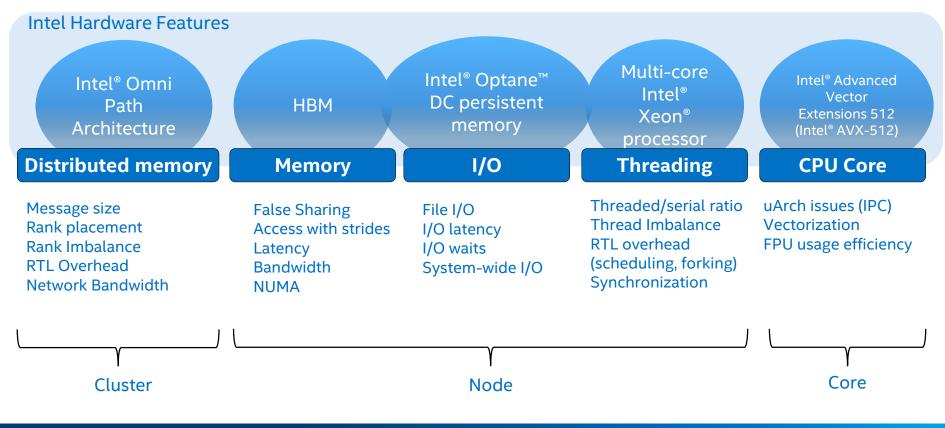


NUMA CHARACTERIZATION ON INTEL[®] XEON[®] Processors Using VTUNE[®] Amplifier[™]

Michael Steyer


Technical Consulting Engineer

Intel Architecture, Graphics & Software

Analysis Tools

ASPECTS OF HPC/THROUGHPUT APPLICATION PERFORMANCE

INTEL PARALLEL STUDIO TOOLS COVERING THE ASPECTS

Intel Hardware Features

Intel® Trace DiAnalyzer	Fintel® V Memory	Intel® Optane™ Tune™ tAm I/O	Multi-core Intel [®] plifier eon [®] processor Threading	Intel® Advanced Vector Extensions Intel®el® Advisor
Messageand Rank placement RaCollector RTL Overhead Network Bandwidth	False Sharing Access with strides Latency Bandwidth NUMA	File I/O I/O latency I/O waits System-wide I/O	Threaded/serial ratio Thread Imbalance RTL overhead (scheduling, forking) Synchronization	uArch issues (IPC) Vectorization FPU usage efficiency
Cluster		γ Node	J	Core

THE LONG & SHORT OF PERFORMANCE ANALYSIS

Get the big picture first with a Snapshot or Platform Profiler

	Snapshot Quickly size potential performance gain. Run a test "during a coffee break".	In-Depth Advanced collection & analysis. Insight for effective optimization.
Application Focus • HPC App developer focus • 1 app running during test	Intel® VTune™ Amplifier Application Performance Snapshot L [®]	Intel® VTune™ Amplifier• Many profilesS-M (P)Intel® Advisor• VectorizationS (P)Intel® Trace Analyzer and CollectorS-L (P)
 System Focus Deployed system focus Full system load test 	Intel® VTune™ Amplifier's Storage Performance Snapshot Lூ	Intel® VTune™ Amplifier - System-wide sampling S-M ℗ - Platform Profiler L ℗

Maximum collection times: L[®]=long (hours) M[®]=medium (minutes) S[®]=short (seconds-few minutes)

Analyze & Tune Application Performance Intel[®] VTune[™] Amplifier—Performance Profiler

	alysis Configuration Collecti	on Log	oun	nmary	Bottom-	ap our	er/Callee	Top-down	nee ria	form		
Gro	uping: Function / Call Stack										<u>× × P</u>	÷0
					CPU T	ïme 🔻		«	Context S	witch Time 📧	Context Swit	2
	Function / Call Stack				y Utilizatio		Spin Time	Overhead Time	Wait Time	Inactive Time	Preemption	ľ
u	pdateBusinessAccount	7.915s					0s	0s	0s	0.055s	934	1
Ŧ	main\$omp\$parallel_for@269	7.915s					0s	0s	0s	0.055s	934]
	Kmp_invoke_microtas	7.915s					0s	0s	0s	0.042s	815	
	updateBusinessAccount						Os	0s	0s	0.013s	119	
u	pdateCustomerAccount	7.766s					0s	0s	0s	0.052s	1,111	
_	_kmpc_atomic_fixed8_add	2.772s					0s	0s				
-	_kmpc_critical	Os					2.021s	0s	0s	0.014s	262	
	>	<									>	h
	D: 🕇 🗕 🔍 🔍	5s		2s	5.4s	5.6s	5.8s		2s	Thread	~	
	OMP Worker Thread #2 (TI								11.1.1	Runr	ning	
-	OMP Worker Thread #3 (TI	ار بیر ورز از	dh	المل أسر	المسابلة اللما	السية ألي	الأنبية بابتليات با	المراجع المحمل	Late	Contex		
	rtmtest openmp (TID: 12732)			1	i alta na	المحد		a shiise			emption	
F	OMP Worker Thread #1 (TI		ten ben me des date de la de la det la desta de la Norde de la desta de la dest									
-	CPU Time		-	بقريف إيدا	a de cale de cale	البلية ال	<u>ىلە بېرەۋىتلەرنىيا ب</u>	a in the second seco			and Overh	
	CF0 Time	مقدانی معلقی >	<u></u>	بالاستمرادية	يحيدهما سيرغ	<u>ىتەرىمەلە يەر.</u>	ولحمت فيقسأة أتبعز وياد	فاردوها وقيمه والرجال	<u>مع بياء</u>		CLK UNH	

Learn More: software.intel.com/intel-vtune-amplifier-xe

Save Time Optimizing Code

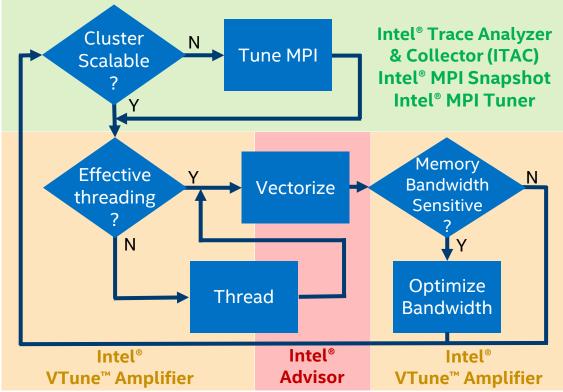
- Accurately profile C, C++, Fortran*, Python*, Go*, Java*, or any mix
- Optimize CPU, threading, memory, cache, storage & more
- Save time: rich analysis leads to insight
- Take advantage of <u>Priority Support</u>
 - Connects customers to Intel engineers for confidential inquiries (paid versions)

What's New in 2019 Release (partial list)

- New Platform Profiler! Longer Data Collection
- A more accessible user interface provides a simplified profiling workflow
- Smarter, faster Application Performance Snapshot: Analyze CPU utilization of physical cores, pause/resume, more... (Linux*)
- Improved JIT profiling for server-side/cloud applications

Two Great Ways to Collect Data

Intel[®] VTune[™] Amplifier


Software Collector	Hardware Collector
Uses OS interrupts	Uses the on chip Performance Monitoring Unit (PMU)
Collects from a single process tree	Collect system wide or from a single process tree.
~5ms default resolution	~1ms default resolution (finer granularity - finds small functions)
Either an Intel [®] or a compatible processor	Requires a genuine Intel [®] processor for collection
Call stacks show calling sequence	Optionally collect call stacks
Works in virtual environments	Works in a VM only when supported by the VM
	(e.g., vSphere*, KVM)
No driver required	Uses Intel driver or perf if driver not installed

No special recompiles - C, C++, C#, Fortran, Java, Python, Assembly

Performance Analysis Tools for Diagnosis

Intel[®] Parallel Studio XE

Optimization Notice Copyright © 2020, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

HANDS-ON INSTRUCTIONS

Login to RRZE System & Setup

- 1) \$ ssh -L <user> cshpc.rrze.fau.de
- 2) \$ screen
- 3) \$ ssh meggie
- 4) \$ cp /home/hpc/k_m85q/m85q0066/vtune_labs.tar.gz .
- 5) \$ tar -xzvf vtune_labs.tar.gz
- 6) \$ cd vtune_labs
- 7) \$ module load oneapi
- 8) \$./compile.sh

Run Benchmark & VTune on the Compute Node

- 1) \$ srun -N 1 -t 90 --reservation=PRACE-day3 -C hwperf --pty /bin/bash -l
- 2) \$ module load oneapi
- 3) \$ export OMP_PLACES=threads
- 4) \$./stream.x
- 5) \$./stream_mod.x
- 6) \$ diff ./stream.c ./stream_mod.c

#get baseline performance

#broken stream performance

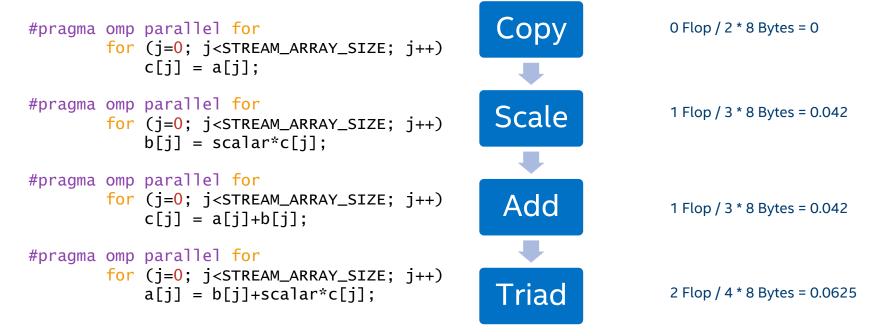
#no, that would be too easy

7) \$ vtune -c hotspots -r r_hs_mod -- ./stream_mod.x #first VTune analysis

8) \$ vtune – c ...

#will be discussed in the presentation

Start VTune Backend Server & Connect


- 1) Open another screen terminal (CTRL & a + c) and navigate to vtune_labs
- 2) \$ source /home/woody/unrz/unrz139/inteloneapi/setvars.sh #no module
- 3) \$ vtune-backend --web-port <UNIQUE PORT> --data-directory .
- 4) Detach from screen (CTRL & a + d) & logout (exit)
- 5) Reconect with Tunnel ssh ... -L <UNIQUE PORT> :localhost: <UNIQUE PORT>
- 6) \$ screen –x
- 7) Copy server URL (Serving GUI at) into your browser -> accept certificate
- 8) Go back to screen terminal 1 (CTRL & a + p) and continue to follow the presentation

STREAM

The Stream Benchmark John D. McCalpin (TACC)

Note that Stream is reporting the best Bandwidth rate out of 10 iterations per default

Optimization Notice Copyright © 2020, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Arithmetic intensity (>9 for peak DP DRAM)

Performance Note

Xeon Scalable 2nd Generation 8260

Name: Intel(R) Xeon(R) Processor code named Cascadelake
Frequency: 2.4 GHz
Logical CPU Count: 96
Max DRAM Single-Package Bandwidth: 128.0 GB/s (MHZ * ...)

Performance figures are reported OOB without further optimizations like hugepages

We modified Stream

- \$ icc -qopenmp -DSTREAM_ARRAY_SIZE=1000000000 -mcmodel large ../stream.c -02 -g -xHost -o stream.x \$ icc -qopenmp -DSTREAM_ARRAY_SIZE=1000000000 -mcmodel large ../stream_mod.c -02 -g -xHost -o stream_mod.x
- \$ export OMP_PLACES=threads

STREAM Baseline vs Modified stream.x

stream_mod.x

STREAM versi	on \$Revision: 5	.10 \$						
This system	uses 8 bytes pe	r array elem	ent.					
Array size = 1000000000 (elements), offset = 0 (elements) Memory per array = 7629.4 MiB (= 7.5 GiB). Total memory required = 22888.2 MiB (= 22.4 GiB). Each kernel will be executed 10 times. The *best* time for each kernel (excluding the first iteration) will be used to compute the reported bandwidth.								
	nreads requested nreads counted =	= 96						
Each test be (= 80675 Increase the	granularity/prec Plow will take o clock ticks) size of the ar getting at leas	n the order rays if this	of 80675 mic s shows that	roseconds.				
For best res	he above is onl sults, please be your system ti	sure you kr						
Copy: Scale: Add:	Best Rate MB/s 179386.1 187742.8 201301.6 200889.1	0.089317 0.085394 0.119386	0.089193 0.085223 0.119224	0.089479 0.085636 0.119830				
Solution Val	idates: avg err	or less thar	1.000000e-13	 3 on all three arr	ays			

STREAM vers	ion \$Revision: 5	.10 \$			
This system	uses 8 bytes pe	r array elem	ent.		
Memory per Total memor Each kernel The *best*	= 1000000000 (el array = 7629.4 M y required = 228 will be execute time for each k ed to compute th	iB (= 7.5 Gi 88.2 MiB (= d 10 times. ernel (exclu	B). 22.4 GiB). Iding the firs		
	hreads requested hreads counted =				
Each test b (= 22359 Increase th	granularity/prec elow will take o 1 clock ticks) e size of the ar getting at leas	n the order rays if this	of 223591 mic s shows that	croseconds.	
For best re	The above is onl sults, please be f your system ti	sure you kr			
Copy: Scale: Add:	Best Rate MB/s 95325.4 84390.4 107456.1 100594.8	0.205046 0.214661 0.263129	0.167846 0.189595 0.223347	0.230016 0.275163 0.317161	
Solution Va	lidates: avg err	or less thar	1.000000e-13	3 on all three	arrays

Optimization Notice

Copyright © 2020, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. intel

Problem Investigation What causes the memory bandwidth drop?

