
Gennady Fedorov - Technical Consulting Engineer

Intel Architecture, Graphics and Software (IAGS)

PRACE workshop, June 2020

Gennady.Fedorov@intel.com

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

2

Intel® Math Kernel Library

1 Available only in Intel® Parallel Studio Composer Edition.

Operating System: Windows*, Linux*, MacOS1*

Intel® Architecture Platforms

Linear Algebra
• BLAS

• LAPACK

• ScaLAPACK

• Sparse BLAS

• Iterative sparse solvers

• PARDISO*

• Cluster Sparse Solver

Vector RNGs
• Congruential

• Wichmann-Hill

• Mersenne Twister

• Sobol

• Neiderreiter

• Non-deterministic

FFTs
• Multidimensional

• FFTW interfaces

• Cluster FFT

Summary Statistics

• Kurtosis

• Variation coefficient

• Order statistics

• Min/max

• Variance-covariance

Vector Math
• Trigonometric

• Hyperbolic

• Exponential

• Log

• Power

• Root

And More

• Splines

• Interpolation

• Trust Region

• Fast Poisson Solver

Neural Networks

• Convolution

• Pooling

• Normalization

• ReLU

• Inner Product

Benchmarks
• Intel(R) Distribution for LINPACK*

Benchmark

• High Performance
Computing Linpack
Benchmark

• High Performance Conjugate
radient Benchmark

Removed
since

MKL v.2020

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

3

Intel MKL - Random Number Generators (RNG)
Agenda
• Introduction

• RNG API & Usage Modes

• Demo – General Case

• Parallel Computing, Demos:

• BRNG set

• Skip-Ahead

• Non-deterministic Generator

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

4

Introduction - Intel® MKL VS components

• Random Number Generators (RNG)

• Pseudorandom, quasi-random and non-deterministic random number
generator

• Continuous and discrete distributions of various common distribution
types

• Summary Statistics

• Parallelized algorithms for computation of basic statistical estimates for
single and double precision multi-dimensional datasets

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

5

Introduction - Random Number Generators (RNG)

• Intel® MKL VS provides a set of commonly used continuous and discrete
distributions

▪ All distributions are based on the highly optimized Basic Random Number Generators and
Vector Mathematics

Distribution Generators

Continuous Discrete

Uniform Cauchy Uniform Binomial

Gaussian Rayleigh UniformBits Hypergeometric

GaussianMV Lognormal UniformBits32 Poisson

Exponential Gumbel UniformBits64 PoissonV

Laplace Gamma Bernoulli NegBinomial

Weibull Beta Geometric Multinomial

ChiSquare

Basic Random Number Generators

Pseudorandom Quasi-
random

Non-deterministic

Multiplicative Congruential
59-bit

Multiplicative Congruential
31-bit Sobol

RDRAND based (HW
dependent)

Multiple Recursive Wichmann-Hill Niederreiter

Mersenne Twister 19937 Mersenne Twister 2203

SIMD-oriented Fast
Mersenne Twister 19937

Philox4x32-10 Counter-
Based

ARS-5 Counter-Based (HW
dependent) R250 Shift-Register

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

6

RNG – API & Usage Model

• A typical algorithm for VS random number generation is as follows:

▪ Create and initialize stream

Step Step description

RNG stream
initialization

vslNewStream (&stream, VSL_BRNG_MT2203, 777);

Random number
generation

vsRngUniform(VSL_RNG_METHOD_UNIFORM_STD, stream, N, r, a, b);

RNG stream
de-initialization

vslDeleteStream(&stream);

Distribution type Generation method Generation parameters (Used RNG
stream, number of elements, etc.)

BRNG Type Seed

Basic RNG

Distribution
Generator

Output sequence
010010110011101000...

Initialization
parameters (seed)

Distribution
parameters

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

7

RNG – API & Usage Model

• A typical algorithm for VS random number generation is as follows:

▪ Create and initialize stream

▪ Call RNG and process the output

Step Step description

RNG stream
initialization

vslNewStream (&stream, VSL_BRNG_MT2203, 777);

Random number
generation

vsRngUniform(VSL_RNG_METHOD_UNIFORM_STD, stream, N, r, a, b);

RNG stream
de-initialization

vslDeleteStream(&stream);

Distribution type Generation method Generation parameters (Used RNG
stream, number of elements, etc.)

BRNG Type Seed

Basic RNG

Distribution
Generator

Output sequence
010010110011101000...

Initialization
parameters (seed)

Distribution
parameters

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

8

RNG – API & Usage Model

• A typical algorithm for VS random number generation is as follows:

▪ Create and initialize stream

▪ Call RNG and process the output

▪ Delete the stream

Step Step description

RNG stream
initialization

vslNewStream (&stream, VSL_BRNG_MT2203, 777);

Random number
generation

vsRngUniform(VSL_RNG_METHOD_UNIFORM_STD, stream, N, r, a, b);

RNG stream
de-initialization

vslDeleteStream(&stream);

Distribution type Generation method Generation parameters (Used RNG
stream, number of elements, etc.)

