Software

INTEL” MKL - BACIS LINEAR ALGEBRA SUBROUTINES (BLAS)

Gennady Fedorov - Technical Consulting Engineer
Intel Architecture, Graphics and Software (IAGS)
PRACE workshop, June 2020

Gennady.Fedorov@intel.com

Intel® Math Kernel Library

Intel® Architecture Platforms

Operating System: Windows*, Linux*, MacOS'*

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

1 Available only in Intel® Parallel Studio Composer Edition. ||'|te|> l 2

BLAS Level 1 Routines

Zasum
TAHDY
2Ccopy
?dot

Z?sdot
?dotc

?dotu

?nrm2

2rotmg

?scal

2swap

izamax

izamin

Zcabsl

BLAS Level 1 Routine and Function Groups and Their Data Types

s, d, sc, dz
s, d,c z
s,d, c,z

s, d

sd, d

s, d, sc, dz
s, d, cs, zd
s, d, c z

s, d

s, d

s, d, ¢, z, cs, zd

s, d, c z
s, d, c,z
s, d ¢z

s, d

BLAS Level 1 includes routines and functions, which perform vector-vector operations. Table “BLAS Level 1 Routine Groups and Their Data Types” lists the BLAS Lewvel 1 routine and function groups
and the data types associated with them.

Sum of vector magnitudes (functions)

Scalar-vector product (routines)

Copy wvector (routines)

Dot product (functions)

Dot product with double precision (functions)

Dot product conjugated (functions)

Dot product unconjugated (functions)

Vector 2-norm (Euclidean norm) (functions)

Plane rotation of points (routines)

Generate Givens rotation of points (routines)

Modified Givens plane rotation of points (routines)

Generate modified Givens plane rotation of points (routines)
Vector-scalar product {routines)

Vector-vector swap (routines)

Index of the maximum absolute value element of a vector (functions)
Index of the minimum absolute value element of a vector (functions)

Auxiliary functions, compute the absolute value of a complex number of single or double precision

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

BLAS Level 2 Routines

BLAS Lewel 2 Rowutine Groups and T heir Data Types

e E—e

=2 s.d. <. = Matrix—wector product usimng a seneral bamnd matrisx
T o= T s.d. c. = Mamrix—weaector product usimg a seneral Mmatrix
o= s, o FRamnk-1 update of a general maatrix
o c. = Ramnk-1 update of a conjugated genaeral rmatris
Foye= 3 -, = Ramnk-1 update of a genaeral matrix, umnoconjusated
F IloTmT =, = FMarix—wector product usimg a Hermitiamn bamnd mmanrix
F Eu e =, = rMairix—wector product usimg a Hermitiamn rmrvatrisc
T Eue= 3 -, = Ramnk-1 update of a Hermiitiamn matrix
PERuie=x = =, = Ramnk-2 update of a Hermiitiamn matrix
= = Matrix—wector product usimng a Hermiitiamn packed matrix

]
]
H
f
[

Famnk-1 update of a Hermiitianmn packed matrix

FEapoy - F c. = Ramnk-Z2 update of a Hermmitiamn packed rmatrizx

T =oToe L= | FAIrix—weCctor product Usimg syimmetric bamnd matrix

T =T =, o FMAairix—wector product Usimg a syimmetric packed matrisx
= =, o Ramnk-1 update of a syrmmetric packead matrizx

=T = = | Ramnk-Z2 update of a syrmimetric packed matrix

P = wToeRe = | Marix—wector product USimg a sSyimmetric matrizx

El— T = | Ramnk-1 update of a swyrrmimetric mmatrizx

. g = | Famnk-2Z2 update of a swimimetiric meatrizx

F o lorme s. d,c, = Martrix—wector product usimng a triangular barmd maTrisc
ok = s, d, ., = Solution of a limear systerm of equations with a triamngular anmnd matrix
el =g et ouh s, d.c, = Mairix—-wector product usimng a triangular packed matrix

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

BLAS Level 3 Routines

?eyrk

?ayrik

?Lrmm

tram

BLAS Level 3 Routine Groups and Their Data Types

5.d.cz

C,z

C,Z

C,Z

5.d.c,z

5.d,C 2

5.d.c,z

5.d.cz

5.d.c 2

BLAS Level 3 routines perform matrix-matrix operations. Table "BLAS Level 3 Routine Groups and Their Data Types” lists the BLAS Level 3 routine groups and the data types associated with them.

