
Accelerating
Applications with
CUDA C/C++

TOPICS

GPU-accelerated vs. CPU-only Applications

CUDA Kernel Execution

Parallel Memory Access

Appendix: Glossary

GPU-accelerated vs. CPU-only Applications

CPU

Time

initialize()

DATA

In CPU-only applications data is
allocated on CPU

CPU

Time

initialize() performWork()

DATA

…and all work is performed on CPU

CPU

Time

initialize() performWork() verifyWork()

DATA

…and all work is performed on CPU

In accelerated applications data is
allocated with

cudaMallocManaged()

CPU

DATA

GPU

CPU

Time

GPU

… where it can be accessed and
worked on by the CPU

CPU

DATA

GPU

CPU

Time

initialize()

GPU

CPU

DATA

GPU

CPU

Time

initialize()

performWork()

GPU

… and automatically migrated to the
GPU where parallel work can be done

CPU

DATA

GPU

CPU

Time

initialize()

performWork()

GPU

Work on the GPU is asynchronous,
and CPU can work at the same time

cpuWork()

CPU

DATA

GPU

CPU

Time

initialize()

performWork()

synchronize

GPU

CPU code can sync with the
asynchronous GPU work, waiting for it

to complete, with
cudaDeviceSynchronize()

cpuWork()

CPU

DATA

GPU

CPU

Time

initialize()

performWork()

verifyWork()

synchronize

GPU

… data accesses by the CPU will
automatically be migrated

cpuWork()

CUDA Kernel Execution

GPU

cpuWork()

synchronize

CPU

DATA CPU

Time

initialize() verifyWork()

performWork()GPU

performWork<<<2, 4>>>()

GPUs do work in parallel

GPU

performWork<<<2, 4>>>()

GPU work is done in a thread

GPU

performWork<<<2, 4>>>()

Many threads run in parallel

GPU

A collection of threads is a block

GPU

performWork<<<2, 4>>>()

There are many blocks

GPU

performWork<<<2, 4>>>()

A collection of blocks is a grid

GPU

performWork<<<2, 4>>>()

GPU functions are called kernels

GPU

performWork<<<2, 4>>>()

Kernels are launched with an
execution configuration

GPU

performWork<<<2, 4>>>()

performWork<<<2, 4>>>()

The execution configuration defines
the number of blocks in the grid

GPU

performWork<<<2, 4>>>()

… as well as the number of threads in
each block

GPU

performWork<<<2, 4>>>()

GPU

Every block in the grid contains the
same number of threads

CUDA-Provided Thread Hierarchy Variables

performWork<<<2, 4>>>()

Inside kernels definitions, CUDA-
provided variables describe its

executing thread, block, and grid

GPU

gridDim.x is the number of blocks in
the grid, in this case 2

GPU

performWork<<<2, 4>>>()

2

blockIdx.x is the index of the
current block within the grid, in this

case 0

GPU

performWork<<<2, 4>>>()

0 1

blockIdx.x is the index of the
current block within the grid, in this

case 1

GPU

performWork<<<2, 4>>>()

0 1

performWork<<<2, 4>>>()

Inside a kernel blockDim.x describes
the number of threads in a block. In

this case 4

GPU

4

performWork<<<2, 4>>>()

All blocks in a grid contain the same
number of threads

GPU

4 4

performWork<<<2, 4>>>()

Inside a kernel threadIdx.x
describes the index of the thread within

a block. In this case 0

GPU

0 1 2 3 0 1 2 3

performWork<<<2, 4>>>()

Inside a kernel threadIdx.x
describes the index of the thread within

a block. In this case 1

GPU

0 1 2 3 0 1 2 3

performWork<<<2, 4>>>()

Inside a kernel threadIdx.x
describes the index of the thread within

a block. In this case 2

GPU

0 1 2 3 0 1 2 3

performWork<<<2, 4>>>()

Inside a kernel threadIdx.x
describes the index of the thread within

a block. In this case 3

GPU

0 1 2 3 0 1 2 3

performWork<<<2, 4>>>()

Inside a kernel threadIdx.x
describes the index of the thread within

a block. In this case 0

GPU

0 1 2 3 0 1 2 3

performWork<<<2, 4>>>()

Inside a kernel threadIdx.x
describes the index of the thread within

a block. In this case 1

GPU

0 1 2 3 0 1 2 3

performWork<<<2, 4>>>()

Inside a kernel threadIdx.x
describes the index of the thread within

a block. In this case 2

GPU

0 1 2 3 0 1 2 3

performWork<<<2, 4>>>()

Inside a kernel threadIdx.x
describes the index of the thread within

a block. In this case 3

GPU

0 1 2 3 0 1 2 3

Coordinating Parallel Threads

cpuWork()

synchronize

CPU

CPU

Time

initialize() verifyWork()

performWork()

GPUDATA

GPU

performWork<<<2, 4>>>()

Assume data is in a 0 indexed vector

GPU

DATA
GPUGPU

performWork<<<2, 4>>>()