BRNG Type Seed

Basic RNG

Distribution
Generator

Output sequence
010010110011101000...

Initialization
parameters (seed)

Distribution
parameters

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

9

RNG – Service Routines

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

10

Requirements

• Intel® Parallel Studio XE 2020 Composer Edition with Intel® C++ Compiler

• Linux* OS supported by Intel® C++ Compiler

• Recommended to have at least 3nd generation Intel® Core™ processor (with Intel® AVX2)

• Setting the PATH, LIB, and INCLUDE environment variables

Compiler:

source /opt/intel/compilers_and_libraries_2020.1.127/linux/bin/compilervars.sh intel64

MKL: source <mklroot>/bin/mklvars.sh intel64

All experiments were done at the Intel® Xeon® Gold 6148 Processor

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

11

Demo – General Case

directory: <mkl_workshop>/RNG/#1General

➢ Review test: rng_philox.c test (and errcheck.inc and engine.inc)

➢ Compiling: icc –mkl rng_philox.c

➢ Running : ./a.out

Expected Outputs:
……………………………………………

[gfedorov@skl10 #1_general]$./a.out
r[0]=0.0836
........
r[9]=0.5227
Vector length = 100000, CPE = 0.8012

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

12

Demo – General Case, IA dispatching

review run_dispatch.sh

export MKL_ENABLE_INSTRUCTIONS=

{SSE2, SSE4_2, AVX, AVX2,AVX512}

Expected performance: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz

SSE4.2 CPE = 3.4773
AVX CPE = 3.4277
AVX2 CPE = 2.1180
AVX-512 CPE = 0.7906

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

13

Demo – General Case, CNR mode

Review ./run_cnr.sh

unset MKL_ENABLE_INSTRUCTIONS

./run_cnr.sh

Expected performance (Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz)

CBWR COMPATIBLE, CPE = 9.0394
CBWR SSE2, CPE = 9.0405
CBWR SSE4_2, CPE = 3.4765
CBWR AVX, CPE = 3.4275
CBWR AVX2, CPE = 2.1060
CBWR AVX-512, CPE = 0.7999

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

14

Demo – General Case, Vector

➢ review makefile and run_size.sh
➢ make to build lp64 and ilp64, threaded and sequential

➢ ./1.out 100000
➢ ./2.out 100000
Conclusion?

➢ Running : ./run_size.sh

Expected performance:

Vector Length CPE (Clock per elements)
--
2 88.4865
10 31.8759
100 3.6266
1000 1.1264
10000 0.8438
100000 0.7947
1000000 0.7902
……………….
2000000000 0.8558

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

15

RNG - Parallel Computing

• Basic requirements for random number streams are their mutual
independence and lack of inter-correlation

• Independent streams can be generated by
the following VS methods:

▪ BRNG set

▪ Skip-ahead

▪ Leapfrog

Parallel Random Number Generation

...

Output
sub-sequence 1

0100101...

Output
sub-sequence 2

1110010...

Output
sub-sequence N

1100111...

Output
sub-sequence 3

0110011...

Stream 1 Stream 2 Stream 3 Stream N

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

16

RNG - Parallel Computing. BRNG Set

• The sequence of random numbers can be generated by the set of mutually
“independent” streams

▪ Wichmann-Hill contains a set of 273 combined multiplicative congruential generators

▪ MT2203 contains a set of 6024 Mersenne Twister pseudorandom number generators

• The produced sequences are independent according to the spectral test

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

17

Demo-Parallel Computing: BRNG set

directory: <mkl_workshop>/RNG/#2BRNG

➢ Review test cat rng_mt_parallel.cpp | less:

• NS = #RNG/#streams // Number of RNG per stream

• VSLStreamStatePtr streamS[N_STREAMS]; // Set of streams

• for(i=0; i<N_STREAMS;i++)
vslNewStream(&streamS[i], VSL_BRNG_MT2203 + i, …); // Creating array of streams

• for (i=0;i<N_STREAMS;i++)
vsRngUniform(*.*, streamS[I], #RNG_per_Stream, &(rS[i*NS]), *.*); // RNG generation in
parallel

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

18

Demo-Parallel Computing: BRNG set, cont

Directory: <mkl_workshop>/RNG/#2BRNG

➢ Compiling: icc -qopenmp -mkl rng_mt_parallel.cpp

➢ Running: ./a.out <#threads>

➢ ./run.sh

Performance of parallel random number generations by MT2203

#threads 1 2 4 8 16 30

CPE of seguential version 0.697669

CPE of OpenMP version 0.659293 0.300453 0.155069 0.082701 0.061925 0.297636

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

19

MKL RNG - Parallel Computing. Skip-Ahead

• The original sequence is splitted into #STREAMS non-overlapping blocks

▪ where #STREAMS - the number of independent streams

• Each of the streams generates random numbers only from the corresponding
block

10 11 12 13 14 16 17 18 19 20 213 4 5 6 71 2 8 9 15

1st node stream

3rd node stream

2nd node stream
At the 1st node the stream contains 1, 2, 3, 4, 5, 6, 7.
At the 2nd node the stream contains 8, 9, 10, 11, 12, 13, 14.
At the 3rd node the stream contains 15, 16, 17, 18, 19, 20, 21.