Computes a matrix-matrix product with general matrices.

Computes a matrix-matrix product where one input matrix is Hermitian.
Performs a Hermitian rank-k update.

Performs a Hermitian rank-2k update.

Computes a matrix-matrix product where one input matrix is
symmetric.

Performs a symmetric rank-k update.
Performs a symmetric rank-2k update.
Computes a matrix-matrix product where one input matrix is triangular.

Solves a triangular matrix equation.

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

BLAS-like Extensions

Routine Data Types
s.d,cz
s.d
Fgemivc C.Z
?gemmt s5,d.c, 2
?gemm3m C.Z
?gemm batch s5.d,¢c,z
C.Z
mkl ?imatcopy s5.d,c,z
nkl Zomatcopy s, d, ¢z
mkl_?omatcopyl s,d,c,z
mkl 7omatadd s.d, ¢,z
Pgemm alloc s, d
?gemm pack s.d
?gemm compute s, d
?genm_free s, d
gemm_* integer
mkl jit create 7gemm s,.d
mkl jit get ?7gemm pLT s, d

Description

Scales two vectors, adds them to one another and stores result in the vector (routines).

Two matrix-vector products using a general matrix, real data.

Two matrix-vector products using a general matrix, complex data.

Computes a matrix-matrix product with general matrices but updates only the upper or lower triangular part of the result matrix.
Computes a scalar-matrix-matrix product using matrix multiplications and adds the result to a scalar-matrix product.
Computes scalar-matrix-matrix products and adds the results to scalar matrix products for groups of general matrices.
Computes a scalar-matrix-matrix product using matrix multiplications and adds the result to a scalar-matrix product.
Performs scaling and in-place transpositionfcopying of matrices.

Performs scaling and out-of-place transpositionfcopying of matrices.

Performs two-strided scaling and out-of-place transposition/copying of matrices.

Performs scaling and sum of two matrices including their out-of-place transposition/copying.

Allocates storage for a packed matrix.

Performs scaling and packing of the matrix into the previously allocated buffer.

Computes a matrix-matrix product with general matrices where one or both input matrices are stored in a packed data structure and adds the
result to a scalar-matrix product.

Frees the storage previously allocated for the packed matrix.
Computes a matrix-matrix product with general integer matrices.

Creates a handle on a jitter and generates a GEMM kernel that computes a scalar-matrix-matrix product and adds the result to a scalar-matrix
product, with general matrices.

Returns the GEMM kernel previously generated.

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel MKL BLAS DEMO, GEMM - Agenda

* General

* Direct Call

« JIT

* Packed API

* Batch API

« COMPACT API

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Requirements

* Intel® Parallel Studio XE 2020 Composer Edition with Intel® C++ Compiler
* Linux* OS supported by Intel® C++ Compiler

« Recommended to have at least 3" generation Intel® Core™ processor (with Intel® AVX2)
Setting the PATH, LIB, and INCLUDE environment variables

Compiler:

source [opt/intel/compilers_and_libraries 2020.1.127/linux/bin/compilervars.sh intel64
module load intel64/19.1up01 // ssh meggie
MKL:

source <mklroot>/bin/mklvars.sh intel64

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

GEMM - API

C =0aA*B+ BC Computes a matrix-matrix product
with general matrices.
void cblas [s,d,c,z]gemm (
const CBLAS LAYOUT layout,
const CBLAS_TRANSPOSE transa,
constCBLAS TRANSPOSE transb,
const MKL_INT m,
const MKL_INT n,
const MKL_INT k,
const dtype alpha,
const dtype *q,
const MKL_INT [da,
const dtype *b,
const MKL_INT [db,
const dtype beta,
dtype *c,
const MKL_INT [dc);

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

layout- {CblasRowMajor, CblasColMajor}

trans - {CblasNoTrans, CblasTrans,
CblasConjTrans}

m = Number of rows in a = Number of rows in ¢
k = Number of columns in a = Number of rows in b

n = Number of columns in b = Number of columns
Row majar

in c . \eadingdimensian -

submatrix

Column majgar
_ leadingdimension

whoke matrx

DEMO, GEMM - General

directory: /workshop/mkl/BLAS/#1General

» Review test: gemm.cpp
« mkl_malloc, mkl free, dsecnd, cblas_dgemm, mkl_get version()
» Compiling: icc —mkl gemm.cpp

« refer to MKL Linker Adviser: https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