Collecting Hotspots

vtune -c hotspots -r r_hs_mod -- ./stream_mod.x

		≡
Motspots Hotspots by CPU Utilization • (⑦ ¹¹ / ₁	INTEL VTUNE AMPLIFIER 2019
Analysis Configuration Collection Log Summary	Bottom-up Caller/Callee Top-down Tree Platform	
 ◊ Effective Time[®]: 979. ◊ Spin Time[®]: 136. Imbalance or Serial Spinning[®]: 123. Lock Contention[®]: 0ther[®]: 12. 	8.020s 9.859s 6.098s ► 3.784s ► 0s 2.314s 9.063s 96 0s	Hotspots Insights If you see significant hotspots in the Top Hotspots list, switch to the Bottomup view for in-depth analysis per function. Otherwise, use the Caller/Callee view to track critical paths for these hotspots. Explore Additional Insights Parallelism ©: 44.8% № Use @ Threading to explore more opportunities to increase parallelism in your application. Microarchitecture Usage ©: 6.1% № Use @ Microarchitecture Exploration to explore how efficiently your application runs on the used hardware. Parallelism ©: 40.8%

ge Effective CPU Utilization

⊘ Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function	Module	CPU Time ®
main\$omp\$parallel_for@343	stream_mod.x	273.620s
main\$omp\$parallel_for@333	stream_mod.x	257.123s
intel_avx_rep_memcpy	libintlc.so.5	210.412s
main\$omp\$parallel_for@323	stream_mod.x	206.630s
kmp_fork_barrier	libiomp5.so	132.014s 🎙
[Others]		36.221s

*N/A is applied to non-summable metrics.

○ Effective CPU Utilization Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU utilization value.

o ×

B A→ ▶ ± ① ▷ ⑦ [r_hs_mod ×]

鱦 Hotspots Hotspots by CPU Utilization 🝷 🕐 📫

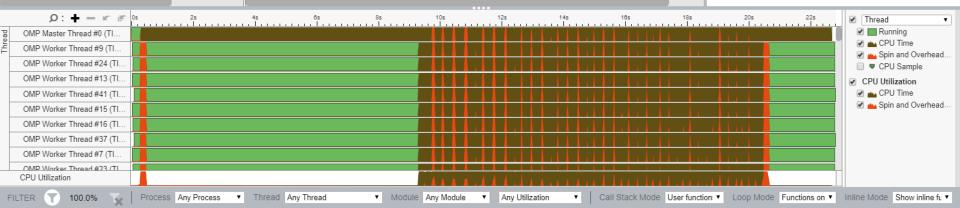
Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

Grouping: F	unction / C	Call Stack
-------------	-------------	------------

		CPU Time	«K				
Function / Call Stack	Effective Time	Spin Time »	Overhead Time	Module	Function (Full)	Source File	Start
main\$omp\$parallel_for@343	273.620s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401
main\$omp\$parallel_for@333	257.123s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401
intel_avx_rep_memcpy	210.412s	0s	0s	libintlc.so.5	intel_avx_rep_m		0x465
main\$omp\$parallel_for@323	206.630s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401
main\$omp\$parallel_for@286	20.914s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x402
main	8.940s	0s	0s	stream_mod.x	main	stream_mod.c	0x400
checkSTREAMresults	2.200s	0s	0s	stream_mod.x	checkSTREAMresults	stream_mod.c	0x402
[Outside any known module]	0.010s	0s	0s		[Outside any known		0
[Import thunk sched_yield]	0.010s	0s	0s	libiomp5.so	[Import thunk sched		0x281
kmp_get_global_thread_id_reg	0s	0s	0.020s	libiomp5.so	kmp_get_global	kmp_runtime.cpp	0xa96
kmp_join_call	0s	1.286s	0s	libiomp5.so	kmp_join_call	kmp_runtime.cpp	0xb2c
kmp_join_barrier	0s	2.798s	0s	libiomp5.so	kmp_join_barrier(kmp_barrier.cpp	0x6b4
kmp_fork_barrier	0s	132.014s	0s	libiomp5.so	kmp_fork_barrier	kmp_barrier.cpp	0x6c1
kmp_finish_implicit_task	0s	0s	0.023s	libiomp5.so	kmp_finish_impli	kmp_tasking.cpp	0xd97
INTERNAL_25src_kmp_runtime_cpp_16bf24c5::k	0s	0s	0.020s	libiomp5.so	_INTERNAL_25	kmp_itt.inl	0xadf;

 Image: Start
 CPU Time

 e File
 Start
 100.0% (273.620s of 273.620s)


 bd.c
 0x401
 ibiomp5.sol[OpenMP dispatcher]+0x125 - kmp_runtime.cpp:7540

 bd.c
 0x401
 ibiomp5.sol[OpenMP dispatcher]+0x125 - kmp_runtime.cpp:2494

 bd.c
 0x402
 ibiomp5.sol[OpenMP fork]+0x176 - kmp_csupport.cpp:365

 od.c
 0x404
 ibic so.61_libic_start_main+0x174 - stream_mod.c:343

 ibic so.61_libic_start_main+0x164 - [unknown source file]
 stream_mod.xl_start+0x28 - [unknown source file]

× =

٥

INTEL VTUNE AMPLIFIER 2019

🖥 🛱 🕨 📩 🕕 🗁 🕐 🛛 r hs mod 🗙

Eurotian / Call Otaals

<u> Hotspots</u> Hotspots by CPU Utilization 🝷 🕐 📆

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

Grouping: Function / Call S	itack						• •	о, ₆
		CPU Time	«					
Fund	Effective v	Spin Time »	Overhead Time	Module	Function (Full)	Source File	Star	
main\$omp\$parallel_for@	343	273.620s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401
main\$omp\$parallel_for@	View Source	257.123s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401
intel_avx_rep_memcp;	Whethe This Oshuma0	210.412s	0s	0s	libintlc.so.5	intel_avx_rep_m		0x465
main\$omp\$parallel_for@	What's This Column?	206.630s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401
main\$omp\$parallel_for@	Hide Column	20.914s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x402
▶ main	Show All Columns	8.940s	0s	0s	stream_mod.x	main	stream_mod.c	0x400
checkSTREAMresults	Select All	2.200s	0s	0s	stream_mod.x	checkSTREAMresults	stream_mod.c	0x402
[Outside any known mod	Collapse All	0.010s	Os	0s		[Outside any known		0
[Import thunk sched_yield	Expand Selected Rows	0.010s	0s	0s	libiomp5.so	[Import thunk sched		0x281
kmp_get_global_threa		0s	Os	0.020s	libiomp5.so	kmp_get_global	kmp_runtime.cpp	0xa96
kmp_join_call	Copy Rows to Clipboard	0s	1.286s	0s	libiomp5.so	kmp_join_call	kmp_runtime.cpp	0xb2c
kmp_join_barrier	Copy Cell to Clipboard	0s	2.798s	0s	libiomp5.so	kmp_join_barrier(kmp_barrier.cpp	0x6b4
kmp_fork_barrier	Export to CSV	0s	132.014s	0s	libiomp5.so	kmp_fork_barrier	kmp_barrier.cpp	0x6c1
kmp_finish_implicit_ta:	Filter In by Selection	0s	0s	0.023s	libiomp5.so	kmp_finish_impli	kmp_tasking.cpp	0xd97
_INTERNAL_25	Filter Out by Selection	_k Os	Os	0.020s	libiomp5.so	_INTERNAL_25	kmp_itt.inl	0xadf

 CPU Time

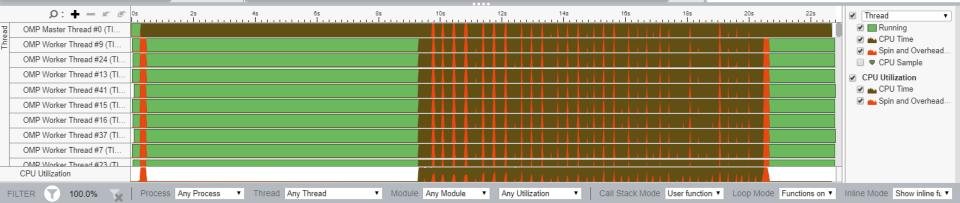
 Viewing < 1 of 1 ≥ selected stack(s)</td>

 100.0% (273.620s of 273.620s)

 stream_mod.xlmain\$omp\$parallel_for@343 - stream_mod.c

 libiomp5.sol[OpenMP dispatcher]+0x125 - kmp_runtime.cpp:7540

 libiomp5.sol[OpenMP dispatcher]+0x126 - kmp_runtime.cpp:2494


 libiomp5.sol[OpenMP fork]+0x17f - kmp_csupport.cpp:365

 stream_mod.xlmain+0xd74 - stream_mod.c:343

 libc.so.6l_libc_start_main+0xf4 - [unknown source file]

 stream_mod.xl_start+0x28 - [unknown source file]

- 41 0 0

o ×

INTEL VTUNE AMPLIFIER 2019

🌌 Intel VTune Amplifier ٥ X 🖹 🖧 🕨 📩 🕕 🗁 🕐 🛛 r_hs_mod 🗙 \equiv 鱦 Hotspots Hotspots by CPU Utilization 🔻 🕐 📆 **INTEL VTUNE AMPLIFIER 2019** Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform CPU Time ▼ 🛠 🔎 ‰ • Grouping: Function / Call Stack Viewing < 1 of 1 → selected stack(s) CPU Time ≪ 100.0% (273.620s of 273.620s) Function / Call Stack * Module Function (Full) Source File Start Ad 33 Effective Time Spin Time Overhead Time stream_mod.x!main\$omp\$parallel_for@343 - stream_mod.c libiomp5.sol[OpenMP dispatcher]+0x125 - kmp runtime.cpp:7540 main\$omp\$parallel for@343 273.620s 0x401ac 0s stream mod.x main\$omp\$parallel.. stream mod.c libiomp5.so! __kmp_fork_call+0x16a8 - kmp_runtime.cpp:2494 libiomp5.so![OpenMP fork]+0x17f - kmp csupport.cpp:365 stream mod.xlmain+0xd74 - stream mod.c:343 libc.so.6! libc_start_main+0xf4 - [unknown source file] stream mod.x! start+0x28 - [unknown source file] Q: **+** = ⊮ ⊮ 18s 20s 22s 25 4s 6s 8s 10s 12s 14s 16s Thread • Running OMP Worker Thread #83 (TI. 🖉 👜 CPU Time OMP Worker Thread #84 (TI. Spin and Overhead. OMP Worker Thread #60 (TI. 🔲 🛡 CPU Sample OMP Worker Thread #85 (TL. CPU Utilization 🕑 📥 CPU Time OMP Worker Thread #78 (TL. Spin and Overhead. OMP Worker Thread #56 (TL. OMP Worker Thread #82 (TI. OMP Worker Thread #59 (TL OMP Worker Thread #75 (TI... OMP Worker Thread #57 (TI CPU Utilization FILTER 24.5% Process Any Process Thread Any Thread Module Any Module Any Utilization Call Stack Mode User functions Loop Mode Functions onl Inline Mode Show inline fu ×Ι 1 **v**

皆 斗 🕨 📩 🕕 🗁 ⑦ 🛛 r_hs_mod 🗙

<u>M</u> Hotspots Hotspots by CPU Utilization 🔹 🕐 🛗

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

Grouping: Function / Call Stack

		CPU Time	«				
Function / Call Stack	Effective Time	Spin Time	Overhead Time	Module	Function (Full)	Source File	Start
main\$omp\$parallel_for@343	273.620s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401
main\$omp\$parallel_for@333	257.123s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401
intel_avx_rep_memcpy	210.412s	0s	0s	libintlc.so.5	intel_avx_rep_m		0x465
main\$omp\$parallel_for@323	206.630s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401
main\$omp\$parallel_for@286	20.914s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x402
main	8.940s	0s	0s	stream_mod.x	main	stream_mod.c	0x400
checkSTREAMresults	2.200s	0s	0s	stream_mod.x	checkSTREAMresults	stream_mod.c	0x402
[Outside any known module]	0.010s	0s	0s		[Outside any known		0
[Import thunk sched_yield]	0.010s	0s	0s	libiomp5.so	[Import thunk sched		0x281
kmp_get_global_thread_id_reg	0s	0s	0.020s	libiomp5.so	kmp_get_global	kmp_runtime.cpp	0xa96
kmp_join_call	0s	1.286s	0s	libiomp5.so	kmp_join_call	kmp_runtime.cpp	0xb2c
kmp_join_barrier	0s	2.798s	0s	libiomp5.so	kmp_join_barrier(kmp_barrier.cpp	0x6b4
kmp_fork_barrier	0s	132.014s	0s	libiomp5.so	kmp_fork_barrier	kmp_barrier.cpp	0x6c1
kmp_finish_implicit_task	0s	0s	0.023s	libiomp5.so	kmp_finish_impli	kmp_tasking.cpp	0xd97
INTERNAL_25src_kmp_runtime_cpp_16bf24c5::k	0s	0s	0.020s	libiomp5.so	_INTERNAL_25	kmp_itt.inl	0xadfi