Assume data is in a 0 indexed vector

GPU

DATA
GPUGPU

0

1

2

3

4

5

6

7

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

4

5

6

7

Somehow, each thread must be
mapped to work on an element in the

vector

performWork<<<2, 4>>>()

Recall that each thread has access to
the size of its block via blockDim.x

GPU

DATA
GPUGPU

0

1

2

3

4

5

6

7

4 4

performWork<<<2, 4>>>()

…and the index of its block within the
grid via blockIdx.x

GPU

DATA
GPUGPU

0

1

2

3

4

5

6

7

4 4

0 1

performWork<<<2, 4>>>()

…and its own index within its block via
threadIdx.x

GPU

DATA
GPUGPU

0

1

2

3

4

5

6

7

4 4

0 1

0 1 2 3 0 1 2 3

performWork<<<2, 4>>>()

Using these variables, the formula
threadIdx.x + blockIdx.x *
blockDim.x will map each thread to

one element in the vector

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 0 4

dataIndex

?

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 0 4

dataIndex

0

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 0 4

dataIndex

?

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 0 4

dataIndex

1

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 0 4

dataIndex

?

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 0 4

dataIndex

2

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

3 0 4

dataIndex

?

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

3 0 4

dataIndex

3

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 1 4

dataIndex

?

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 1 4

dataIndex

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 1 4

dataIndex

?

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 1 4

dataIndex

5

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex

?

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex

6

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

3 1 4

dataIndex

?

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

3 1 4

dataIndex

7

Grid Size Work Amount Mismatch

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

4

5

6

7

0 1

4 4

In previous scenarios, the number of
threads in the grid matched the

number of elements exactly

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

What if there are more threads than
work to be done?

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

Attempting to access non-existent
elements can result in a runtime error

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

Code must check that the dataIndex
calculated by threadIdx.x +

blockIdx.x * blockDim.x is less
than N, the number of data elements.

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 1 4

dataIndex < N = Can work

4 5 ?

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

0 1 4

dataIndex < N = Can work

4 5 true

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 1 4

dataIndex < N = Can work

5 5 ?

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

1 1 4

dataIndex < N = Can work

5 5 false

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex < N = Can work

6 5 ?

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex < N = Can work

6 5 false

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex < N = Can work

6 5 ?

4

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0

1

2

3

0 1 2 3 0 1 2 3

0 1

4 4

threadIdx.x + blockIdx.x * blockDim.x

2 1 4

dataIndex < N = Can work

6 5 false

Grid-Stride Loops

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

Often there are more data
elements than there are

threads in the grid

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

In such scenarios threads
cannot work on only one

element

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

… or else work is left
undone

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

One way to address this
programmatically is with a

grid-stride loop

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

In a grid-stride loop, the
thread’s first element is

calculated as usual, with
threadIdx.x +
blockIdx.x *
blockDim.x

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

The thread then strides
forward by the number of

threads in the grid
(blockDim.x *

gridDim.x), in this case
8

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

It continues in this way until
its data index is greater than

the number of data
elements

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

It continues in this way until
its data index is greater than

the number of data
elements

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in
this way, all elements are

covered

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in
this way, all elements are

covered

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in
this way, all elements are

covered

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in
this way, all elements are

covered

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in
this way, all elements are

covered

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in
this way, all elements are

covered

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in
this way, all elements are

covered

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in
this way, all elements are

covered

performWork<<<2, 4>>>()

GPU

DATA
GPUGPU

0 1 2 3 0 1 2 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

With all threads working in
this way, all elements are

covered

CUDA runs as many blocks
in parallel at once as the

GPU hardware supports, for
massive parallelization

Glossary

Glossary
— cudaMallocManaged(): CUDA function to allocate memory accessible by both the CPU and GPUs. Memory

allocated this way is called unified memory and is automatically migrated between the CPU and GPUs as needed.
— cudaDeviceSynchronize(): CUDA function that will cause the CPU to wait until the GPU is finished working.
— Kernel: A CUDA function executed on a GPU.
— Thread: The unit of execution for CUDA kernels.
— Block: A collection of threads.
— Grid: A collection of blocks.
— Execution context: Special arguments given to CUDA kernels when launched using the <<<…>>> syntax. It defines

the number of blocks in the grid, as well as the number of threads in each block.
— gridDim.x: CUDA variable available inside executing kernel that gives the number of blocks in the grid
— blockDim.x: CUDA variable available inside executing kernel that gives the number of threads in the thread’s

block
— blockIdx.x: CUDA variable available inside executing kernel that gives the index the thread’s block within the

grid
— threadIdx.x: CUDA variable available inside executing kernel that gives the index the thread within the block
— threadIdx.x + blockIdx.x * blockDim.x: Common CUDA technique to map a thread to a data element
— Grid-stride loop: A technique for assigning a thread more than one data element to work on when there are more

elements than the number of threads in the grid. The stride is calculated by gridDim.x * blockDim.x, which is
the number of threads in the grid.

www.nvidia.com/dli

