

If Under the Vector Add Peak

Check "Traits" in the Survey to see if FMAs are used. If not, try altering your code or compiler flags to **induce FMA usage.**

Arithmetic Intensity

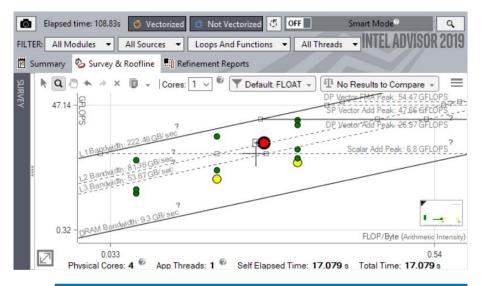
If just above the Scalar Add Peak

Check **vectorization efficiency** in the Survey. Follow the recommendations to improve it if it's low.

If under the Scalar Add Peak...

Check the Survey Report to see if the loop vectorized. If not, try to **get it to vectorize** if possible. This may involve running Dependencies to see if it's safe to force it.

Optimization Notice


Find Effective Optimization Strategies

Intel® Advisor—Cache-aware Roofline Analysis

Roofline Performance Insights

- Highlights poor performing loops
- Shows performance 'headroom' for each loop
 - Which can be improved
 - Which are worth improving
- Shows likely causes of bottlenecks
- Suggests next optimization steps

Nicolas Alferez, Software Architect Onera – The French Aerospace Lab

"I am enthusiastic about the new "integrated roofline" in Intel® Advisor. It is now possible to proceed with a step-bystep approach with the difficult question of memory transfers optimization & vectorization which is of major importance."

Optimization Notice

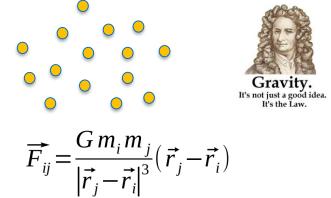
ADVISOR DEMO

Validating Vectorization Success I: Compiler report

- -qopt-report[=n]: tells the compiler to generate an optimization report
 - n: (Optional) Indicates the level of detail in the report. You can specify values 0 through 5. If you specify zero, no report is generated. For levels n=1 through n=5, each level includes all the information of the previous level, as well as potentially some additional information. Level 5 produces the greatest level of detail. If you do not specify n, the default is level 2, which produces a medium level of detail.
- -qopt-report-phase[=list]: specifies one or more optimizer phases for which optimization reports are generated.
 - loop: the phase for loop nest optimization
 - vec: the phase for vectorization
 - par: the phase for auto-parallelization
 - all: all optimizer phases
- -qopt-report-filter=string: specified the indicated parts of your application, and generate optimization reports for those parts of your application.

Validating Vectorization Success II

- -S: assembler code inspection
 - Most reliable way and gives all details of course
 - Check for scalar/packed or (E)VEX encoded instructions: Assembler listing contains source line numbers for easier navigation
 - Compiling with -qopt-report-embed (Linux*, macOS*) helps interpret assembly code
- Performance validation
 - Compile and benchmark with -no-vec -qno-openmp-simd or on a loop by loop basis via #pragma novector or !DIR\$ NOVECTOR
 - Compile and benchmark with selected SIMD feature
 - Compare runtime differences



Demo: Nbody gravity simulation

Let's consider a distribution of point masses located at $r_1, ..., r_n$ and have masses $m_1, ..., m_n$