▼ 🛠 🔎 🐜 Viewing < 1 of 1 → selected stack(s) 100.0% (273.620s of 273.620s) stream_mod.x!main\$omp\$parallel_for@343 - stream_mod.c libiomp5.so![OpenMP dispatcher]+0x125 - kmp_runtime.cpp:7540 libiomp5.sol_kmp_fork_call+0x16a8 - kmp_runtime.cpp:2494 libiomp5.so![OpenMP fork]+0x17f - kmp_csupport.cpp:365 stream_mod.x!main+0xd74 - stream_mod.c:343 libc.so.6!__libc_start_main+0xf4 - [unknown source file] stream_mod.x!_start+0x28 - [unknown source file]

CPU Time

	Q: + = ⊮ ⊮	0s 2s	4s	6s	8s	10s	12s 14s	16s	18s	20.727s [Durati	on: 11.528s]	✓ Thread	T
ead	OMP Master Thread #0 (TI											Running	
μ ¹ Ο	MP Worker Thread #9 (TI										Zoom In on S	election	ad
0	MP Worker Thread #24 (TI										Filter In by Se	election	
0	MP Worker Thread #13 (TI										Filter Out by S		
0	MP Worker Thread #41 (TI										Zoom In and	Filter In by Selection	
0	MP Worker Thread #15 (TI										Dismiss Men	1	ad
0	MP Worker Thread #16 (TI												-
0	MP Worker Thread #37 (TI												
0	MP Worker Thread #7 (TI												
0	MP Worker Thread #23 (TI												
CF	PU Utilization						4 4 . 4 4 4 . 4 4		11.111.1				
FILTE	ER 🝸 100.0%	Process Any Proc	ess • Thread	Any Thread	 Module 	Any Module 🔹	Any Utilization	Call Stack Mod	e User function:	Loop Mode	Functions on v	Inline Mode Show inli	ine fu 🔻

 \times \equiv

•

D

INTEL VTUNE AMPLIFIER 2019

_

🖥 🛱 🕨 📩 🕕 🗁 🕐 🛛 r hs mod 🗙

鱦 Hotspots Hotspots by CPU Utilization 🝷 🕐 📫

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

Grouping: Function / Call Stack						▼ 🛠	Q
		CPU Time	«				
Function / Call Stack	Effective Time	Spin Time »	Overhead Time	Module	Function (Full)	Source File	Start
main\$omp\$parallel_for@343	273.620s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401
main\$omp\$parallel_for@333	257.123s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401
intel_avx_rep_memcpy	210.412s	0s	0s	libintlc.so.5	intel_avx_rep_m		0x465
main\$omp\$parallel_for@323	206.630s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401
main\$omp\$parallel_for@286	20.914s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x402
checkSTREAMresults	0.250s	0s	0s	stream_mod.x	checkSTREAMresults	stream_mod.c	0x402
main	0.100s	0s	0s	stream_mod.x	main	stream_mod.c	0x40C
[Outside any known module]	0.010s	0s	Os		[Outside any known		0
[Import thunk sched_yield]	0.010s	0s	0s	libiomp5.so	[Import thunk sched		0x281
kmp_join_call	0s	1.266s	0s	libiomp5.so	kmp_join_call	kmp_runtime.cpp	0xb2c
kmp_join_barrier	0s	2.706s	0s	libiomp5.so	kmp_join_barrier(kmp_barrier.cpp	0x6b4
kmp_fork_barrier	0s	111.939s	0s	libiomp5.so	kmp_fork_barrier	kmp_barrier.cpp	0x6c1
kmp_finish_implicit_task	Os	0s	0.010s	libiomp5.so	kmp_finish_impli	kmp_tasking.cpp	0xd97
INTERNAL_25src_kmp_runtime_cpp_16bf24c5::k	0s	0s	0.020s	libiomp5.so	_INTERNAL_25	kmp_itt.inl	0xadfi

 Arein
 CPU Time

 Viewing < 1 of 1 > selected stack(s)

 tart
 100.0% (273.620s of 273.620s)

 stream_mod.x!main\$omp\$parallel_for@343 - stream_mod.c

 libiomp5.sol[OpenMP dispatcher]+0x125 - kmp_runtime.cpp:7540


 libiomp5.sol_kmp_fork_call+0x16a8 - kmp_runtime.cpp:2494

 libiomp5.sol[OpenMP fork]+0x17f - kmp_csupport.cpp:365

 stream_mod.x!main+0xd74 - stream_mod.c:343

 libc.so.6!_libc_start_main+0xf4 - [unknown source file]

 stream_mod.x!_start+0x28 - [unknown source file]

o ×

INTEL VTUNE AMPLIFIER 2019

🖹 🖧 🕨 ڬ 🕕 🗁 🕐 🛛 r_hs_mod 🗙

📂 Hotspots Hotspots by CPU Utilization 👻 🕐

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform stream_mod.c ×

Source Assembly 🔲 = 🍻 😽 🛶 🔩 Assembly grouping: Address

🛦	Source	🖕 CPU Time: Total 🚿	CPU Tim	Address 🛦	Sour	Assembly	👍 CPU Time: Total 🚿	CPI
327	<pre>times[1][k] = mysecond() - times[1][k];</pre>			0x401c0a	343	xor %r15d, %r15d		
328				0x401c0d	343	sub %rdx, %r8		
329	<pre>times[2][k] = mysecond();</pre>			0x401c10	343	xor %r14d, %r14d		
330	#ifdef TUNED			0x401c13	343	and \$0x3, %r8		
331	<pre>tuned_STREAM_Add();</pre>			0x401c17	343	neg %r8		
332	#else			0x401c1a	343	add %r9, %r8		
333	#pragma omp parallel for			0x401c1d	343	cmp \$0x1, %rdx		
334	<pre>for (j=0; j<stream_array_size; j++)<="" pre=""></stream_array_size;></pre>			0x401c21	343	jnb 0x403053		
335	c[j] = a[j]+b[j];			0x401c3b		Block 7:		_
336	#endif			0x401c3b	343	vbroadcastsdg 0x20(%rsp), %ymm0		_
337	<pre>times[2][k] = mysecond() - times[2][k];</pre>			0x401c42		Block 8:		
338				0x401c42	345	leag (%r10,%rdx,1), %rax	0.0%	
339	<pre>times[3][k] = mysecond();</pre>			0x401c46	343	add \$0x4, %rdx	0.0%	
340	#ifdef TUNED			0x401c4a	345	vmovupdy (%rcx,%rax,8), %ymm1	0.2%	
341	<pre>tuned_STREAM_Triad(scalar);</pre>			0x401c4f	345	vfmadd213pdy (%r13,%rax,8), %ymm0, %ymm1	14.7%	
342	#else			0x401c56	345	vmovntpdy %ymm1, (%r11,%rax,8)	10.3%	
343	#pragma omp parallel for	25.3%		0x401c5c	343	cmp %r8, %rdx	0.1%	
344	<pre>for (j=0; j<stream_array_size; j++)<="" pre=""></stream_array_size;></pre>			0x401c5f	343	jb 0x401c42 <block 8=""></block>		_
345	a[j] = b[j]+scalar*c[j];	25.1%		0x401c61		Block 9:		
346	#endif			0x401c61	343	mfence		
347	<pre>times[3][k] = mysecond() - times[3][k];</pre>			0x401c64	343	leag 0x1(%r8), %rax		
348	}			0x401c68	343	cmp %r9, %rax		_
349				0x401c6b	343	jbe 0x403002 <block 12=""></block>		
350	/* SUMMARY */			0x401c71		Block 10:		
351				0x401c71	343	mov \$0x400a60, %rax		_
352	for (k=1; k <ntimes; *="" first="" iteration<="" k++)="" note="" skip="" td=""><td></td><td></td><td>0x401c7b</td><td>343</td><td>mov %rbx, %rdi</td><td></td><td></td></ntimes;>			0x401c7b	343	mov %rbx, %rdi		
353	{			0x401c7e	343	mov %r12d, %esi		
354	for (j=0; j<4; j++)			0x401c81	343	vzeroupper		
355	{			0x401c84	343	callg %rax		
356	<pre>avgtime[j] = avgtime[j] + times[j][k];</pre>			0x401c86		Block 11:		
357	<pre>mintime[j] = MIN(mintime[j], times[j][k]);</pre>			0x401c86	343	xor %eax, %eax		
358	<pre>maxtime[j] = MAX(maxtime[j], times[j][k]);</pre>			0x401c88	343	movq 0x2c0(%rsp), %r15		
359	}			0x401c90	343	movq 0x2c8(%rsp), %r14		
360	}			0x401c98	343	movq 0x2d0(%rsp), %r13		_

× ≡

۹ ۹

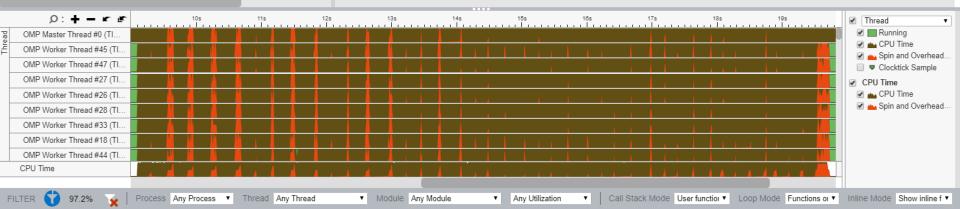
Ð

INTEL VTUNE AMPLIFIER 2019

_

Collecting Hotspots via EBS

vtune -c hotspots -knob sampling-mode=hw -r r_hshw_mod -- ./stream_mod.x


🖹 🏹 🕨 📩 🕕 🗁 🕐 🛛 r_hshw_mod 🗙

📂 Hotspots Hotspots by CPU Utilization 🝷 🕐 📆

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

Grouping: Function / Call Stack

Function / Call Stack	CPU Time 🔻	Instructions Retired	Microarchitecture Usage »	Module	Function (Full)	Source File	Start Address
▶ main\$omp\$parallel_for@343	255.238s	17,844,000,000	1.4%	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401ada
main\$omp\$parallel_for@333	230.836s	17,400,000,000	1.6%	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401cb5
main\$omp\$parallel_for@323	186.121s	15,012,000,000	1.7%	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401e70
intel_avx_rep_memcpy	185.084s	7,728,000,000	0.8%	libintlc.so.5	intel_avx_rep_m		0x46580
INTERNAL_25src_kmp_barrier_cpp_38a91946::kmp_wait_template <kmp_< p=""></kmp_<>	78.815s 🛑	130,584,000,000	44.5%	libiomp5.so	bool_INTERNAL_2	kmp_wait_release.h	0x628e0
▶ [vmlinux]	48.674s	18,984,000,000	11.5%	vmlinux	[vmlinux]		0
main\$omp\$parallel_for@286	17.892s 🚦	1,884,000,000	1.8%	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x40218b
INTERNAL_25src_kmp_barrier_cpp_38a91946::kmp_wait_template <kmp< p=""></kmp<>	2.817s	4,476,000,000	45.6%	libiomp5.so	bool_INTERNAL_2	kmp_wait_release.h	0x63435
kmp_flag_native <unsigned long="">::get</unsigned>	0.922s	8,064,000,000	63.6%	libiomp5.so	kmp_flag_native <u< td=""><td>kmp_wait_release.h</td><td>0x62c3f</td></u<>	kmp_wait_release.h	0x62c3f
▶ sched_yield	0.301s	36,000,000	37.0%	libc-2.17.so	sched_yield		0xe2e00
checkSTREAMresults	0.271s	540,000,000	0.0%	stream_mod.x	checkSTREAMresults	stream_mod.c	0x4029da
▶ main	0.035s	12,000,000	6.2%	stream_mod.x	main	stream_mod.c	0x400c90
kmp_x86_pause	0.025s	0	0.0%	libiomp5.so	kmp_x86_pause	kmp.h	0x62b18
kmp_basic_flag_native <unsigned long="">:::notdone_check</unsigned>	0.025s	24,000,000	0.0%	libiomp5.so	kmp_basic_flag_nat	kmp_wait_release.h	0x62c3f
kmp_finish_implicit_task	0.020s	0	0.0%	libiomp5.so	kmp_finish_impli	kmp_tasking.cpp	0xd97a0
INTERNAL_25src_kmp_barrier_cpp_38a91946::kmp_hyper_barrier_gathe	0.015s	216,000,000	100.0%	libiomp5.so	_INTERNAL_25	kmp_barrier.cpp	0x632a0
_kmp_yield	0.015s	0	0.0%	libiomp5.so	kmp_yield	z_Linux_util.cpp	0xf0ef0
kmpc_for_static_fini	0.015s	0	0.0%	libiomp5.so	kmpc_for_static	kmp_csupport.cpp	0x70a00

