Irz

FUNDAMENTALS OF DEEP LEARNING

PD. Dr. Juan J. Durillo

DEEP LEARNING INSTITUTE

THE GOALS OF THIS COURSE

- Get you up and on your feet quickly
- Build a foundation to tackle a deep learning project right away
- We won't cover the whole field, but we'll get a great head start
- Foundation from which to read articles, follow tutorials, take further classes

Part I: An Introduction to Deep Learning

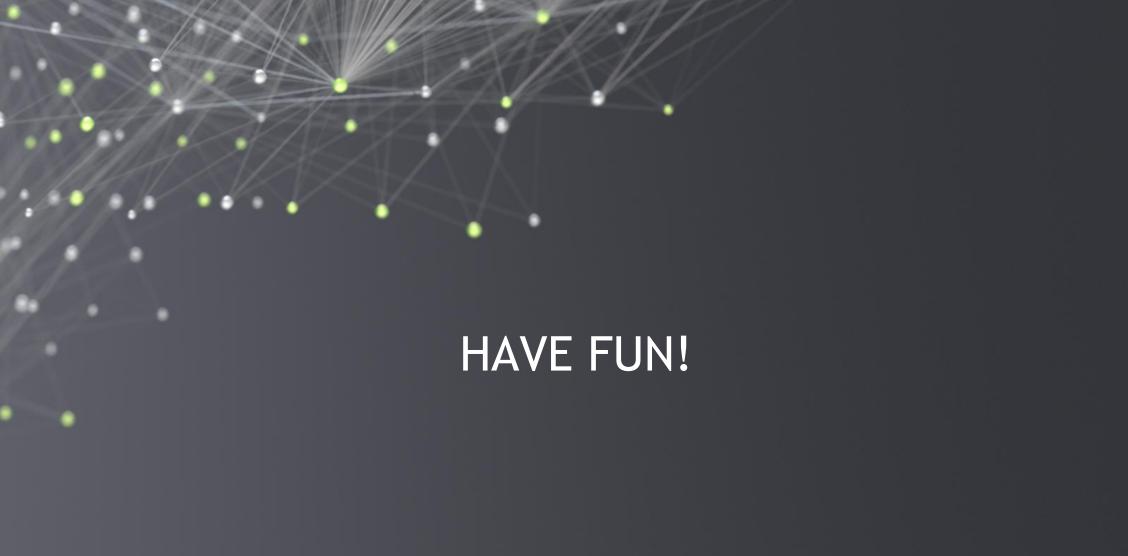
Part 2: How a Neural Network Trains

Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures



HISTORY OF AI

BEGINNING OF ARTIFICIAL INTELLIGENCE

COMPUTERS ARE MADE IN PART TO COMPLETE HUMAN TASKS EARLY ON, GENERALIZED INTELLIGENCE LOOKED POSSIBLE TURNED OUT TO BE HARDER THAN EXPECTED

EARLY NEURAL NETWORKS

Inspired by biology

Created in the 1950's

Outclassed by Von Neumann Architecture

EXPERT SYSTEMS

Programmed by hundreds of engineers

Rigorous programming of many rules

EXPERT SYSTEMS - LIMITATIONS

What are these three images?

THE DEEP LEARNING REVOLUTION

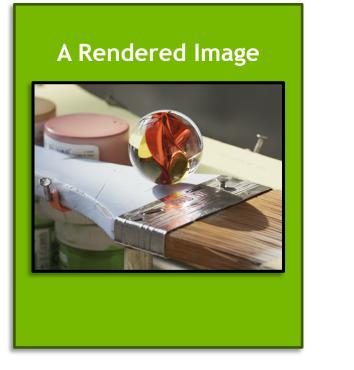
DATA

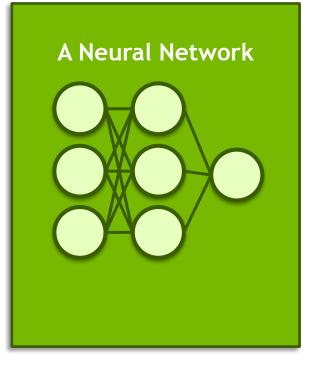
- Networks need a lot of information to learn from
- The digital era and the internet has supplied that data

COMPUTING POWER

Need a way for our artificial "brain" to observe lots of data within a practical amount of time.