We want to calculate the position of the particles after a certain time interval using the Newton law of gravity

```
struct Particle
{
    public:
        Particle() { init();}
        void init()
        {
            pos[0] = 0.; pos[1] = 0.; pos[2] = 0.;
            vel[0] = 0.; vel[1] = 0.; vel[2] = 0.;
            acc[0] = 0.; acc[1] = 0.; acc[2] = 0.;
            mass = 0.;
        }
        real_type pos[3];
        real_type vel[3];
        real_type mass;
};
```


$$\vec{F} = m\vec{a} = m\frac{d\vec{v}}{dt} = m\frac{d^2\vec{x}}{dt^2}$$

Demo: Nbody kernel implementation

```
GSimulation.cpp:
```

```
. . .
for (i = 0; i < n; i++) {
                                                             // update acceleration
    for (j = 0; j < n; j++) {
          real type distance, dx, dy, dz;
          real type distanceSqr = 0.0;
          real type distanceInv = 0.0;
          dx = particles[j].pos[0] - particles[i].pos[0];
          dy = particles[j].pos[1] - particles[i].pos[1];
          dz = particles[j].pos[2] - particles[i].pos[2];
          distSqr = dx^*dx + dy^*dy + dz^*dz + softeningSquared;
          distInv = 1.0 / sqrt(distanceSqr);
          particles[i].acc[0] += dx * G * particles[j].mass * distInv * distInv * distInv;
          particles[i].acc[1] += ...
          particles[i].acc[2] += ...
```

. . .

Demo – nbody-sim/ver0

- Go to the folder nbody-sim/ver0
- Type *make* to compile code.
- Type *make survey* to run the Survey Analysis of Advisor.
- Once you have setup the VNC connection (see previous instructions), open the Advisor results via the GUI, typing make open-gui.
- For the Roofline Analysis, run make roofline .

Demo – nbody-sim/ver0: Advisor Summary

Vectorization Threading	Elapsed time: 52.32s O Vectorized O Not Vectorized FILTER: All Modules V All Sources V	
Workflow Workflow	Summary 🗞 Survey & Roofline 🔄 Refinement Reports	INTEL ADVISOR 2019
OFF Batch mode	Vectorization Advisor	
Run Roofline	Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from vector	
Collect	parallelism, discover performance issues preventing from effective vectorization and characterize your memory vs. vectorization bottlenecks with Advisor Roofline model automation.	
Enable Roofline with Callstacks	⊘ Program metrics	
1. Survey Target	Elapsed Time 52.32s Vector Instruction Set SSE2, SSE Number of CPU Threads 1	
🕹 Collect 🕨 🖿 🗔	Total GFLOP Count 115.20 Total GFLOPS 2.20	
Mark Loops for Deeper Analysis Select checkboxes in the Survey &	Total Arithmetic Intensity [©] 1.87452	
Roofline tab to mark loops for other Advisor analyses.	Metrics Total	
There are no marked loops	Total CPU time 52.30s 100.0%	
1.1 Find Trip Counts and FLOP	Time in scalar code 0.02s	=
G Collect 🖣 🖿 🗔		
☑ Trip Counts	Total GFLOP Count 115.20 100.0%	
□ FLOP	Total GFLOPS 2.20	
Analyze all loops	⊘ Vectorization Gain/Efficiency	
2.1 Check Memory Access Patterns	Vectorized Loops Gain/Efficiency [©] 1.80x 90% Program Approximate Gain [©] 1.80x	
l Collect	Program Approximate Gain ~ 1.80X	
 No loops selected 	⊘ Per program recommendations	
2.2 Check Dependencies	▲ Higher instruction set architecture (ISA) available	
S Collect	Consider recompiling your application using a higher ISA. Show more	
No loops selected	\odot Top time-consuming loops [®]	