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

20

Demo - MKL RNG, Skip-Ahead method

directory: <mkl_workshop>/RNG/#3skipahead

➢ Review test cat rng_skipahead.cpp | less

• int NS = #RNG/N_STREAMS; // Number of RNG per stream
• VSLStreamStatePtr streamS[N_STREAMS]; // Set of streams
• vslNewStream (&stream, RNG_method, seed); // Create Base Stream
• vslCopyStream(&streamS[i], stream); // Copy Base stream
• vslSkipAheadStream(streamS[i], <Number of skipped elements>) // Initializes SkipAhead stream

• for (i=0;i<N_STREAMS;i++)
viRngUniformBits(method, streamS[i], NS, dst); //RNG generation in parallel

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

21

Demo - MKL RNG, Skip-Ahead

directory: <mkl_workshop>/RNG/#3skipahead

➢ Compiling: icc -qopenmp -mkl rng_skipahead.cpp

➢ Running: ./a.out <#threads>

➢ ./run.sh

Performance (*) of parallel random number generations by SkipAhead method

#threads 1 2 4 8 16 32

CPE of seguential version 1.400897

CPE of OpenMP version 1.404006 0.711407 0.37554 0.196238 0.163317 0.4386

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

22

MKL RNG - Skip-Ahead/Leapfrog Support

BRNG Skip-Ahead and Leapfrog Support

Leapfrog Skip-Ahead

MCG31m1 Supported Supported

R250 - -

MRG32k3a - Supported

MCG59 Supported Supported

WH Supported Supported

MT19937 - Supported

SFMT19937 - Supported

MT2203 - -

SOBOL Supported to pick out individual components of quasi-random
vectors

Supported

NIEDERREITER Supported to pick out individual components of quasi-random
vectors

Supported

PHILOX4X32X10 - Supported

ARS5 - Supported

ABSTRACT - -

NON-DETERMINISTIC - -

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

23

MKL RNG – Non-deterministic Generator

Available since version of MKL v.11.1 and Compiler 13.1

Supported since Intel Ivy Bridge 2012 microarchitecture and later

This is non-deterministic random number generator - aka “True Generator”

• DRNG passed all NIST SP800-22 tests

• Supported by Intel Compiler and MKL

Intel Compiler : Generate random numbers of 16/32/64 bit wide random
integers. These intrinsics are mapped to the hardware instruction RDRAND

Examples:
extern int _rdrand16_step(unsigned short *random_val);

extern int _rdrand32_step(unsigned int *random_val);

extern int _rdrand64_step(unsigned __int64 *random_val);

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

24

MKL RNG – Non-deterministic Generator, cont

directory: <mkl_workshop>/RNG/#4nondeterm

review test: rng_non_determ.cpp:

• VSLStreamStatePtr stream;

• vslNewStream(&stream, BRNG, SEED); //BRNG == VSL_BRNG_NONDETERM

• vsRngUniform (VSL_RNG_METHOD_UNIFORM_STD, stream, <N_of_RNG>, r, a, b);

• vslDeleteStream(&stream);

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

25

MKL RNG – TRUE Generator, cont

icc –mkl rng_non_determ.cpp

./run_size.sh

Vector length NONDETERM, CPE

2 43837.4

10 8253.7

100 900.4

1K 162.8

10K 16.2

100K 1.6

1000K 0.16

Philiox, CPE

88.4

31.8

3.6

1.1

0.8

0.7

0.7

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

26

MKL RNG – Performance

• Performance metric: Cycles-per-element (CPE)

▪ Lower is better

0

2

4

6

8

MCG31m1 R250 MRG32k3a MCG59 WH SOBOL NIEDERR MT19937 MT2203 SFMT19937 Philox4x32-10 ARS-5

C
P

E

BRNG

Uniform distribution generator performance

Intel® Xeon® Gold 6148 Processor, Intel® MKL 2020 GOLD

Single precision Double precision

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

27

Intel MKL Resources

Intel® MKL website:

‒ https://software.intel.com/en-us/intel-mkl

Intel MKL forum:

‒ https://software.intel.com/en-us/forums/intel-math-kernel-library

Intel® MKL link line advisor:

‒ http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

Notes for Intel® MKL Vector Statistics:

- https://software.intel.com/en-us/mkl-vsnotes

https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/forums/intel-math-kernel-library
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/
https://software.intel.com/en-us/mkl-vsnotes

Copyright © 2020, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are
trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

2828