» Export MKL_NUM _ THREADS=1
» .[a.out 4000

Processor optimization: Intel(R) Advanced Vector Extensions 512 (Intel(R) AVX-512) enabled processors
Average time: 1.265071e+00 secs
GFlop/sec : 101.18009

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

DEMO, GEMM - General, Verbose

» MKL Verbose mode:
« set/export MKL VERBOSE="1 // O by default

* int mkl verbose (true/false); /[False by default
> .[a.out 4000

MKL_VERBOSE Intel(R) MKL 2020.0 Update 1 Product build 20200208 for Intel(R) 64 architecture Intel(R) Advanced
Vector Extensions 512 (Intel(R) AVX-512) enabled processors, Lnx 2.40GHz |p64 intel thread

MKL_VERBOSE
DGEMM(N,N,4000,4000,4000,0x7ffe59856990,0x2ae5630d9080,4000,0x2ae56aaec080,4000,0x7ffe59856998,0x2ae

5724ff080,4000) 1.32s CNR:OFF Dyn:1 FastMM:1 TID:0 NThr:1

*Intel® Xeon® Gold 6148 Processor

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

DEMO, GEMM - General, Scaling

» export MKL_VERBOSE=0
» KMP_AFFINITY to avoid thread migration
export KMP_AFFINITY=compact,1,0,granularity=fine
» export MKL_NUM_THREADS= #THR, where #THR == 1, 2, 4, 8, 16, 32

.[Ja.out 4000
#threads 1 2 4 8 16 32
gflops 100 194 366 677 1072 2018

*Intel® Xeon® Gold 6148 Processor

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

DEMO, GEMM - General, Conditional Numerical

Reproducibility

export MKL_CBWR=VALUE

MEL CEWR RUTC

MKL_CBWR_COMPATIBLE
MKL_CBWR SSE2

MKL CBWR_SSE3

MKL_CBWR SSSE3
MKL_CBWR SSE4 1

MKL CBWR SSE4 2
MKL_CBWR_RVX

MKL CBWR AVX2

MKL CBWR AVXS512 MIC

MKL_CBWR AVX512

2

10

11

12

CNR mode uses the standard ISA-based dispatching model while ensuring fixed cache sizes,
deterministic reductions, and static scheduling

CNR mode uses the branch for the following ISA:
Intel® Streaming SIMD Extensions 2 (Intel® SSE2) without rcpps/rsqrtps instructions
Intel SSE2

DEPRECATED. Intel® Streaming SIMD Extensions 3 (Intel® SSE3). This setting is kept for
backward compatibility and is equivalent to MKL CBWR_SSEZ.

Supplemental Streaming SIMD Extensions 3 (SS5E3)

Intel® Streaming SIMD Extensions 4-1 (SSE4-1)

Intel® Streaming SIMD Extensions 4-2 (SSE4-2)

Intel® Advanced Vector Extensions (Intel® AVX)

Intel® Advanced Vector Extensions 2 (Intel® AVX2)

Intel® Advanced Vector Extensions 512 (Intel® AVX-512) on Intel® Xeon Phi™ processors

Intel AVX-512 on Intel® Xeon® processors

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

DEMO, GEMM - General, Conditional Numerical
Reproducibility
review and launch run_cnr.sh

Ja.out 4000 (./run_cnr.sh)

 export MKL_CBWR=COMPATIBLE GFlops= ~11.4
 export MKL_CBWR=SSE4 2 GFlops = ~14
 export MKL_CBWR=AVX GFlops = ~28
* export MKL_CBWR=AVX2 GFlops = ~53
« export MKL_CBWR=AVX512 GFlops =~ 100

*Intel® Xeon® Gold 6148 Processor

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

DEMO, GEMM - Direct Call

Small Sizes (M, N, K< 20)
Challenges: High function call overheads, low vectorization, low parallelization

Solutions: Batch APIl, Compact APl and MKL_DIRECT _CALL
MKL_DIRECT _CALL

* Improves performance for small sizes (M, N, K < 20)
« Skips error checking and function call overheads

 Enabled for several functions
 BLAS: gemm, gemm3m, syrk, trsm, axpy, dot
« LAPACK: potrf, getrf, getrs, getri, geqrf

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

DEMO, GEMM - MKL DIRECT CALL

Define the preprocessor macro MKL_DIRECT _CALL
* If threading is not required, use MKL_DIRECT _CALL_SEQ