Optimization Notice

Demo – nbody-sim/ver0: Code Analytics

Vectorization Workflow	Threading Workflow	 Elapsed time: 52.32s Vectorized Not Vectorized Summary Survey & Roofline Refinement Reports 		ER: All Modules 🔹 All Source	tes 👻 Loop	ps And Functio	ns 👻 All Threads	*	OFF	Smar	t Mode [®] INTEL	ADVISOR 20
DFF Batch mode		A Higher instruction set architecture (ISA) a Consider recompiling your application using a higher ISA		le								9
Run Roofline		Consider recompliting your application using a higher ISA							Masharia	adlassa		>
🕨 Collect 🖿 🗔		Function Call Sites and Loops Gloop in GSimulation::start at GSimulation.cpp:132 Gloop in GSimulation::start at GSimulation cpp:130		Performance Issues	Self Time 🕶	Total Time	Туре	Why No Vectorization?	and the second second second	ed Loops	Caip E	VL (Ve
Enable Roofline wit	h Callstacks	E ■ [loop in GSimulation::start at GSimulation.cpp:132]		¥ 4 Unoptimized floating p	52 281s	52 281s	Vectorized (Body		SSE2			2
		☐ [loop in GSimulation::start at GSimulation.cpp:130]		e i onopennized redenig p.	0.02451	52.305s	Scalar	inner loop was alr			1.004	-
Survey Target		I start			0.000st	52.305s	Function					
Collect 🖣 🖿 🗔	1				0.000s(52.305s	Function					
		[™] I GSimulation::start			0.000st	52.305s	Function					
ork Loops for Deep	an Analysia [®]	Icop in GSimulation::start at GSimulation.cpp:127		🛿 1 Data type conversions pr	0.000st	52.305s	Scalar	inner loop was alr				
	nd FLOP	Source Top Down Code Analytics Assembly 😪 Rec	ommen	dations 📮 Why No Vectorizati	on?							
Trip Counts		Loop in GSimulation::start at GSimulation.:cpp:132	ommeno	dations 🛛 🖻 Why No Vectorizati			O	GFLOPS: 2.20349 GINTOPS: 0.07345				©
Trip Counts FLOP Analyze all loops	(Loop in GSimulation::start at GSimulation:.cpp:132	ommeno	Source Trip Counts: 16	5000	1.80x	9	GINTOPS: 0.07345 Code Optimizations Compiler: Intel(R) C++ Intel		piler for applica	tions runnii	©
Trip Counts FLOP Analyze all loops Check Memory Act	(Loop in GSimulation::start at GSimulation.cpp:132	ommeno		5000	1.80x Vectorizati	9	GINTOPS: 0.07345 Code Optimizations	(R) 64 Com	piler for applica	tions runnin	
Trip Counts FLOP Analyze all loops – Check Memory Act Collect	cess Patterns [®]	Loop in GSimulation::start at GSimulation.cpp:132	ommeno	Source Trip Counts: 16	5000		() Ion Gain	GINTOPS: 0.07345 Code Optimizations Compiler: Intel(R) C++ Intel Intel(R) 64, Version: 19.00.117 Build 20 Compiler estimated gain: 1.	(R) 64 Com 180804 79x			
Trip Counts FLOP - Analyze all loops 1 Check Memory Act Collect - No loops selected	cess Patterns	Loop in GSimulation::start at GSimulation.cpp:132	ommeno	Source Trip Counts: 16	5000		9	GINTOPS: 0.07345 Code Optimizations Compiler: Intel(R) C++ Intel Intel(R) 64, Version: 19.0.0.117 Build 20	(R) 64 Com 180804 79x			
Trip Counts FLOP - Analyze all loops 1 Check Memory Act - Collect - No loops selected 2 Check Dependenci Collect	cess Patterns [®] es [®]	Loop in GSimulation::start at GSimulation.cpp:132	ommen	Source Trip Counts: 16	5000		() Ion Gain	GINTOPS: 0.07345 Code Optimizations Compiler: Intel(R) C++ Intel Intel(R) 64, Version: 19.00.117 Build 20 Compiler estimated gain: 1.	(R) 64 Com 180804 79x			
Trip Counts FLOP - Analyze all loops 1 Check Memory Act - Collect - Collect - No loops selected 2 Check Dependenci - Collect - C	cess Patterns [®] es [®]	Loop in GSimulation::start at GSimulation.cpp:132	ommend	Source Trip Counts: 16	5000		() Ion Gain	GINTOPS: 0.07345 Code Optimizations Compiler: Intel(R) C++ Intel Intel(R) 64, Version: 19.00.117 Build 20 Compiler estimated gain: 1.	(R) 64 Com 180804 79x			
Collect h. h. () Trip Counts FLOP Analyze all loops Canalyze all loops selected Canalyze all loops all loops selected Canalyze a	cess Patterns [®] es [®]	Loop in GSimulation::start at GSimulation.cpp:132	ommend	Source Trip Counts: 16	5000		() Ion Gain	GINTOPS: 0.07345 Code Optimizations Compiler: Intel(R) C++ Intel Intel(R) 64, Version: 19.00.117 Build 20 Compiler estimated gain: 1.	(R) 64 Com 180804 79x			