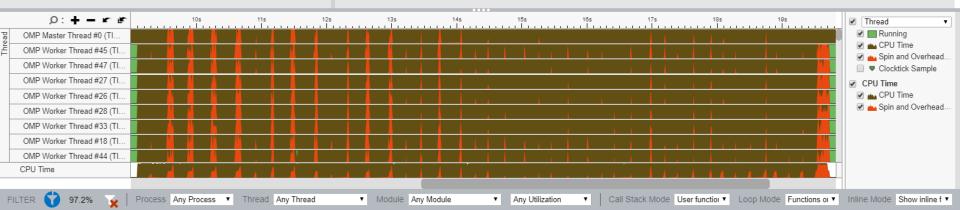
× ≡

▼ 🛠 🔉 ೀ,,

٥

INTEL VTUNE AMPLIFIER 2019

_


🖹 🛱 🕨 📩 🕕 🗁 🕐 🛛 r_hshw_mod 🗙

<u>M</u> Hotspots Hotspots by CPU Utilization 🝷 🕐 📺

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

Grouping: Core / Thread / Function / Call Stack

Core / Thread / Function / Call Stack 🔺	CPU Time »	Instructions Retired	Microarchitecture Usage 🔌	Module	Function (Full)	Source File	Start Address	PID	TID
▼ core_0	21.205s	4,968,000,000	4.2%				0	0	0
OMP Master Thread #0 (TID: 418857)	10.695s 📃	2,604,000,000	4.4%				0	418	418
OMP Worker Thread #1 (TID: 418971)	10.510s 📃	2,364,000,000	4.0%				0	418	418
▶ core_1	20.959s	5,784,000,000	5.7%				0	0	0
> core_2	21.044s	4,716,000,000	9.8%				0	0	0
▶ core_3	21.024s	4,680,000,000	4.2%				0	0	0
▼ core_4	21.049s	4,656,000,000	3.9%				0	0	0
OMP Worker Thread #8 (TID: 418978)	10.525s	2,352,000,000	4.0%				0	418	418
OMP Worker Thread #9 (TID: 418979)	10.525s	2,304,000,000	3.8%				0	418	418
▶ core_5	21.034s	4,692,000,000	4.2%				0	0	0
▶ core_6	21.024s	4,692,000,000	9.8%				0	0	0
v core_7	21.024s	4,680,000,000	4.2%				0	0	0
OMP Worker Thread #14 (TID: 418984)	10.505s	2,328,000,000	4.1%				0	418	418
OMP Worker Thread #15 (TID: 418985)	10.520s	2,352,000,000	4.2%				0	418	418
▼ core_8	20.959s	4,668,000,000	4.1%				0	0	0
OMP Worker Thread #16 (TID: 418986)	10.454s 📃	2,340,000,000	4.1%				0	418	418
OMP Worker Thread #17 (TID: 418987)	10.505s	2,328,000,000	4.1%				0	418	418
▶ core_9	21.059s	5,808,000,000	5.4%				0	0	0

× ≡

▼ 🛠 🔎 🖫

٥

INTEL VTUNE AMPLIFIER 2019

_

Collecting HPC Performance

vtune -c hpc-performance -r r_hpc_mod -- ./stream_mod.x

Manual Manual Intel VTune Amplifier

🔓 🖧 🕨 📩 🕕 🗁 🕐 🛛 r hpc mod 🗙

<u>ള</u> HPC Performance Characterization HPC Performance Characterization 🔹 🕐 📆

Analysis Configuration Collection Log Summary Bottom-up

SP GFLOPS : 0.000 DP GFLOPS 2: 0.990 x87 GELOPS 0.000 CPI Rate 2: 9.293 🖻 Average CPU Frequency 2: 2.4 GHz Total Thread Count: 96

Effective Physical Core Utilization ⁽²⁾: 44.3% (21.274 out of 48) (\checkmark)

Effective Logical Core Utilization ⁽²⁾: 43.9% (42.101 out of 96) R

Serial Time (outside parallel regions)[™]: 11.449s (52.6%) ►

○ Top Serial Hotspots (outside parallel regions)

This section lists the loops and functions executed serially in the master thread outside of any OpenMP region and consuming the most CPU time. Improve overall application performance by optimizing or parallelizing these hotspot functions. Since the Serial Time metric includes the Wait time of the master thread, it may significantly exceed the aggregated CPU time in the table.

Function	Module	Serial CPU Time ®
[vmlinux]	vmlinux	4.962s 🎙
[Loop at line 268 in main]	stream_mod.x	4.210s 🏲
[Loop at line 462 in checkSTREAMresults]	stream_mod.x	2.225s
func@0x7d340	libittnotify_collector.so	0.005s
[sep5]	sep5	0.005s

*N/A is applied to non-summable metrics

() Parallel Region Time ⁽²⁾: 10.323s (47.4%)

S Effective CPU Utilization Histogram

⊘ Memory Bound ^②: 86.7% ► of Pipeline Slots Cache Bound 2: 32.5% Not Clockticks ORAM Bound ^②: 51.1% Nof Clockticks DRAM Bandwidth Bound ^②: 43.9% ▶ of Elapsed Time NUMA: % of Remote Accesses 2: 32.8% NUMA: % (>) Bandwidth Utilization Histogram

✓ Vectorization⁽²⁾: 100.0% of Packed FP Operations

Ð

hm	Intel	VTune	Amplifie	r
<u> </u>	inter	viune	Ampline	

Analys

B A ► 📩 ① > ⑦ r_hpc_mod ×

<u>ള</u> HPC Performance Characterization HPC Performance Characterization 🔹 🕐 📆

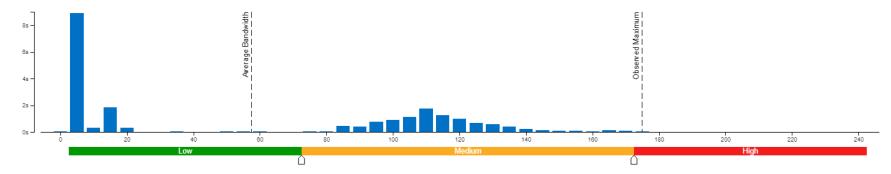
sis Configuration	Collection Log	Summary	Bottom-up	
[Loop at line 4	162 in checkSTR	REAMresults]	stream_mod.x	2.225s
func@0x7d34	0		libittnotify_collector.so	0.005s
[sep5]			sep5	0.005s

*N/A is applied to non-summable metrics.

- ② Parallel Region Time^③: 10.323s (47.4%)
- Effective CPU Utilization Histogram

⊘ Memory Bound ^②: 86.7% ► of Pipeline Slots

Cache Bound[®]: 32.5% **▶** of Clockticks ⊘ DRAM Bound[®]: 51.1% **▶** of Clockticks DRAM Bandwidth Bound[®]: 43.9% **▶** of Elapsed Time NUMA: % of Remote Accesses[®]: 32.8% **▶**


Bandwidth Utilization Histogram

Explore bandwidth utilization over time using the histogram and identify memory objects or functions with maximum contribution to the high bandwidth utilization.

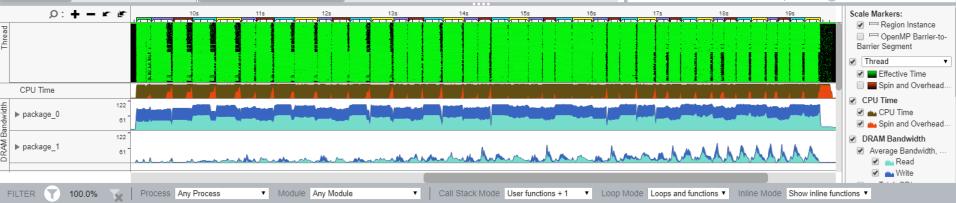
Bandwidth Domain: DRAM, GB/sec •

Bandwidth Utilization Histogram

This histogram displays the wall time the bandwidth was utilized by certain value. Use sliders at the bottom of the histogram to define thresholds for Low, Medium and High utilization levels. You can use these bandwidth utilization types in the Bottom-up view to group data and see all functions executed during a particular utilization type. To learn bandwidth capabilities, refer to your system specifications or run appropriate benchmarks to measure them; for example, Intel Memory Latency Checker can provide maximum achievable DRAM and Interconnect bandwidth.

Ð

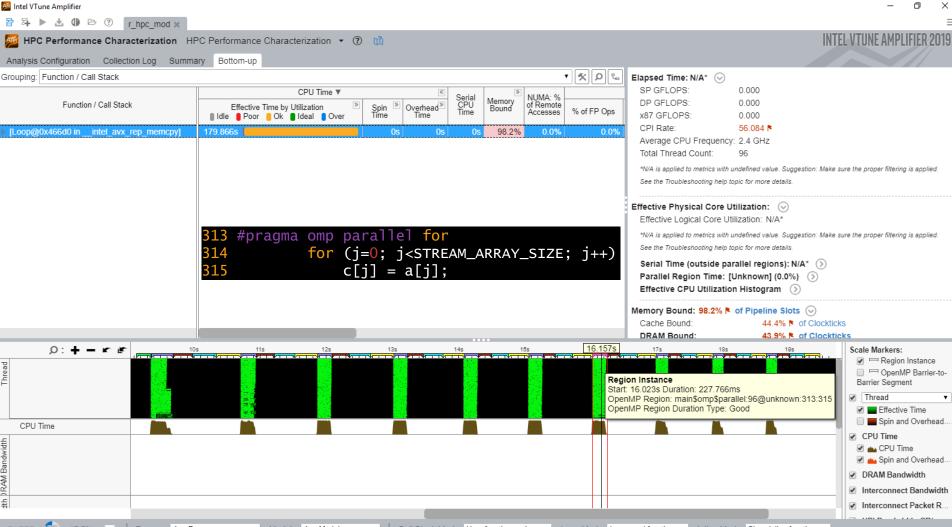
🖹 🖧 🕨 📩 🕕 🗁 🕐 🛛 r_hpc_mod 🗙


<u> HPC Performance Characterization</u> HPC Performance Characterization 🔹 🕐 📆

Analysis Configuration Collection Log Summary Bottom-up

Grouping: Function / Call Stack						,	• 🛠 P 👊	E
	CPU Time 🔻		«	Sorial	20	NUMA: %		
Function / Call Stack	Effective Time by Utilization 🔊	Spin [≫] Time	Overhead [®] Time	Serial CPU Time	Memory Bound	of Remote Accesses	% of FP Ops	
[Loop at line 343 in main\$omp\$parallel_for@343]	249.314s	0s	0s	0s	96.5%	30.9%	22.7%	
[Loop at line 333 in main\$omp\$parallel_for@333]	226.390s	0s	0s	0s	96.2%	36.0%	8.3%	
[Loop at line 323 in main\$omp\$parallel_for@323]	183.530s	0s	0s	0s	96.5%	16.7%	0.8%	
[Loop@0x466d0 inintel_avx_rep_memcpy]	179.866s	0s	0s	0s	98.2%	0.0%	0.0%	E
[Loop at line 361 in _INTERNAL_25src_k	Os	96.326s	0s	0s	9.4%	0.0%	0.0%	1
[vmlinux]	53.415s	0s	0s	4.962s	69.5%	0.0%	0.0%	
[Loop at line 286 in main\$omp\$parallel_for@286]	17.471s 📒	0s	0s	0s	98.5%	0.0%	0.0%	
[Loop at line 268 in main]	4.210s	0s	0s	4.210s	90.3%	0.0%	0.0%	
INTERNAL_25src_kmp_barrier_cpp_38	0s	2.777s	0s	0s	8.1%	0.0%	0.0%	
[Loop at line 462 in checkSTREAMresults]	2.225s	0s	0s	2.225s	55.9%	66.7%	0.0%	м
kmp_flag_native <unsigned long="">::get</unsigned>	Os	1.103s	0s	0s	0.0%	0.0%	0.0%	
sched_yield	Os	0.346s	0s	0s	0.0%	0.0%	0.0%	
▶ [sep5]	0.150s	0s	0s	0.005s	0.0%	0.0%	0.0%	
[Loop at line 841 in _INTERNAL_25src_k	Os	0.020s	0s	0s	0.0%	0.0%	0.0%	
kmp_x86_pause	Os	0.015s	0s	0s	0.0%	0.0%	0.0%	
[Loop at line 2073 inkmp_join_barrier]	Os	0.015s	Os	0s	0.0%	0.0%	0.0%	
								Ve