THE IMPORTANCE OF THE GPU

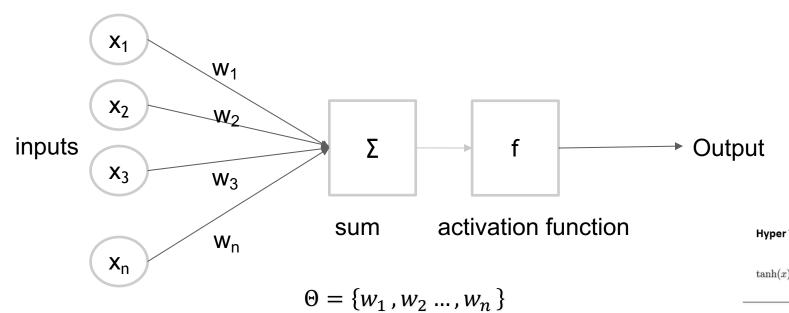


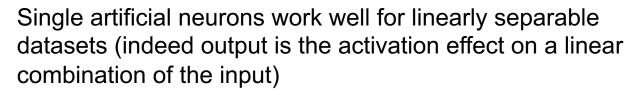


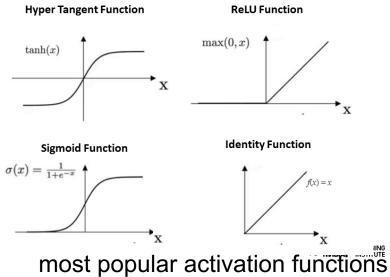
WHAT IS DEEP LEARNING?

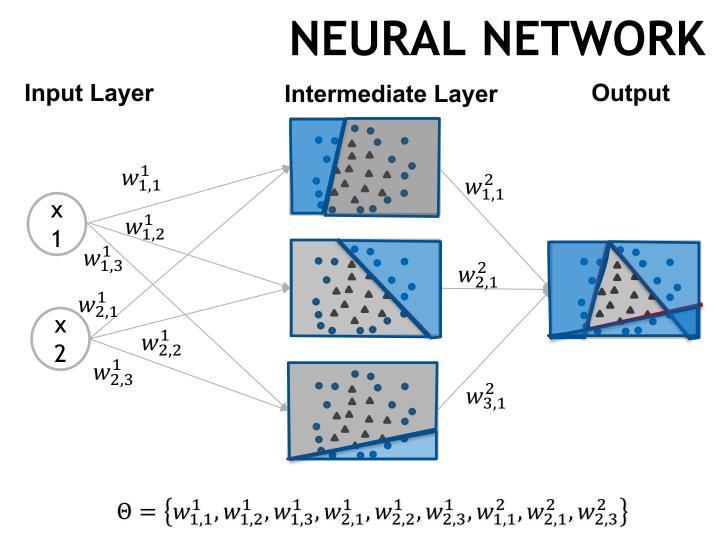
A (brief) introduction to Machine Learning 28.04.2021 | PD Dr. Juan J. Durillo

Perceptron - Artificial Neuron

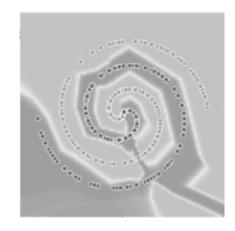








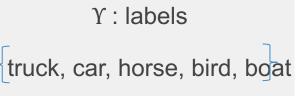
 Works well even when the data is not linearly separable



(SUPERVISED) LEARNING

- Data domain Ζ: Χ×Υ
 - $X \rightarrow$ domain of the input data
 - $\Upsilon \rightarrow$ set of labels (knowledge)
- Data Distribution is a probability distribution over a data domain
- Training set $z_1, ..., z_n$ from Z assumed to be drawn from the Data Distribution D
- Validation set $v_1, ..., v_m$ from Z also assumed to be drawn from D
- A machine learning model is a function that given a set of parameters Θ and z from Z produces a prediction
- The prediction quality is measured by a differentiable non-negative scalar-valued loss function, that we denote $\ell(\Theta; z)$

X: 32 x 32



Example (CIFAR10 dataset)

(SUPERVISED) LEARNING

- Given Θ we can define the expected loss as: $L(\Theta) = \mathbb{E}_{z \sim D}[\ell(\Theta; z)]$
- Given D, ℓ , and a model with parameter set Θ , we can define learning as:

"The task of finding parameters Θ that achieve low values of the expected loss, while we are given access to only n training examples"

- The mentioned task before is commonly referred to as *training*
- Empirical average loss given a subset of the training data set $S(z_1, ..., z_n)$ as:

$$\hat{L}(\Theta) = \frac{1}{n} \sum_{t=1}^{n} [\ell(\Theta; z_t)]$$

• Usually a proxy function, easier to understand by humans, is used for describing how well the training is performed (e.g., accuracy)

(SUPERVISED) LEARNING

• The dominant algorithms for training neural networks are based on mini-batch stochastic gradient descent (SGD)

• Given an initial point Θ_0 SGD attempt to decrease \hat{L} via the sequence of iterates

$$\Theta_t \leftarrow \Theta_{t-1} - n_t g(\Theta_{t-1}; B_t)$$

$$g(\Theta; B) = \frac{1}{|B|} \sum_{z \in B} \nabla \ell(\Theta; z)$$

 B_t : random subset of training examples

 n_t : positive scalar (learning rate)

epoch: update the weights after going over all training set

COMPUTER VISION TASKS

predicting the type or class of an object in an image

Image Classification

predicting the type or class on an object in an image and draw a bounding box around Image Classification + Localization

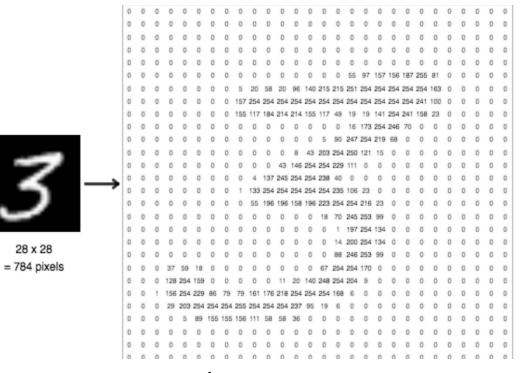
predicting the location of objects in an image via bounding boxes and the classes of the located objects

Object Detection

predicting the class to which each pixel in the image belongs to

Image Segmentation

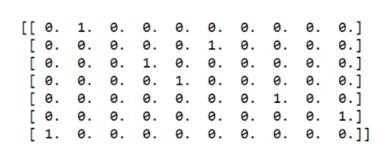
ON INPUT REPRESENTATION



image

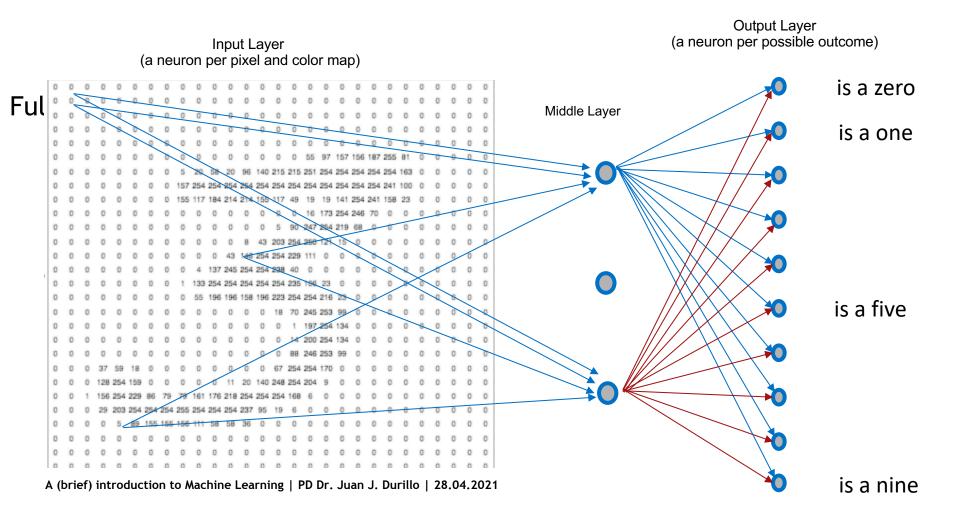
_dict=['EOS','a','my','sleeps','on','dog','cat','the','bed','floor']

sentence = ['a', 'dog', 'sleeps', 'on', 'the', 'floor', 'EOS']