Optimization Notice

Demo – nbody-sim/ver-avx512

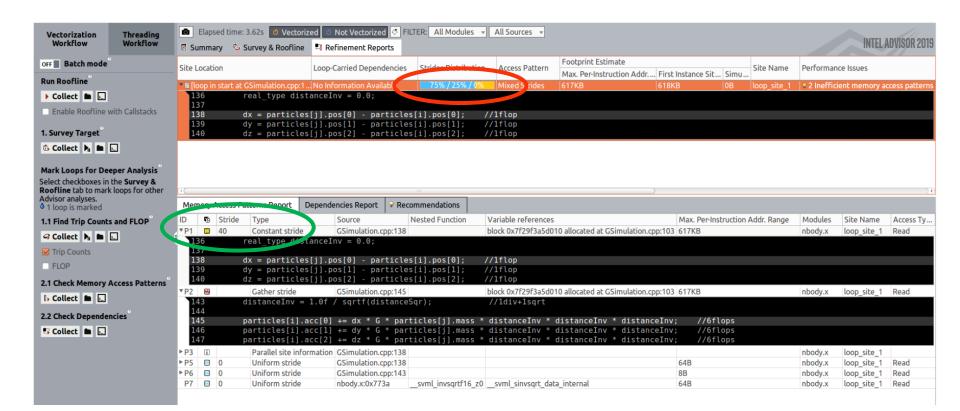
- Go to the folder nbody-sim/ver-avx512
- Type *make* to compile code.
- Type *make survey* to run the **Survey Analysis** of Advisor.
- Once you have setup the VNC connection (see previous instructions), open the Advisor results via the GUI, typing make open-gui.
- For the Roofline Analysis, run make roofline .

Demo – nbody-sim/ver-avx512: Code Analytics

Vectorization Threading Workflow Workflow	Elapsed time: 9.68s Vectorized Not Vectorized		TER: All Modules 🔹 All So	urces 🔹 🗌	oops And Fun	ctions 👻 All Thi	eads 🔻			OFF	Sma	rt Mode INTEL ADVISC	Q R 2018
OFF Batch mode	8 . E . Function Call Sites and Loops		Performance Issues	Self Time -	Total Time	Туре	Why No		zed Loops			B FLOPS	
Run Roofline Collect Collect Collect	Image: The start of the st		2 Possible inefficient me. 1 Data type conversions pr. 1 Data type conversions pr.	. 7.663s 2.006s 0.000st 0.000st 0.000st 0.000st		Vectorized (B Vector Function Function Function Scalar Scalar	inner loop . inner loop .	AVX5	-	Gain E	. VL (Ve. 16	Self GFLOPS 8.351 8.934	Self / 0.132 1.555 0.013 1.015 0.055
Mark Loops for Deeper Analysis Select checkboxes in the Survey & Roofline tab to mark loops for other Advisor analyses. - There are no marked loops - 1.1 Find Trip Counts and FLOP Collect h h h j	Source Top Down Code Analytics Assembly Rev Loop in GSimulation::start at GSimulation.cpp:132 9.669s Vectorized (Body) Total time AVX512F_512 7.663s Instruction Set Set time	comm	endations 🖻 Why No Vector Average Trip Cour Traits Type Conversions, Blend	nts: 1000	acts, FMA, 2-S		AVX-5Static	Instruct	5129 sk Usage: ion Mix [®] ompute: 36				•
FLOP - Analyze all loops 2.1 Check Memory Access Patterns I. Collect D. - No loops selected	 Static Instruction Mix Summary[®] Dynamic Instruction Mix Summary[®] Memory 35% (484000000, 53) Compute 24% (576000000, 36) Other 41% (992000000, 62) 												
2.2 Check Dependencies	8.34x 52% Vectorization Efficiency Vectorization Gain		\odot										

