
1

PRACE Workshop: 
HPC code optimisation workshop
Introduction to Likwid
Thomas Gruber, Carla Guillen
LRZ | 8 – 10 June 2020

HPC Code Modernization Workshop



Likwid – Like I knew what I am doing

• Lightweight command line tools for performance measurements. 
• Open source. Software available at: https://github.com/RRZE-HPC/likwid

Philosophy:
• Simple
• Efficient
• Portable
• Extensible

https://github.com/RRZE-HPC/likwid


Why Likwid?

Provides several functionalities:
• Performance profiling: Serial, MPI, OpenMP, Hybrid.
• Pinning
• Topology
• Energy Measurements
• Change processor frequency settings 
• Provides a set of benchmarks (stream, daxpy, ddot, …)

API to C, C++, Fortran, Python, Java
• There are several tools available for HPC applications.
• Profiling via advanced tools is often overkill
• A coarse overview is often sufficient



The likwid tools (binaries)

Gather node architecture
information:
• likwid-topology
• likwid-powermeter
Force affinity control and data
placement:
• likwid-pin
• likwid-mpirun

Query and alter system settings:
• likwid-features
• likwid-setFrequencies
Performance profiling:
• likwid-perfctr
• Benchmarking:
• likwid-memsweeper
• likwid-bench



Loading Likwid on Meggie

• You can check available versions:
module av likwid

• We will use the 5.0.1 version
module load likwid/5.0.1

5HPC Code Modernization Workshop



Exploring likwid-perfctr

• Simple end-to-end measurement of hardware performance metrics
• Preconfigured and extensible metric groups, list with 
likwid-perfctr -a

• Operating modes:
• Stethoscope
• Timeline
• Wrapper
• Marker API



Example of available groups:

BRANCH: Branch prediction miss rate/ratio
CLOCK: Clock of cores
DATA: Load to store ratio
FLOPS_DP: Double Precision MFlops/s
FLOPS_SP: Single Precision MFlops/s
L2: L2 cache bandwidth in MBytes/s
L2CACHE: L2 cache miss rate/ratio
L3: L3 cache bandwidth in MBytes/s
L3CACHE: L3 cache miss rate/ratio
MEM: Main memory bandwidth in MBytes/s
ENERGY: Energy consumption (RAPL)



Stethoscope mode:

• likwid-perfctr measures on core base and has no notion what runs on the cores
• This enables to listen on what currently happens without any overhead:
likwid-perfctr –c N:0-11 –g FLOPS_DP -S 10s

• It can be used as cluster/server monitoring tool
• A frequent use is to measure a certain part of a long running parallel application from 

outside



Timeline mode:

• Outputs the performance metrics in a specified frequency.
likwid-perfctr -C N:0-11 -g MEM –t 500ms ./a.out 2> 
out.txt



Wrapper mode:

Use likwid-perfctr as a wrapper of your serial or multi-threaded application.
likwid-perfctr –C S0:1 –g BRANCH ./a.out
Wrapper for MPI (only available with mpi.intel)
likwid-mpirun –np 32 –nperdomain S:8 –g CLOCK ./mympiexec

and Hybrid (only available with mpi.intel)
likwid-mpirun –np 32 –t 4 –g CLOCK ./mympiexec
{0,1,2,3},{4,5,6,7},{8,9,10,11}, …



Topology
L
1
D
L
2

P

T
1
T
2 L

1
D
L
2

P

T
1
T
2 L

1
D
L
2

P

T
1
T
2 L

1
D
L
2

P

T
1
T
2 L

1
D
L
2

P

T
1
T
2 L

1
D
L
2

P

T
1
T
2

L3Memory 
Interface

Memory

L
1
D
L
2

P

T
1
T
2 L

1
D
L
2

P

T
1
T
2

S0 S1

likwid-topology
likwid-pin –p
physical numbering: processors are numbered according to the 
numbering in the OS
logical numbering in node: processors are logical numbered 
over whole node (N prefix)
logical numbering in socket: processors are logical numbered in 
every socket (S# prefix, e.g., S0)
logical numbering in cache group: processors are logical 
numbered in last level cache group (C# prefix, e.g., C1)
logical numbering in memory domain: processors are logical 
numbered in NUMA domain (M# prefix, e.g., M2)
logical numbering within cpuset: processors are logical 
numbered inside Linux cpuset (L prefix)
Example: S0:0,1

L
1
D
L
2

P

T
1
T
2 L

1
D
L
2

P

T
1
T
2 L

1
D
L
2

P

T
1
T
2 L

1
D
L
2

P

T
1
T
2 L

1
D
L
2

P

T
1
T
2 L

1
D
L
2

P

T
1
T
2

L3Memory 
Interface

Memory

L
1
D
L
2

P

T
1
T
2 L

1
D
L
2

P

T
1
T
2



Marker API mode:

Modify your code by inserting calls to:
LIKWID_MARKER_INIT; //serial

LIKWID_MARKER_REGISTER(“process”); //parallel
LIKWID_MARKER_START(“process”); //parallel
[…]
LIKWID_MARKER_STOP(“process”); //parallel

LIKWID_MARKER_CLOSE; //serial

Compile with –DLIKWID_PERFMON and execute with likwid-perfctr –m …



What to measure

• Likwid predefined performance groups help you.
• Performance groups compute derived metrics on a set of event.
• Examples:
MEM, L3, L2, FLOPS_DP, FLOPS_SP, FLOPS_AVX

• These groups have been validated by micro benchmarking.
• Performance measurements do not solve our performance problems. But: we get hints as 

to what problems we may have.

13HPC Code Modernization Workshop



Performance questions?

• ALU/Memory saturation?
• Load Imbalance?
• Vectorized floating point operations?
• Inefficient data access?
• Data between L1 and L2 Cache?
• Bad ccNUMA placement?
• Access between caches, memory and remote memory?
• Single or double precision? Flops/s ?
• Control flow problems?

14HPC Code Modernization Workshop

for (int i=0;i<N;++i) {
array[i] *= array[i];

}



Download example from github:
> git clone https://github.com/carlabguillen/hellolikwid.git

15

Demo on usage…



And now …

Thank you!

16HPC Code Modernization Workshop


	Foliennummer 1
	Likwid – Like I knew what I am doing
	Why Likwid?
	The likwid tools (binaries)
	Loading Likwid on Meggie
	Exploring likwid-perfctr
	Example of available groups:
	Stethoscope mode:
	Timeline mode:
	Wrapper mode:
	Topology
	Marker API mode:
	What to measure
	Performance questions?
	Demo on usage…
	And now …