Improves the performance of small sizes (M, N, K < 20)
* Instead of calling a library function, a C implementation may be used
« Starting from Intel MKL 2018.1, compiler intrinsics kernels for DGEMM Intel AVX2+

Intel MKL can avoid some of the overheads
* No error checking
* No MKL_VERBOSE support
* No CNR (Conditional Numerical Reproducibility) support

Minimal modification is required, just add the preprocessor macro and the header file:

// compile with: icc -DMKL_DIRECT_CALL .. I compile with: ifort -DMKL_DIRECT_CALL -

#include <mkl.h> fpp ..

void main(void) { # include “mkl_direct_call.fi”
dgemm(...); program DGEMM_MAIN

} DGEMM(...)

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

DEMO, GEMM - Direct Call

» Directory: ~ /mkl/2BLAS/#2DirectCall
» Review test: dgemm_small.cpp

» Review makefile

» CCFLAGS =-DMKL_DIRECT_CALL —std=c99

» make: Compiling with and without CCFLAGS

» .[rundirect.sh

*Intel® Xeon® Gold 6148 Processor

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

45

3.5

2.5

15

0.5

2x2

3x3

Ratio = DirectCall/General

dx4

bx6

8x8

12x12

16x16

32632

64x64

DEMO, GEMM - JIT

 |ntroducedin MKL v.2019

* Language supported: C (CBLAS interface only) and Fortran (same function
name as C API)

» All architectures supported, by default pointer to standard GEMM is returned
« JIT only for AVX2,AVX512and M, N,K <16
« MKL_DIRECT CALL JIT

* Limitations: Verbose and CNR features are not supported

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

DEMO, GEMM - JIT API

 Types

typedef enum {MKL JIT ERROR, MKL JIT SUCCESS, MKL NO JIT}
mkl jit status t;

typedef (*{s,d}gemm jit kernel t) (void*, FP_TYPE*, FP TYPE*, FP TYPE¥*)
* Functions:

mkl jit status t mkl Jit create {s,d}gemm(void** jitter, MKL LAYOUT
layout, MKL_TRANSPOSE transa, MKI, TRANSPOSE transb, MKL_ INT m, MKI, INT n, MKL_INT k,
FP_TYPE alpha, MKI, INT lda, MKI, INT 1db, FP_TYPE beta, MKL_ INT ldc)

{s,d}gemm_jit kernel t mkl Jjit get {s,d}gemm ptr(void* jitter)

mkl Jit status t mkl jit destroy(void* jitter)

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

DEMO, GEMM - JIT EXAMPLE

int main() {
MKL INT m = 10, n =5, k = 12, lda = 32, 1ldb = 32, ldc = 32;
MKL TRANSPOSE transa = MKL NOTRANS, transb = MKL TRANS;
MKL LAYOUT layout = MKL COL MAJOR;
float alpha = 2.0, beta = 1.0;
float *a, *b, *c;
void* jitter s 10 5 12;

// allocate and initialize matrices

alpha, lda, 1db, beta, 1ldc);

if (MKL JIT ERROR == status) {
printf (“Creation jitter failed\n”);
return 1;

}
sgemm jit kernel t sgemm 10 5 12 = mkl jit get sgemm ptr(jitter s 10 5 12);

mkl jit status_t status = mkl jit create sgemm(&jitter s 10 5 12, layout, transa, transb, m, n, k,

sgemm_10_5_12 (jitter_s_10_5 12, a, b, c); < perform C = alpha * A x B + beta*C

mkl jit destroy(jitter s 10 5 12);
// free matrices
return O;

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

DEMO, GEMM-JIT (JIT KERNEL vs GENERAL)