Optimization Notice

Demo – nbody-sim/ver-avx512: Recommendations


OFF Batch mode Run Roofline Collect Collect Collect Collect Collect Collect Collectors	Image: Second state of the second s	Performance Issues 2 Possible inefficient memory access pa	Self Time - Tot	tal Time Type		Vectorize	d Loops		⊠ (
Run Roofline Collect	Image: Symplectic start Image: Symplec	Q 2 Possible inefficient memory access pa			Vectorization?	Vector	Efficiency	Gain E.	VL (Ve	- on
The second se	🛱 🕞 🖡svml_invsqrtf16_z0		6.2695 8.3	347s - Vectorized (Body)		AVX512				10.2
The second se			and the second se	078s Vector Function		AVX512		U.L.JA		8.6
Enable Roofline with Callstacks	Iloop in GSimulation::start at GSimulation.cpp:13	I Data type conversions present	0.012st 8.3	359s Scalar	inner loop					2.5
			0.000st 8.3	359s Function						
9	∎ f main		0.000st 8.3	359s Function						
1. Survey Target	GSimulation::start		0.000st 8.3	359s Function						
🙆 Collect 🕨 🖿 💽	Icop in GSimulation::start at GSimulation.cpp:12	I Data type conversions present	0.000st 8.3	359s Scalar	inner loop					
Mark Loops for Deeper Analysis Select checkboxes in the Survey & Roofline tab to mark loops for other Advisor analyses. - There are no marked loops - 1.1 Find Trip Counts and FLOP G Collect b ₁₁ C Trip Counts FLOP - Analyze all loops - 2.1 Check Memory Access Patterns Collect C - No loops selected 2.2 Check Dependencies C Collect C	All Advisor-detectable issues: C++ Fortran I Issue: Possible inefficient memory access Inefficient memory access patterns may result in significa	int vector code execution slowdown or block automatic vector	tterns analysis. The conversion. If precision to use the S. and/or other count	e entire vector register width.	igating.	prese Co Data		memory acce		ms

Demo – nbody-sim/ver-avx512

- Go to the folder nbody-sim /ver-avx512
- Type make clean-results to delete the previous data.
- Generate a new Survey Analysis of Advisor and Roofline:
 - make roofline
- To run the MAP Analysis: make map

Demo – nbody-sim/ver-avx512: Map Analysis

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

21

Memory access pattern

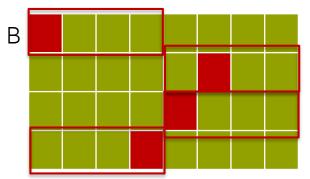
How should I access data ?

Unit stride access are faster

for (i=0; i<N; i++)
 A[i] = B[i]*d</pre>

Constant stride are more complex

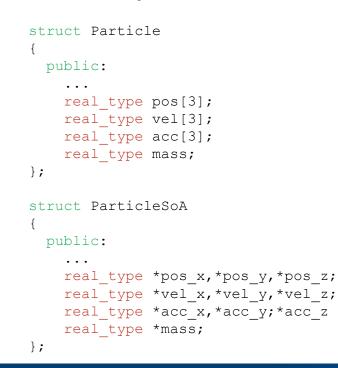
for (i=0; i<N; i+=2)
 A[i] = B[i]*d</pre>