Elapsed Time: 21.772s 🕟 SP GFLOPS: 0.000 DP GFLOPS: 0.990 0.000 x87 GFLOPS: CPI Rate: 9 293 🖻 Average CPU Frequency: 2.4 GHz Total Thread Count: 96 Effective Physical Core Utilization: 44.3% (21.274 out of 48) 🍋 🕟 Effective Logical Core Utilization: 43.9% (42.101 out of 96) N Serial Time (outside parallel regions): 11.449s (52.6%) 🕅 🕥 Parallel Region Time: 10.323s (47.4%) (5) Effective CPU Utilization Histogram (>) Memory Bound: 86.7% 🕅 of Pipeline Slots 😔 Cache Bound: 32.5% Nof Clockticks DRAM Bound: 51.1% K of Clockticks DRAM Bandwidth Bound: 43.9% ▶ of Elapsed Time NUMA: % of Remote Accesses: 32.8% NUMA: % Bandwidth Utilization Histogram (>)


Vectorization: 100.0% of Packed FP Operations 🕟

 \times

đ

Process Any Process Module Any Module Call Stack Mode User functions + 1 Loop Mode Loops and functions
Inline Mode Show inline functions **v** 17.7%

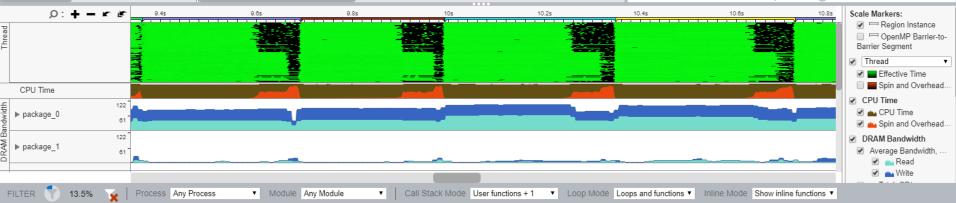
麺 Intel VTune Amplifier							– o ×
皆 斗 🕨 📩 🕕 🗁 ⑦ 🛛 r_hpc_mod 🗙							=
HPC Performance Characterization HP	C Performance Characterization 🔹 (Э щ				IN	TEL VTUNE AMPLIFIER 2019
Analysis Configuration Collection Log Summa	ry Bottom-up						
Grouping: Function / Call Stack				• 🛠 🔎 🖫	Elapsed Time: N/A* 😔		
	CPU Time 🔻	« Serial	Memory Bound			000	
Function / Call Stack	Effective Time by Utilization	Spin Overhead Time Time Time Time	Memory Bound Accesses	% of FP Ops		000 000	
[vmlinux]	46.699s	0s 0s 0.045s	68.3% 0.0%	0.0%		422 🖻	
(minitex)		0.040	00.070 0.070	0.070	Average CPU Frequency: 2.4	4 GHz	
					Total Thread Count: 96	5	
					*N/A is applied to metrics with undef		e sure the proper filtering is applied.
					See the Troubleshooting help topic f	for more details.	
					Effective Physical Core Utiliz	ation: 🐼	
					Effective Logical Core Utilizat	tion: N/A*	
					*N/A is applied to metrics with undef	fined value. Suggestion: Make	e sure the proper filtering is applied.
					See the Troubleshooting help topic f	for more details.	
					Serial Time (outside paralle		
					Parallel Region Time: [Unk	•••••	
					Effective CPU Utilization Hi	istogram 📎	
					Memory Bound: 68.3% 🕅 of F	Pipeline Slots 😔	
					Cache Bound:	47.5% 🖻 of Clockti	
					DRAM Bound:	19.8% Nof Clock	
						195 	Scale Markers: Region Instance OpenMP Barrier-to- Barrier Segment Thread Effective Time
CPU Time							Spin and Overhead
dt -							CPU Time
							Spin and Overhead
RAM Bandwidth							DRAM Bandwidth
I RAM							✓ Interconnect Bandwidth
fi i i i i i i i i i i i i i i i i i i							 Interconnect Packet R

 \equiv

Interconnect Packet R.

 Module Any Module
 Call Stack Mode User functions + 1 FILTER 🐈 4.6% 🙀 Process Any Process ▼ Loop Mode Loops and functions ▼ Inline Mode Show inline functions ▼

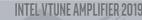
🖹 🖧 🕨 📩 🕕 🗁 🕐 🛛 r_hpc_mod 🗙

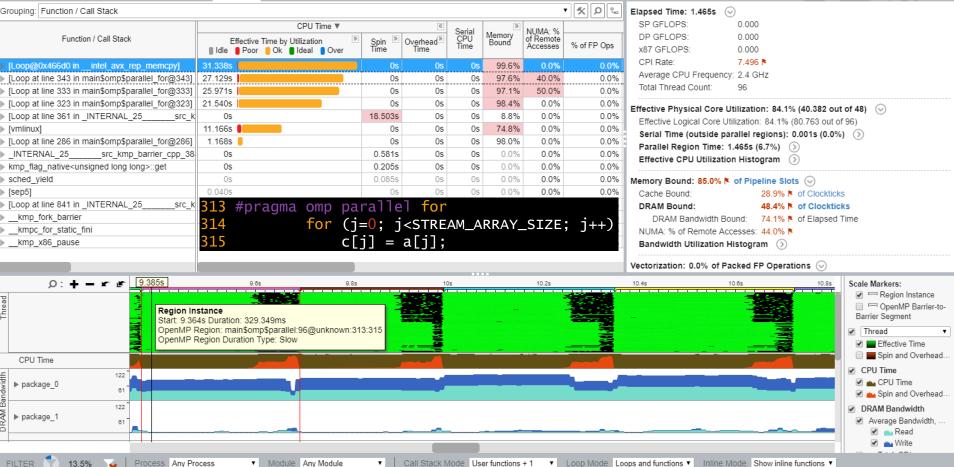

<u> HPC Performance Characterization</u> HPC Performance Characterization 🔹 🕐 👖

Analysis Configuration Collection Log Summary Bottom-up

Grouping: Function / Call Stack								,	• 🛠 🔉 🖓	E
			CPU Time 🔻		«	Sorial	>	NUMA: %		1
Function / Call Stack		ffective Time b	y Utilization	Spin Time	Overhead Time	Serial CPU Time	Memory Bound	of Remote Accesses	% of FP Ops	
[Loop@0x466d0 inintel_avx_rep_memcpy]	31.338s			- ()s Os	0s	99.6%	0.0%	0.0%	
[Loop at line 343 in main\$omp\$parallel_for@343]	27.129s			()s Os	0s	97.6%	40.0%	0.0%	
[Loop at line 333 in main\$omp\$parallel_for@333]	25.971s			()s Os	0s	97.1%	50.0%	0.0%	
[Loop at line 323 in main\$omp\$parallel_for@323]	21.540s			()s Os	0s	98.4%	0.0%	0.0%	Ef
[Loop at line 361 in _INTERNAL_25src_k	0s			18.503	ls Os	0s	8.8%	0.0%	0.0%	1
[vmlinux]	11.166s			()s Os	0s	74.8%	0.0%	0.0%	
[Loop at line 286 in main\$omp\$parallel_for@286]	1.168s			()s Os	0s	98.0%	0.0%	0.0%	
INTERNAL_25src_kmp_barrier_cpp_38	0s			0.581	s Os	0s	0.0%	0.0%	0.0%	
kmp_flag_native <unsigned long="">::get</unsigned>	0s			0.205	is Os	0s	0.0%	0.0%	0.0%	
sched_yield	0s			0.085	is Os	0s	0.0%	0.0%	0.0%	Me
▶ [sep5]	0.040s			()s Os	0s	0.0%	0.0%	0.0%	
[Loop at line 841 in _INTERNAL_25src_k	0s			0.015	is Os	0s		0.0%	0.0%	
kmp_fork_barrier	0s			0.010)s Os	0s	0.0%	0.0%	0.0%	
kmpc_for_static_fini	0s			()s 0.005s	0s	100.0%	0.0%	0.0%	
kmp_x86_pause	0s			0.005	is Os	0s	0.0%	0.0%	0.0%	

Elapsed Time: 1.465s 😔 SP GFLOPS: 0.000 DP GFLOPS: 0.000 x87 GFLOPS: 0.000 CPI Rate: 7 496 🖪 Average CPU Frequency: 2.4 GHz Total Thread Count: 96 Effective Physical Core Utilization: 84.1% (40.382 out of 48) 🕟 Effective Logical Core Utilization: 84.1% (80.763 out of 96) Serial Time (outside parallel regions): 0.001s (0.0%) (>) Parallel Region Time: 1.465s (6.7%) (>) Effective CPU Utilization Histogram (>) Memory Bound: 85.0% 🎙 of Pipeline Slots 📀 Cache Bound: 28.9% Nof Clockticks DRAM Bound: 48.4% K of Clockticks DRAM Bandwidth Bound: 74.1% ▶ of Elapsed Time NUMA: % of Remote Accesses: 44.0% NUMA: % Bandwidth Utilization Histogram (>)

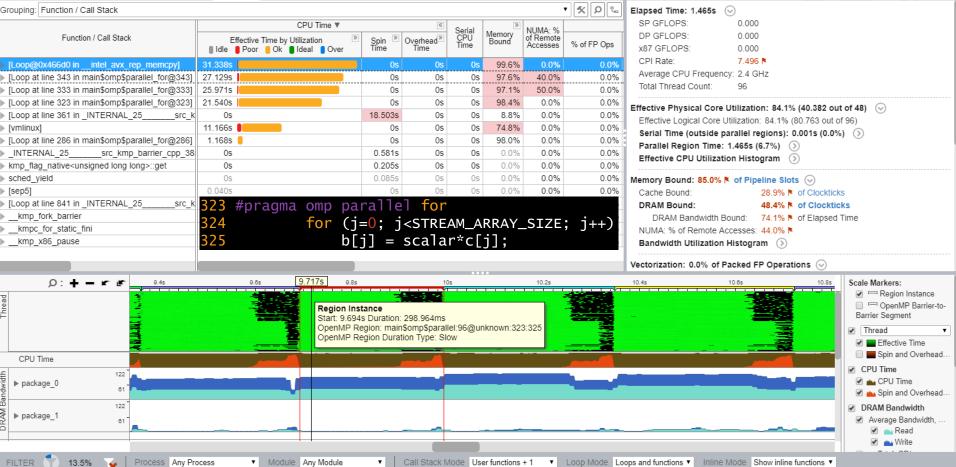

Vectorization: 0.0% of Packed FP Operations 🕟


NTEL VTUNE AMPLIFIER 2019

🖹 🖧 🕨 📩 🕕 🗁 🕐 🛛 r_hpc_mod 🗙

<u>ﷺ</u> HPC Performance Characterization 🛛 HPC Performance Characterization 🔹 🕐 📆

Analysis Configuration Collection Log Summary Bottom-up

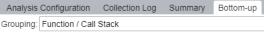


🖹 🖧 🕨 📩 🕕 🗁 🕐 🛛 r hpc mod 🗙

<u>ﷺ</u> HPC Performance Characterization 🛛 HPC Performance Characterization 🔹 🕐 📆

INTEL VTUNE AMPLIFIER 20

Analysis Configuration Collection Log Summary Bottom-up



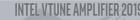
o ×

🖹 🛱 🕨 📩 🕕 🗁 🕐 🛛 r_hpc_mod 🗙

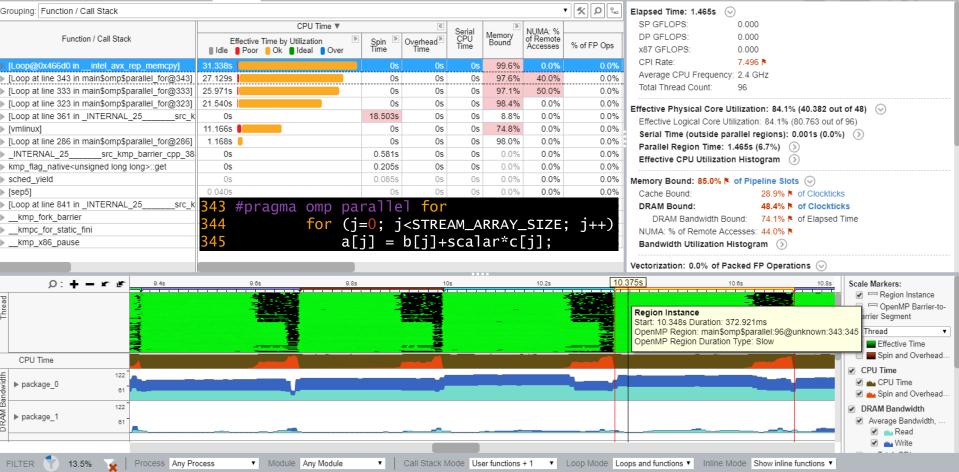
🚂 HPC Performance Characterization HPC Performance Characterization 🝷 🕐 📫