H . [gfedorov@sk110 #3_JIT]$./run.sh
DIreCtory' /Worl(Shop/mkl'/2 BLAS/#BJ IT g}}}}}}}}}}}}}}}}}}}}}}}}}}} 2}&2 L L AL L L L L L LLLLLLLLLLLLLLLLLLLA
[2 x 2], SGEMM Execution Time == 1.881272e-07
-l(j- . [2 x 2], JIT_SGEMM Execution Time == 3.911555e-08
E;ljl Ir]g;- e 3X3 AL AL LA L L L L L LLLLLLLLLLLLLLLL LS
[3 x 3], SGEMM Execution Time == 1.909211e-07
ER 3], JIT_SGEMM Execution Time == 4.097819e-08
make St S 4}\4 L AL L L L L L L L L LLLLLLLLLELLLLLL L LA
[4 x 4], SGEMM Execution Time == 1.927838e-07
. . [4 X 4], JIT_SGEMM Execution Time == 4.004687e-08
#Ru N and reco rd the Execut|0ns IIRRTEH 55555000555 0050 5050555555555 X6 <<<K<LLLLLLLLLLLLLLLLLLLLLLLLLL
[6 x 6], SGEMM Execution Time == 1.974404e-07
[6 X 6], JIT_SGEMM Execution Time == 5.029142e-08
./ru n .S h et e e 3t S 0 0 0P e e e e e 8}&8 (L L L L L L L L AL L LLLLLLLLLLLLLLLLLL LA
[8 x 8], SGEMM Execution Time == 2.076849e-07
[8 X 8], JIT_SGEMM Execution Time == 4.656613e-08

Note: be aware that CPU su pports AVX2 and or PIPIPIEIEIEIESESISIIS>S>>>> 12X12 CLLLLLLLLL LR LKL LR
] [12 x 12], SGEMM Execution Time == 2.328306e-07
AVX-512 I15A: [12 x 12], JIT_SGEMM Execution Time == 6.798655e-08

e lG}le {{{{{{{{{{{{{{{{{{{{{{{{{{{{{
. [16 x 16], SGEMM Execution Time == 2.468005e-07
cat /proc/cpumfo | grep avx2 (aVX51 2) [16 x 16], JIT_SGEMM Execution Time == 8.009374e-08
ettt e b det e S S S e 20}\:0 (AL L L L LA LLLLLLLLLLLLLLLLLLLLL
[20 x 20], SGEMM Execution Time == 3.483146e-07
LEO X EQ], JIT_SGEMM Execution Time == 1,639128e-07

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

DEMO, GEMM - DIRECT CALL JIT

MKL_DIRECT_CALL_JIT:

* make jitdirect

icc-DMKL DIRECT CALL JIT -std=c99 -I${MKL_INCL} small gemm.c -o jit_direct.out -WI|,--
start-group ${2019}/mkl/lib/intel64/libmkl _intel lp64.a
${2019}/mkl/lib/intel64/libmkl_intel thread.a ${2019}/mkl/lib/intel64/libmkl_core.a -WI,--

end-group -liomp5 -lpthread -lm -ldl

* run:./jitdirect.out <size>, size={2,3,4,6,8,12,16, 20}
 Compare the performance results with previous calls

Conclusions? Do you see something like this?

[4 x 4], SGEMM Execution Time == 1.473993e-06
[4 x 4], SGEMM JIT Execution Time == 1.335982e-06
[4 x 4], JIT SGEMM Execution Time == 1.204957e-06

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

DEMO, GEMM-JIT, Performance

JIT SGEMM, Performance

350
300
250

200

15
10
e e e b 1N
0]
2x2 3x3 4x4 6x6 8x8

12x12 16x16 20x20

o

o

o

Esgemm Msgemm-+direct sgemm_jit

Configuration Info — SW Versions: Intel® Math Kernel Library (Intel® MKL) 2020. Hardware: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz,192 GB RAM (12x16GB DDR4-2666). Software and workloads used in performance tests may have been
optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.
Other brands and names are the property of their respective owners. Benchmark Source: Intel Corporation

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction
sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice. Notice revision #20110804 .

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Intel® MKL, GEMM - Packed API

* Amortize copy (pack) operation over multiple GEMM calls with the same
Input matrix

* Copy (pack) the data once and reuse it in many GEMM calls

* Improves the performance for medium or skewed sizes (M or N < 500) with
Input matrix reuse

C' = alpha - op(A") - op(B') + beta - C’

C? = alpha - op(A') - op(B?) + beta-C? = Input matrix A is shared between three GEMM calls

C3 = alpha - op(A) - op(B3) + beta - C3

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Intel® MKL, GEMM - Packed API (cont'd)

Code modifications are required to transform GEMM calls into GEMM_PACK + GEMM_COMPUTE
Three SGEMM calls with shared A matrix is computed with the packed APIs below:

#include <mkl.h>

float *Ap;
Ap = sgemm_alloc(“A”, &m, &n, &k);

// transform A into packed format
sgemm_pack(“A”, “T”, &m, &n, &k, &alpha, A, &lda, Ap);