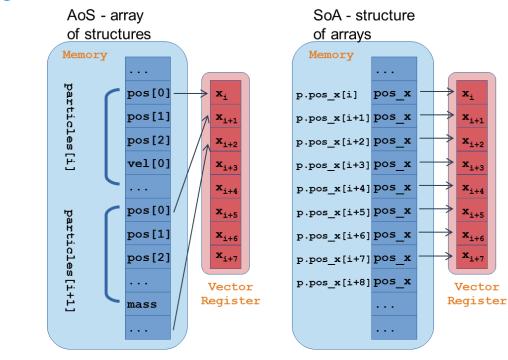

Non predictable access are usually bad

for (i=0; i<N; i++)
 A[i] = B[C[i]]*d</pre>

For B, 1 cache line load computes 4 DP

For B, 2 cache line loads compute 4 DP with reconstructions




For B, 4 cache line loads compute 4 DP with reconstructions, prefetching might not work

Non-unit stride load: AoS vs SoA

The compiler might generate gather/scatter instructions for loops automatically vectorized where memory locations are not contiguous

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved *Other names and brands may be claimed as the property of others. X_i

 \mathbf{X}_{i+1}

 \mathbf{x}_{i+2}

X₁₊₃

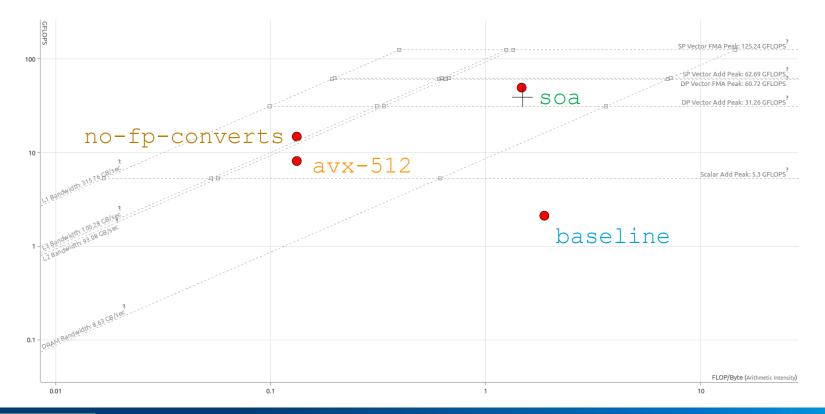
 \mathbf{x}_{i+4}

 \mathbf{x}_{i+5}

 $\mathbf{x}_{\texttt{i+6}}$

X;+7

Demo – nbody-sim/ver-soa: Report


Vectorization	Threading	Elapsed time: 2.10s Vectorized	Not Vectorize	d 🖑 FILTER: 🛛 All M	Iodules 👻 All Source	S 🔻
Workflow	Workflow	🖻 Summary 🔗 Survey & Roofline 📑 Ref	inement Repo	orts		
OFF Batch mode		Vectorization Advisor				
Run Roofline		Vectorization Advisor is a vectorization a parallelism, discover performance issues				
🕨 Collect 🖿 📘		vectorization bottlenecks with Advisor R	oofline model	automation.	zation and characterize	your memory
Enable Roofline v	with Callstacks	Program metrics				
1. Survey Target		Elapsed Time 2.10s				
	_	Vector Instruction Set AVX512			Number of CPU Thread	
🕹 Collect 🖣 🖿	<u>-</u>	Total GFLOP Count 81.95			Total GFLOPS	39.03
Mark Loops for Dee	eper Analysis	Total Arithmetic Intensity [©] 1.48541				
Select checkboxes in		Score Loop metrics				
Roofline tab to mark Advisor analyses.	k loops for other	Metrics	Total			
There are no mark	ed loops	Total CPU time Time in 1 vectorized loop	2.08s 2.06s		100.0%	
1.1 Find Trip Counts	s and FLOP	Time in scalar code	2.06s 0.02s		99.0%	
G Collect 🖣 🖿	b_	Time in scalar code	0.023	·		
Trip Counts		Total GFLOP Count	81.95		100.0%	
FLOP		Total GFLOPS	39.03			
Analyze all loops		Vectorization Gain/Efficience	y			
2.1 Check Memory	Access Patterns	Vectorized Loops Gain/Efficiency ®	34.52x	100%		
I→ Collect ■ 🗔		Program Approximate Gain 🗇	34.20x			
No loops selected	d	\odot Top time-consuming loops ^{\circ}				
2.2 Check Depender	ncies			Self Time®	Total Time®	Trip Counts®
S Collect		Copp Icopp in GSimulation::start at GSimulat	ion.cop:145]	1.292s	2.060s	999; 1
No loops selected	d	© [loop in GSimulation::start at GSimulat		0.012s	0.012s	16000
		Iloop in GSimulation::start at GSimulat		0.008s	2.068s	16000
		Iloop in <u>GSimulation::start</u> at <u>GSimulat</u>	ion.cpp:137]	Os	2.080s	10