INTEL VTUNE AMPLIFIER 2019

Grouping: Function / Call Stack							• 🛠 🔎 👊	Elapsed Time: 1.465s 😔		
	CPU Time 🔻		«		>>	NU 1944 - 94		SP GFLOPS: 0.000		
Function / Call Stack	Effective Time by Utilization	Spin »	Overhead [®] Time	Serial CPU Time	Memory Bound	NUMA: % of Remote		DP GFLOPS: 0.000		
	🛯 Idle 🚦 Poor 📒 Ok 🗧 Ideal 🚦 Over	Spin ^{>>} Time	Time	lime	Dound	Accesses	% of FP Ops	x87 GFLOPS: 0.000		
[Loop@0x466d0 inintel_avx_rep_memcpy]	31.338s	0s	0s	0s	99.6%	0.0%	0.0%	CPI Rate: 7.496 N		
[Loop at line 343 in main\$omp\$parallel_for@343]	27.129s	0s	0s	0s	97.6%	40.0%	0.0%	Average CPU Frequency: 2.4 GHz		
[Loop at line 333 in main\$omp\$parallel_for@333]	25.971s	0s	0s	0s	97.1%	50.0%	0.0%	Total Thread Count: 96		
[Loop at line 323 in main\$omp\$parallel_for@323]	21.540s	0s	0s	0s	98.4%	0.0%	0.0%	Effective Physical Core Utilization: 84.1% (40.382 out of 48)		
[Loop at line 361 in _INTERNAL_25src_k	0s	18.503s	0s	0s	8.8%	0.0%	0.0%	Effective Logical Core Utilization: 84.1% (80.763 out of 96)		
[vmlinux]	11.166s	0s	0s	0s	74.8%	0.0%	0.0%	Serial Time (outside parallel regions): 0.001s (0.0%)		
[Loop at line 286 in main\$omp\$parallel_for@286]	1.168s 📒	0s	0s	0s	98.0%	0.0%	0.0%	Parallel Region Time: 1.465s (6.7%)		
INTERNAL_25src_kmp_barrier_cpp_38	0s	0.581s	0s	0s	0.0%	0.0%	0.0%	Effective CPU Utilization Histogram		
kmp_flag_native <unsigned long="">::get</unsigned>	0s	0.205s	0s	0s	0.0%	0.0%	0.0%			
sched_yield	0s	0.085s	0s	0s	0.0%	0.0%	0.0%	Memory Bound: 85.0% 🎙 of Pipeline Slots 😔		
▶ [sep5]	0.040s	0s	0s	0s	0.0%	0.0%	0.0%	Cache Bound: 28.9% R of Clockticks		
[Loop at line 841 in _INTERNAL_25src_k	333 #pragma omp pa	ralle	l for					DRAM Bound: 48.4% K of Clockticks		
kmp_fork_barrier						сттг		DRAM Bandwidth Bound: 74.1% Nof Elapsed Time		
kmpc_for_static_fini	334 for (j					SIZE	; J++J	NUMA: % of Remote Accesses: 44.0% NUMA: %		
kmp_x86_pause	335 c[j] =	a[j]+	b[j]				Bandwidth Utilization Histogram ()		
								Vectorization: 0.0% of Packed FP Operations 🕟		
D: +− r r	9.6s 9.8s			10.026s		10.2s		10.4s 10.8s 10.8s Scale Markers:		
ad		1						In the second se		
hree					ion Instan			□ □ OpenMP Barrier-to- Barrier Segment		
						uration: 35				
	2		를				Type: Slow	punknown:333:335		
		_		_			1)po: 01011	✓		
CPU Time										
£ 122				_				CPU Time		
Package_0 61								CPU Time		
3ano										
□ 122 ▼ ▶ package 1								DRAM Bandwidth		
				_				Average Bandwidth, Read		
								Read Vrite		
FILTER 💙 13.5% 🙀 Process Any Pro	ocess Module Any Module	•	Call Stack N	Node Us	er functions	+1 🔻	Loop Mode Lo	oops and functions Inline Mode Show inline functions		


D \times

 \equiv


_

🖹 🖧 🕨 📩 🕕 🗁 🕐 🛛 r_hpc_mod 🗙

<u>f HPC Performance Characterization</u> HPC Performance Characterization 🔹 🕐 📆

Analysis Configuration Collection Log Summary Bottom-up

o ×

Collecting Memory Access

vtune -c memory-access -r ./r_ma_mod -- ./stream_mod.x

출 좌 ▶ 🛓 🕩 🗁 ⑦ 🛛 r_ma_mod ×	=
Memory Access Memory Usage 👻 🕐 📫	INTEL VTUNE AMPLIFIER 2019
Analysis Configuration Collection Log Summary Bottom-up Platform	

o ×

\odot Elapsed Time $^{\odot}$: 21.897s CPU Time ⁽²⁾: 1028.961s ⊘ Memory Bound [®]: 87.0% 🕅 of Pipeline Slots L1 Bound [®] 21.2% Nof Clockticks L2 Bound ⁽²⁾: 0.2% of Clockticks 1 3 Bound [®]. 10.9% Not Clockticks ORAM Bound[®]: 51.6% Nof Clockticks DRAM Bandwidth Bound ⁽²⁾: 43.8% 6 Flapsed Time UPI Bandwidth Bound [®]. 45.5% ▶ of Elapsed Time Memory Latency: Local DRAM ⁽²⁾ 24.5% Nof Clockticks Remote DRAM 2: 19.9% Not Clockticks Remote Cache 2: 0.0% of Clockticks NUMA: % of Remote Accesses ⁽²⁾: 34 4% 🖻 89.315.679.390 Loads: Stores: 19.964.598.920 () LLC Miss Count[®]: 2,121,148,470 Average Latency (cycles) ⁽²⁾: 219 Total Thread Count: 96 Paused Time [®]: 0s

*N/A is applied to metrics with undefined value. There is no data to calculate the metric.

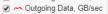
⊘ Bandwidth Utilization Histogram

Explore bandwidth utilization over time using the histogram and identify memory objects or functions with maximum contribution to the high bandwidth utilization.

Bandwidth

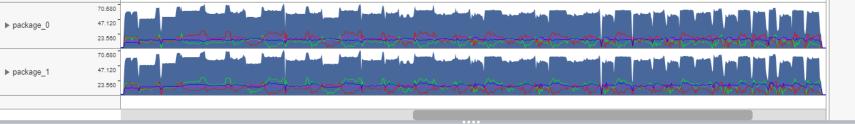
werage F

Bandwidth Domain: DRAM, GB/sec •


Sandwidth Utilization Histogram

This histogram displays the wall time the bandwidth was utilized by certain value. Use sliders at the bottom of the histogram to define thresholds for Low, Medium and High utilization levels. You can use these bandwidth utilization types in the Bottom-up view to group data and see all functions executed during a particular utilization type. To learn bandwidth capabilities, refer to your system specifications or run appropriate benchmarks to measure them; for example, Intel Memory Latency Checker can provide maximum achievable DRAM and Interconnect bandwidth.

oserved Maximum



🖉 🗠 Outgoing Non-Data,

 \times

rouping: Memory Object / Function / Allocation Stack						• 🔨 🖇	C ℃	
Memory Object / Function / Allocation Stack	CPU Time	Memory Bound »	Loads	Stores	LLC Miss Count 🔻 »	Average Latency (cycles)	Module	
[Unknown]			66,067,981,980	14,147,424,410	2,058,144,060	308		
▶ [vmlinux]			5,243,157,290	3,010,090,300	7,000,490	63		
▶ [sep5]			21,000,630	0	0	0		

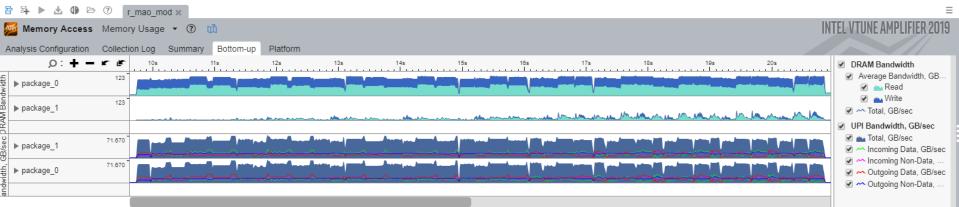
FILTER

96.0%

30.750

Process Any Process Thread Any Thread

▼ <u>%</u> ♀ ‰


Grouping:	Memory	Object /	Function	/ Allocation Stack	
-----------	--------	----------	----------	--------------------	--

Memory Object / Function / Allocation Stack	CPU Time	Memory Bound >>>	Loads	Stores	LLC Miss Count 🔻 »	Average Latency (cycles)	Module	
v [Unknown]			66,067,981,980	14,147,424,410	2,058,144,060	308		
▶ main\$omp\$parallel_for@343	250.863s	96.7%	4,984,149,520	2,408,072,240	945,066,150	1,402	stream_mod.x	mair
main\$omp\$parallel_for@333	228.440s	96.3%	4,921,147,630	2,450,073,500	882,061,740	1,557	stream_mod.x	mair
main\$omp\$parallel_for@323	184.673s	96.3%	2,422,072,660	2,464,073,920	224,015,680	1,487	stream_mod.x	mair
▶ main\$omp\$parallel_for@286	17.476s	98.0%	168,005,040	189,005,670	7,000,490	1,937	stream_mod.x	mair
sched_yield	0.216s	0.0%	21,000,630	0	0	16	libc-2.17.so	sche
intel_avx_rep_memcpy	182.668s	98.5%	3,682,110,460	2,408,072,240	0	1,353	libintlc.so.5	in
▶ main	0.025s	0.0%	0	0	0	0	stream_mod.x	mair
▶ [hfi1]	0.005s	0.0%	0	0	0	0	hfi1	[hfi1
▶ [sep5]	0.065s	100.0%	0	0	0	0	sep5	[sep
Il Inknown stack frame(s)]	.0s	0.0%	28.000.840	0	0	0		[] Ink
FILTER 🕎 96.0% 💊 Process Any Process 🔹 Thread Any Thread Any Thread 🔹 Module Any Module 🔹 Loop Mode Functions only 🔹 Inline Mode Show inline functions 🔹								

Collecting Memory Access with Objects

vtune -c memory-access -knob analyze-mem-objects=true -r ./r_mao_mod -- ./stream_mod.x

Grouping: Memory Object / Function / Allocation Stack

Glouping. Memory Object / Function / Anocation Stack								
Memory Object / Function / Allocation Stack	CPU Time	Memory Bound »	Loads	Stores	LLC Miss Count 🔻 🔌	Average Latency (cycles)	Module	Function (Ful
▶ stream_mod.x!c(7 GB)			5,530,165,900	4,942,148,260	840,058,800	1,773		
▶ stream_mod.xlb (7 GB)			3,570,107,100	2,443,073,290	714,049,980	1,716		
▼ stream_mod.xla (7 GB)			6,986,209,580	2,618,078,540	560,039,200	1,599		
main\$omp\$parallel_for@333	0s	0.0%	3,143,094,290	0	518,036,260	1,656	stream	main\$omp\$p
▶ main\$omp\$parallel_for@286	0s	0.0%	189,005,670	203,006,090	28,001,960	0	stream	main\$omp\$p
intel_avx_rep_memcpy	0s	0.0%	3,654,109,620	0	14,000,980	1,531	libintlc	intel_avx_r
main\$omp\$parallel_for@343	Os	0.0%	0	2,415,072,450	0	0	stream	main\$omp\$p
▶ [vmlinux]			5,887,176,610	3,773,113,190	7,000,490	58		
[Unknown]			266,007,980	0	0	0		
stream_mod.x!main (2 MB)			140,004,200	637,019,110	0	7		
libiomp5.so![OpenMP fork] (1 MB)			182,005,460	581,017,430	0	7		
libiomp5.so![OpenMP fork] (1 MB)			1,582,047,460	1,232,036,960	0	7		
[Stack]			32,823,984,690	2,492,074,760	0	7		
[libiomp5.so]			26,488,794,640	0	0	7		
libiomp5.so!kmp_global (128 B)			70,002,100	0	0	7		
libiomp5.so!kmp_nth (4 B)			105,003,150	0	0	7		
libiomp5.so!kmp_itt_fsync_prepare_ptr3_0 (8 B)			49,001,470	0	0	7		
libiomp5.so!kmp_tasking_mode (4 B)			0	0	0	7		
libiomp5.so!kmp_dflt_blocktime (4 B)			245,007,350	0	0	6		
libiomp5.so!kmp_avail_proc (4 B)			21,000,630	0	0	7		
	[
FILTER 📢 96.3% 🏹 Process Any Process 🔹 Thread Any Thread	 Modu 	Ile Any Module	Loop Mo	De Functions only	▼ Inline Mode	Show inline functions 🔻		