// SGEMM computations are performed using the packed A matrix: Ap

sgemm_compute(“P”, “N”, &m, &n, &k, Ap, &lda, Bl, &ldbl, &beta, C1l, &ldcl);
sgemm_compute(“P”, “N”, &m, &n, &k, Ap, &lda, B2, &ldb2, &beta, C2, &ldc2);
sgemm_compute(“P”, “N”, &m, &n, &k, Ap, &lda, B3, &ldb3, &beta, C3, &ldc3);

// release the memory for Ap
sgemm_free(Ap);

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

DEMO, GEMM - Packed API (cont'd)

directory: /workshop/mkl/BLAS/#4Packed

» Review test: gemm_packed benchmark.cpp
» Building: icc -mkl gemm_packed_benchmark.cpp
> run: .fa.out 100

Expected Output:
~/workshop/mkl/BLAS/#4PackedS ./a.out 100
the problem solve: C(m,n) = A(m,k)*B(k,n)
.... Testing problems: M x K x N == 100, 10240, 10240
.. Classical API, Execution ==1.431301, sec
... Packed API, Execution == 0.992116, sec
.... Packed API faster in == 1.442676 times, sgemm = 163.749570 Gflops, sgemm_compute = 236.237528 GFlops

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® MKL, GEMM - Batch API (cont'd)

* Improves performance for small- #include <mkl.h>
. : < int group_count = 2;
medium sizes (M’ N’ K 500) // Create arrays size of group_count to store GEMM
]] arguments
° Groups several mdependent function CBLAS_TRANSPOSE transA[] = {CblasNoTrans, CblasNoTrans};
calls together CBLAS_TRANSPOSE transB[] = {CblasTrans, CblasNoTrans};

MKL_INT m[] = {4, 3};

k » 6}
* Enabled for gemm, gemm3m and trsm miﬁm nH _ Eg §§

BLAS functions MKL_INT 1lda[] = {4, 6};
MKL_INT 1db[] = {4, 6};

MKL_INT 1ldc[] = {8, 3};

double alpha[] = {1.0, 1.0};
double beta[] = {0.0, 2.0};
MKL_INT size per_grp[] = {20, 30};

// Call cblas_dgemm_batch to perform GEMM operations
cblas_dgemm_batch(CblasRowMajor, transA, transB, m, n, k,
alpha, a_array, lda, b_array, ldb,
beta, c_array, ldc, group_count,
size per_group);

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® MKL, GEMM - Compact API (cont’'d)

* Non-standard BLAS API that requires some code modification
« Improves performance significantly for a large group of same-size small matrices (M, N, K < 20)

 Intel MKL utility functions to transform matrices between column/row major and compact layout:

#tinclude <mkl.h>

// query the optimal format for the architecture
MKL_COMPACT_PACK compact_format = mkl_get_ format_compact();

// allocate memory for compact layout

a_size = mkl_dget_size_compact(lda, k, compact_format, num_matrix);
b_size = mkl_dget_size_compact(ldb, n, compact_format, num_matrix);
c_size = mkl_dget_size_compact(ldc, n, compact_format, num_matrix);

// transform the data into the compact format

mk1l_dgepack_compact(layout, m, k, a_array, lda, a_c, lda, compact_format, num_matrix);
mk1l_dgepack_compact(layout, k, n, b_array, ldb, b_c, 1ldb, compact_format, num_matrix);
mk1l_dgepack_compact(layout, m, n, c_array, ldc, c_c, ldc, compact_format, num_matrix);

// multiple dgemm operations on compact data layout
mkl_dgemm_compact(layout, transa, transb, m, n, k, alpha, a_c, lda, b_c, ldb, beta, c_c, ldc, compact_format, num_matrix);

// transform from compact format to standard BLAS format
mk1l_dgeunpack_compact(layout, m, n, c_array, ldc, c_c, ldc, compact_format, num_matrix);

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel MKL Resources

Intel® MKL website:

— https://software.intel.com/en-us/intel-mkl

Intel MKL forum:
— https://software.intel.com/en-us/forums/intel-math-kernel-library

Intel® MKL benchmarks:

— https://software.intel.com/en-us/intel-mkl/benchmarks#

Intel® MKL link line advisor:

— http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

Copyright © 2020, Intel Corporation. All rights reserved

*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/forums/intel-math-kernel-library
https://software.intel.com/en-us/intel-mkl/benchmarks
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

Copyright © 2020, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

S
O
ftwa
re