Demo – nbody-sim/ver-soa: Code Analytics

Loop in GSimulation::start at GSimulat	lion.cpp:145	Average Trip Counts: 999; 1	\odot	Statistics for FLOP	S And D	ata Transfers
Vectorized (Body; Peeled) 2.060s	S	Traits	۲	Self GFLOPS 4	9.51577	Giga Floating-point Operations Per Second Self GFLOPS = Self GFLOP / Self Elapsed Time
AVX512F_512 1.292s Instruction Set Self time		FMA Mask Manipulations		Self Al	1.47054	Self AI - Self Arithmetic Intensity - Ratio Of Self Floating-Point Operations To Self L1 Transferred Bytes
▹ Static Instruction Mix Summary [®]				Mask Utilization	99	Ratio of Utilized Vector Elements to Total Vector Elements
 ▼ Dynamic Instruction Mix Summary[®] ▶ Memory 18% (800000000, 5) ▶ Compute 68% (3040320000, 19) 				Self GFLOP 6	3.96800	Giga Floating-Point Operations, Not Including GFLOP For Functions Called In The Loop Or Function
Mixed [☉] 4% (159840000, 1) Other 10% (480320000, 3)				Self FLOP Per Iteration	399.8	Floating-point Operations Per Loop Iteration
	I.52x ☉			Self Elapsed Time	1.292s	Elapsed Time Is The Exclusive (Self- Time-Based) Wall Time From The Beginning To The End Of Loop/Function Execution. For Single-Threaded Applications Elapsed Time Is Equal To Self-Time
Code Optimizations	ctorization Gain			Total Elapsed Time	2.060s	Total Elapsed Time Is The Inclusive (Total- Time-Based) Wall Time From The Beginning To The End Of Loop/Function Execution. For Single-Threaded Applications Total Elapsed Time Is Equal To Total-Time
compiler: Intel(R) C++ Intel(R) 64 Compiler for applie ntel(R) 64, /ersion: 18.0.2.199 Build 20180210	cations running on			Data transfers between C L1, L2, LLC and DRAM tr		emory sub-system (total traffic, including
Compiler estimated gain: <14.25x Compiler Notes On Vectorization:				In Giga Bytes, Not Includ Transfers For Functions The Loop Or Function		43.49952
 Masked Loop Vectorization Unaligned Access in Vector Loop 				In Giga Bytes Per Secon		33.67172
				In Bytes Per Loop Iteration	on	271.872

ínte

Demo – Roofline Comparison

Performance comparison

Precision of constant and variables: consistent use of single and double precision

Optimization Options	Performance
Baseline	1.3 GFs
-O2 -xcore-avx512 -qopt-zmm-usage=high	9.0 GFs
No FP converts	21.1 GFs
Data-layout optimization (100% vec. eff.)	37.7 GFs
Memory alignment	47.7 GFs

Performance tests are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. The results above were obtained on Google* Cloud Platform, compute engine, n1-standard-2 (2 vCPUs, 7.5 GB memory), CPU platform Intel® Skylake, Zone us-east1-b, running Ubuntu 16.4 and using the Intel® C++ Compiler version 19.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microprocessors. These optimization sets covered by this notice. Notice Revision #20110804.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