D X

▼ <u>%</u> 0 %

_

麺 Intel VTune Amplifier B A ► ± ① ▷ ⑦ r_mao_mod ×

Ð \times _

INTEL VTUNE AMPLIFIER 2019 麺 Memory Access Memory Usage 🝷 🕐 📸 Analysis Configuration Collection Log Summary Bottom-up Platform Ø: ╋ 10 E 05 0s 2s 6s 8s 10s 12s 14s 16s 18s 20s 22s DRAM Bandwidth _ 4s Average Bandwidth, GB. 123 🕑 Mead 🖉 📥 Write 123 package_1 🖉 🗠 Total, GB/sec MANIMAN MANIMA UPI Bandwidth, GB/sec 🕑 📥 Total, GB/sec 70.257 🖉 🗠 Incoming Data, GB/sec ▶ package 1 🖉 🗠 Incoming Non-Data, 70.257 🕑 🗠 Outgoing Data, GB/sec package_0 🖉 🗠 Outgoing Non-Data, ▼ <u>%</u> Ω ‰

Grouping: Memory Object / Function / Allocation Stack

citeuping. Micholy object / function / Allocation Otack								
Memory Object / Function / Allocation Stack	CPU Time	Memory Bound »	Loads	Stores	LLC Miss Count V 🔊	Average Latency (cycles)	Module	
▶ stream_mod.xlc (7 GB)			5,908,177,240	5,019,150,570	847,059,290	1,695	j	
▶ stream_mod.x!b (7 GB)			3,801,114,030	2,548,076,440	714,049,980	1,552	1	
▼ stream_mod.xla (7 GB)			8,337,250,110	3,073,092,190	581,040,670	1,501		
main\$omp\$parallel_for@333	0s	0.0%	3,143,094,290	0	518,036,260	1,656	stream_mod.x	mains
▶ main\$omp\$parallel_for@286	0s	0.0%	189,005,670	203,006,090	28,001,960	0	stream_mod.x	mains
▶ checkSTREAMresults	0s	0.0%	1,351,040,530	0	21,001,470	61	stream_mod.x	checł
intel_avx_rep_memcpy	0s	0.0%	3,654,109,620	0	14,000,980	1,531	libintlc.so.5	inte
▶ main	0s	0.0%	0	455,013,650	0	0	stream_mod.x	main
main\$omp\$parallel_for@343	0s	0.0%	0	2,415,072,450	0	0	stream_mod.x	main
▶ [vmlinux]			9,128,273,840	5,656,169,680	7,000,490	50	1	
▶ [Unknown]			441,013,230	14,000,420	0	0	1	
▶ stream_mod.x!main (2 MB)			161,004,830	756,022,680	0	7		
libiomp5.so![OpenMP fork] (1 MB)			210,006,300	728,021,840	0	7		
libiomp5.so![OpenMP fork] (1 MB)			1,862,055,860	1,610,048,300	0	7		
▶ [Stack]			40,475,214,220	3,178,095,340	0	7		
[Id-linux-x86-64.so.2]			245,007,350	147,004,410	0	0	1	
[libiomp5.so]			32,403,972,090	0	0	7		
libiomp5.so!kmp_global (128 B)			84,002,520	0	0	7		
libiomp5.so!kmp_nth (4 B)			119,003,570	0	0	7		
libiomp5.so!kmp_itt_fsync_prepare_ptr3_0 (8 B)			56,001,680	0	0	7	1	
		i i i i i i i i i i i i i i i i i i i						

FILTER 100.0% Process Any Process Thread Any Thread

Module Any Module

•

Loop Mode Functions only Inline Mode Show inline functions

🎽 Intel	Intel VTune Amplifier — 🗇 🗙							
물 적	▶ 🛓 🕕 🖻 ⑦ 🛛 r_mao_mod 🗙				\equiv			
M	Memory Access Memory Usage 👻 🕐 📫		INTEL	VTUNE AMPLIFIER 20	/19			
Analy	sis Configuration Collection Log Summary Bottom-up Platform stream_mod.c 🗙							
So	urce Assembly II = 67 60 60				Q			
🔺	Source	👆 CPU Time: Total	CPU Time: Self	Memory Bound: Total 🚿	4			
253	<pre>printf ("Number of Threads requested = %i\n",k);</pre>							
254	}			· · · · · · · · · · · · · · · · · · ·				
255	}		, !	1				
256	≢endif		,I	/				
257			I	<u> </u> '				
258	#ifdef _OPENMP	4	,I	·	╧╹╹			
259	k = 0;	4	,I	·′				
260	≢pragma omp parallel	4	,I	·	╧╹╹			
261	≢pragma omp atomic	4	,l	·'				
262	k++;	1	,I	· /	╧╹╹			
263	<pre>printf ("Number of Threads counted = %i\n", k);</pre>	1	,I	<u>+</u> '	4 7			
264	∮endif	4	,I	+'	4 7			
265	/	4	,I	<u>+</u> '	417			
266	/* Get initial value for system clock. */	1	,l	<u>+</u> '	⊥. /			
267	//#pragma omp parallel for	1	,I	· · · · · · · · · · · · · · · · · · ·	4 /			
268	for (j=0; j <stream_array_size; j++)="" td="" {<=""><td>/</td><td> </td><td>·</td><td></td></stream_array_size;>	/		·				
269	a[j] = 1.0;	Ousec	Ousec	0.0%	4			
270	b[j] = 2.0;		I	+'	∔∎ /			
271	c[j] = 0.0;	(J	·'	- /			
272	}		I	·	4 I V			
273	/		I	+'	+			
274	<pre>printf(HLINE);</pre>		l	t'	+ 7			
275	/		J	·'	+ /			
276	if ((quantum = checktick()) >= 1)		l	t'	+			
277	printf("Your clock granularity/precision appears to be "		J	t'	+			
278	"%d microseconds.\n", quantum);		l	t'	\pm			
279	else {		l	t'	+			
280	printf("Your clock granularity appears to be "]	()	+			
281	"less than one microsecond.\n");		J	t'	+			
282	quantum = 1;		l	t'	+			
283	۱ ۱		l	t'	+			
284]	<u>+</u> '	+			
285	t = mysecond();		I	<u>+</u> '	+			
286	≢pragma omp parallel for				447			

Linux first touch policy

- Memory is assigned to NUMA domains
 - not during the (default) allocation
 - but when the memory is being touched by the first time
- The NUMA domain that will get the memory assigned as local memory, is therefore the domain from where the corresponding thread touched the memory for the first time

Let's fix it!

Am	Intel	VTune	Amplifier
~	Intel	viune	Amplifier

🖹 👫 🕨 📩 🕕 🗁 🕐 🛛 r_hpc_baseline 🗙

<u> HPC Performance Characterization</u> HPC Performance Characterization 🝷 🕐 👔

Analysis Configuration Collection Log Summary Bottom-up

Ð

Х

INTEL VTUNE AMPLIFIER 2019

Selapsed Time [™]: 7.490s

 SP GFLOPS[⊕]:
 0.000

 DP GFLOPS[⊕]:
 3.818

 x87 GFLOPS[⊕]:
 0.000

 CPI Rate[⊕]:
 10.039 ■

 Average CPU Frequency[⊕]:
 2.4 GHz

 Total Thread Count:
 96

Seffective Physical Core Utilization²: 61.1% (29.339 out of 48) ▲

Effective Logical Core Utilization ⁽²⁾: 60.8% (58.327 out of 96) R

⊙ Serial Time (outside parallel regions) ⁽²⁾: 2.872s (38.3%) ▶

⊘ Top Serial Hotspots (outside parallel regions)

This section lists the loops and functions executed serially in the master thread outside of any OpenMP region and consuming the most CPU time. Improve overall application performance by optimizing or parallelizing these hotspot functions. Since the Serial Time metric includes the Wait time of the master thread, it may significantly exceed the aggregated CPU time in the table.

Function	Module	Serial CPU Time ⁽²⁾
[Loop at line 462 in checkSTREAMresults]	stream.x	2.140s 🏲
[vmlinux]	vmlinux	0.692s
func@0x7d340	libittnotify_collector.so	0.005s
strcmp	ld-2.17.so	0.005s

*N/A is applied to non-summable metrics.

> Parallel Region Time : 4.618s (61.7%)

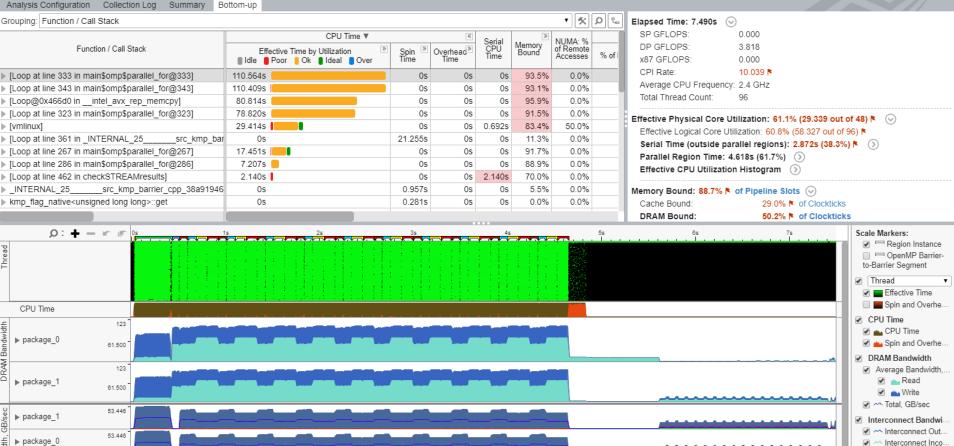
Effective CPU Utilization Histogram

⊘ Memory Bound ^②: 88.7% ▶ of Pipeline Slots

- Cache Bound ⁽²⁾: 29.0% ► of Clockticks So DRAM Bound ⁽²⁾: 50.2% ► of Clockticks DRAM Bandwidth Bound ⁽²⁾: 56.2% ► of Elapsed Time NUMA: % of Remote Accesses ⁽²⁾: 0.3%
- ③ Bandwidth Utilization Histogram

Vectorization⁽²⁾: 100.0% of Packed FP Operations

Instruction Mix


T

🔓 👫 🕨 📩 🕕 🗁 🕐 🛛 r hpc baseline 🗙

🏧 HPC Performance Characterization HPC Performance Characterization 🔹 🕐 📫

INTEL VTUNE AMPLIFIER 2019

Interconnect Packet

Process Any Process Module Any Module Call Stack Mode User functions + 1 Loop Mode Loops and functions
 Inline Mode Show inline functions 100.0%

đ Х

Fine, but what about the mem BW increase on socket #2?

Linux Kernel page migration

- New in RHEL 7 / SLES 12
- Default configuration is ON
- Introduces background noise, bad for benchmarking
- \$ cat /proc/sys/kernel/numa_balancing

What if we would increase the runtime from 10 iterations to 100?

Am	Intel	VTune	Amp	lifier

皆 🖧 🕨 ڬ 🕕 🗁 ? 🔽 _____mod_long 🗙

🚰 HPC Performance Characterization HPC Performance Characterization 🔹 🕐 📆

Analysis Configuration Collection Log Summary Bottom-up

rouping: Function / Call Stack								
	CPU Time 🔻		«	/	>	NUMA: % of Remote Accesses		
Function / Call Stack	Effective Time by Utilization	Spin Time »	Overhead Time	Serial CPU Time	Memory Bound		% of FP Ops	FP Op
[Loop at line 343 in main\$omp\$parallel_for@343]	1291.256s	0s	0s	Os	93.3%	5.6%	27.4%	
[Loop at line 333 in main\$omp\$parallel_for@333]	1259.391s	0s	0s	0s	93.4%	7.1%	15.0%	()
[Loop at line 323 in main\$omp\$parallel_for@323]	943.471s	0s	0s	Os	92.4%	3.1%	13.9%	(
[Loop@0x466d0 inintel_avx_rep_memcpy]	926.731s	0s	0s	Os	96.3%	5.3%	0.0%	(
[Loop at line 361 in _INTERNAL_25src_kmp_barrier_cpp_38a91946::	0s	274.293s	0s	0s	9.3%	0.0%	0.0%	
▶ [vmlinux]	145.461s 📒	0s	0s	5.122s	65.2%	33.3%	0.0%	1
	, C							
D: + - r r r 0s 5s 10s 15s	s 20s 25s 30s	35s	40s	45s	50s 55s	_{60s} Segmen	ıt	

P: + - ∞ 5s 10s 15s 20s 25s 30s 35s 40s 45s 50s 55s 60s Image: A processing of the set of th	
	 Epin and Overhead Time CPU Time
	CPU Time
	_
	CPU Time
	🖉 📥 Spin and Overhead Time
CPU Time	DRAM Bandwidth
	Average Bandwidth, GB/sec
	 ✓ ▲ Read ✓ ▲ Write
	🖉 🗠 Total, GB/sec
€ package_0 81.333 40.667	Interconnect Bandwidth
	Interconnect Outgoing Ba
	Interconnect Incoming Ba
▶ package_1 81.333	 Interconnect Packet Rate
122 ▶ package_1 81.333 40.887	
	UPI Bandwidth, GB/sec
⁸ ► package_1 33.194	🕑 📥 Total, GB/sec
	Incoming Data, GB/sec
ti 66.387 ▶ package_0 33.194	 Incoming Non-Data, GB/s Outgoing Data, GB/sec
	C ~ Outgoing Non-Data, GB/s
FILTER 🕥 100.0% 🍒 Process Any Process 🔹 Module Any Module 🔹 Call Stack Mode User functions + 1 🔹 Loop Mode Loops and functions V Inline Mode	e Show inline functions ▼

INTEL VTUNE AMPLIFIER 2019

٥ \times

≡

Some earlier problem indicators we missed?

Besides being fooled by filters and zoom

B A→ ▶ ± ① ▷ ⑦ r_hs_mod ×

鱦 Hotspots Hotspots by CPU Utilization 🝷 🕐 📫

Analysis Configuration Collection Log Summary Bottom-up Caller/Callee Top-down Tree Platform

Grouping:	Function / Call Stack
-----------	-----------------------

	CPU Time 🔍						
Function / Call Stack	Effective ▼	Spin Time »	Overhead Time	Module	Function (Full)	Source File	Start
main\$omp\$parallel_for@343	273.620s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401
main\$omp\$parallel_for@333	257.123s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401
intel_avx_rep_memcpy	210.412s	0s	0s	libintlc.so.5	intel_avx_rep_m		0x465
main\$omp\$parallel_for@323	206.630s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x401
main\$omp\$parallel_for@286	20.914s	0s	0s	stream_mod.x	main\$omp\$parallel	stream_mod.c	0x402
main	8.940s	0s	0s	stream_mod.x	main	stream_mod.c	0x400
checkSTREAMresults	2.200s	0s	0s	stream_mod.x	checkSTREAMresults	stream_mod.c	0x402
[Outside any known module]	0.010s	0s	0s		[Outside any known		0
[Import thunk sched_yield]	0.010s	0s	0s	libiomp5.so	[Import thunk sched		0x281
kmp_get_global_thread_id_reg	0s	0s	0.020s	libiomp5.so	kmp_get_global	kmp_runtime.cpp	0xa96
kmp_join_call	0s	1.286s	0s	libiomp5.so	kmp_join_call	kmp_runtime.cpp	0xb2c
kmp_join_barrier	0s	2.798s	0s	libiomp5.so	kmp_join_barrier(kmp_barrier.cpp	0x6b4
kmp_fork_barrier	0s	132.014s	0s	libiomp5.so	kmp_fork_barrier	kmp_barrier.cpp	0x6c1
kmp_finish_implicit_task	0s	0s	0.023s	libiomp5.so	kmp_finish_impli	kmp_tasking.cpp	0xd97
INTERNAL_25src_kmp_runtime_cpp_16bf24c5::k	0s	0s	0.020s	libiomp5.so	_INTERNAL_25	kmp_itt.inl	0xadfi

 Image: Start
 CPU Time

 viewing
 1 of 1 > selected stack(s)

 e File
 Start

 100.0% (273.620s of 273.620s)

 stream_mod.xlmain\$omp\$parallel_for@343 - stream_mod.c

 ibiomp5.sol[OpenMP dispatcher]+0x125 - kmp_runtime.cpp:2540

 ibiomp5.sol[OpenMP fork_call+0x1688 - kmp_runtime.cpp:2494

 ibiomp5.sol[OpenMP fork]+0x176 - kmp_csupport.cpp:365

 od.c
 0x466

 od.c
 0x401

 ibiomp5.sol[OpenMP fork]+0x176 - stream_mod.c:343

 ibic.so.61_libc_start_main+0xf4 - [unknown source file]

 stream_mod.xl_start+0x28 - [unknown source file]

٥

INTEL VTUNE AMPLIFIER 2019

Am Int	tel VTun	e Amplifier
--------	----------	-------------

🖹 🖧 🕨 📩 🕕 🗁 🕐 🛛 r_hpc_mod 🗙

鱦 HPC Performance Characterization HPC Performance Characterization 🝷 🕐 📫

Analysis Configuration Collection Log Summary Bottom-up

 SP GFLOPS [⊕]:
 0.000

 DP GFLOPS [⊕]:
 0.990

 x87 GFLOPS [⊕]:
 0.000

 CPI Rate [⊕]:
 9.293 ℝ

 Average CPU Frequency [⊕]:
 2.4 GHz

 Total Thread Count:
 96

Seffective Physical Core Utilization²: 44.3% (21.274 out of 48) ▲

Effective Logical Core Utilization 2: 43.9% (42.101 out of 96) R

⊙ Serial Time (outside parallel regions) ⁽²⁾: 11.449s (52.6%) ▶

⊘ Top Serial Hotspots (outside parallel regions)

This section lists the loops and functions executed serially in the master thread outside of any OpenMP region and consuming the most CPU time. Improve overall application performance by optimizing or parallelizing these hotspot functions. Since the Serial Time metric includes the Wait time of the master thread, it may significantly exceed the aggregated CPU time in the table.

Function	Module	Serial CPU Time ®
Trues II	VITIIITUX	
[Loop at line 268 in main]	stream_mod.x	4.210s 🖻
[LOOP data and a short OTO FAM recults]	stroom, mod v	
func@0x7d340	libittnotify_collector.so	0.005s
[sep5]	sep5	0.005s

*N/A is applied to non-summable metrics.

Parallel Region Time⁽²⁾: 10.323s (47.4%)

Effective CPU Utilization Histogram

 Wemory Bound[®]: 86.7% k of Pipeline Slots Cache Bound[®]: 32.5% k of Clockticks
 DRAM Bound[®]: 51.1% k of Clockticks DRAM Bandwidth Bound[®]: 43.9% k of Elapsed Time NUMA: % of Remote Accesses[®]: 32.8% k
 Bandwidth Utilization Histogram

Sectorization[☉]: 100.0% of Packed FP Operations

Ð

hm	Intel	VTune	Amplifie	r
<u> </u>	inter	viune	Ampline	

Analy

B A ► 📩 ① > ⑦ r_hpc_mod ×

<u>ള</u> HPC Performance Characterization HPC Performance Characterization 🔹 🕐 👖

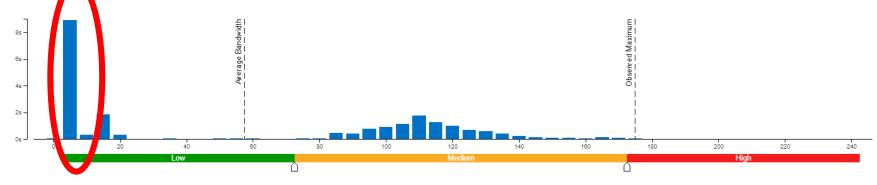
sis Configuration Collection Log	Summary	Bottom-up	
[Loop at line 462 in checkSTF	REAMresults]	stream_mod.x	2.225s
func@0x7d340		libittnotify_collector.so	0.005s
[sep5]		sep5	0.005s

*N/A is applied to non-summable metrics.

- Parallel Region Time⁽²⁾: 10.323s (47.4%)
- Effective CPU Utilization Histogram

⊘ Memory Bound ^②: 86.7% ▶ of Pipeline Slots

Cache Bound ⁽²⁾: 32.5% ▶ of Clockticks ⊘ DRAM Bound ⁽²⁾: 51.1% ▶ of Clockticks DRAM Bandwidth Bound ⁽²⁾: 43.9% ▶ of Elapsed Time NUMA: % of Remote Accesses ⁽²⁾: 32.8% ▶


Sandwidth Utilization Histogram

Explore bandwidth utilization over time using the histogram and identify memory objects or functions with maximum contribution to the high bandwidth utilization.

Bandwidth Domain: DRAM, GB/sec 🔹

Sandwidth Utilization Histogram

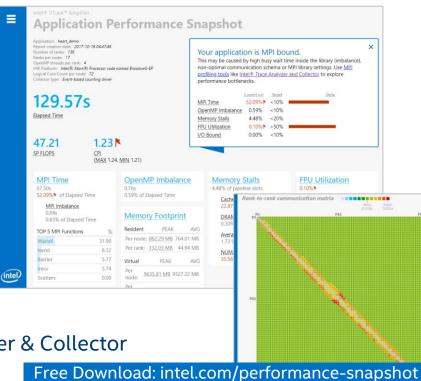
This histogram displays the wall time the bandwidth was utilized by certain value. Use sliders at the bottom of the histogram to define thresholds for Low, Medium and High utilization levels. You can use these bandwidth utilization types in the Bottom-up view to group that and see all functions executed during a particular utilization type. To learn bandwidth capabilities, refer to your system specifications or run appropriate benchmarks to measure them; for example, Intel Memory Latency Checker cap provide maximum achievable DRAM and Interconnect bandwidth.

Х

Better, Faster Application Performance Snapshot

Intel[®] VTune[™] Amplifier – Performance Profiler

Better Answers


CPU utilization analysis of physical cores

Less Overhead

- Lower MPI trace overhead & faster result processing
- New data selection & pause/resume let you focus on useful data

Easier to Use

- Visualize rank-to-rank & node-to-node MPI communications
- Easily configure profiling for Intel[®] Trace Analyzer & Collector

Intel® VTune[™] Amplifier Application Performance Snapshot

6.38

CPI

Application: stream.x Report creation date: 2019-05-09 08:12:19 OpenMP threads: 96 HW Platform: Intel(R) Xeon(R) Processor code named Cascadelake Logical Core Count per node: 96 Collector type: Event-based counting driver

7.49 s	
Elapsed Time	

13.19 SP GFLOPS

Serial Time 2.76s 37.38%▶ of Elapsed Time

Memory Footprint

Resident total: 22913.84 MB

Virtual total: 29479.83 MB

OpenMP Imbalance 0.07s 0.95% of Elapsed Time

Your application is memory bound.

Use <u>memory access analysis tools</u> like <u>Intel® VTune™ Amplifier</u> for a detailed metric breakdown by memory hierarchy, memory bandwidth, and correlation by memory objects.

Memory Stalls 88.30% of pipeline slots

> Cache Stalls 34.00% of cycles

DRAM Stalls 57.00% of cycles

DRAM Bandwidth AVG 125.88 GB/s

NUMA 0.90% of remote accesses

Vectorization 99.90% of Packed FP Operations

Instruction Mix:

SP FLOPs 0.00% of uOps

<u>DP FLOPs</u> 14.90% of uOps Packed: 100.00% from DP FP 128-bit: 0.00% 256-bit: 100.00% ► 512-bit: 0.00% Scalar: 0.00% from DP FP

Non-FP 85.10% of uOps

FP Arith/Mem Rd Instr. Ratio 0.23 ▶

FP Arith/Mem Wr Instr. Ratio 0.82

×

Intel® VTune™ Amplifier **Application Performance Snapshot**

CPI

Application: stream mod.x Report creation date: 2019-05-09 08:12:33 OpenMP threads: 96 HW Platform: Intel(R) Xeon(R) Processor code named Cascadelake Logical Core Count per node: 96 Collector type: Event-based counting driver

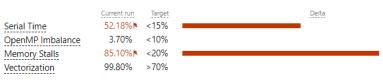
21.81s

Elapsed Time

6.29

3.19 SP GFLOPS

Serial Time 11.32s 52.18% ▶ of Elapsed Time


Memory Footprint

Resident total: 22907.89 MB Virtual total: 29479.82 MB

OpenMP Imbalance 0.81s 3.70% of Elapsed Time

Your application is memory bound.

Use memory access analysis tools like Intel® VTune™ Amplifier for a detailed metric breakdown by memory hierarchy, memory bandwidth, and correlation by memory objects.

Memory Stalls 85.10% ▶ of pipeline slots

> Cache Stalls 35.50% ▶ of cycles

DRAM Stalls 50.50% ▶ of cycles

DRAM Bandwidth AVG 59.68 GB/s

NUMA 29.20% ▶ of remote accesses Vectorization 99.80% of Packed FP Operations

Instruction Mix:

SP FLOPs 0.00% of uOps

DP FLOPs 3.60% of uOps Packed: 100.00% from DP FP 128-bit: 0.00% 256-bit: 100.00% 512-bit: 0.00% Scalar: 0.00% from DP FP

Non-FP 96.40% of uOps

FP Arith/Mem Rd Instr. Ratio 0.09 N

FP Arith/Mem Wr Instr. Ratio 0.41

×

(intel)

Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit <u>www.intel.com/benchmarks</u>.

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2020, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of Intel Corporation or its subsidiaries in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Software