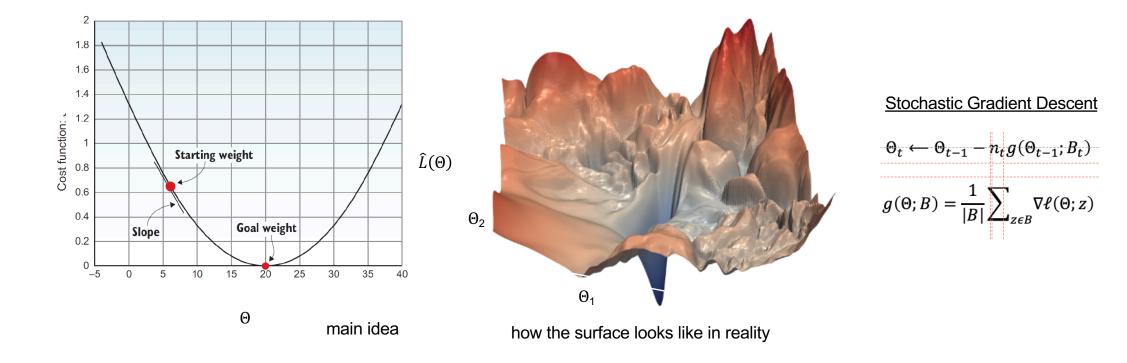


language

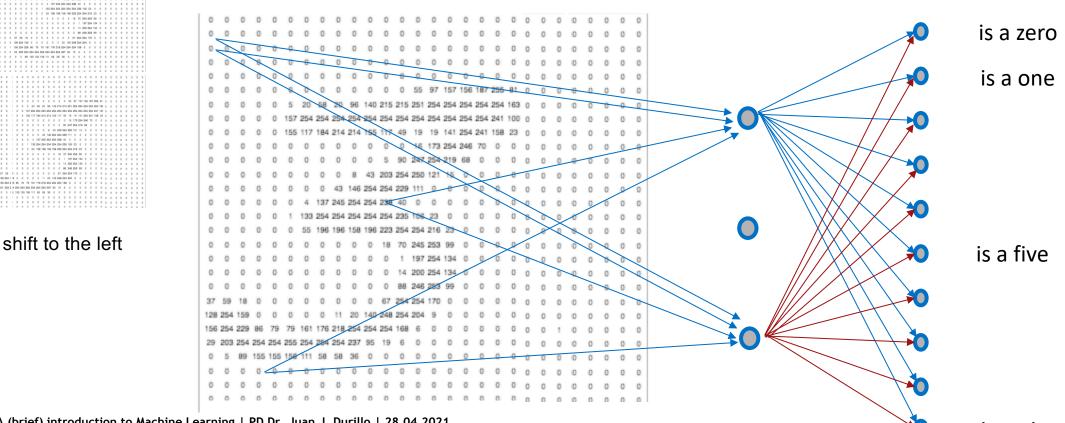
NEURAL NETWORKS FOR IMAGE CLASSIFICATION



TRAINING NEURAL NETWORKS



NEURAL NETWORKS FOR IMAGE **CLASSIFICATION**



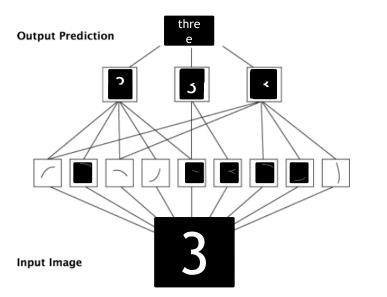
0 0 0 0 0 0 155 117 184 214 214 155 117 49 19 19 141 254 54 55 23 0 0 0 0 0 0 0 0 0 0 0 0 43 146 254 254 229 111 0 0 0 0 0 0 0

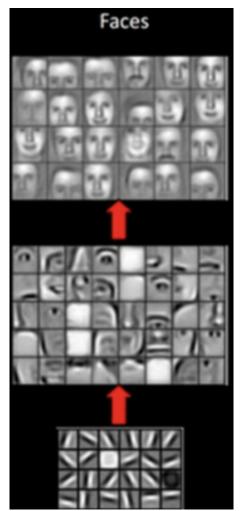
0 0 0 0 0 0 0 1 133 254 254 254 254 255 106 23 0 0 0 0 0 0 0 0 0 55 196 196 196 223 254 254 216 23 0 0 0 0 0 0 0 0 0 0 0 0 0 18 70 245 253 99 0 0 0 0 0

shift to the left

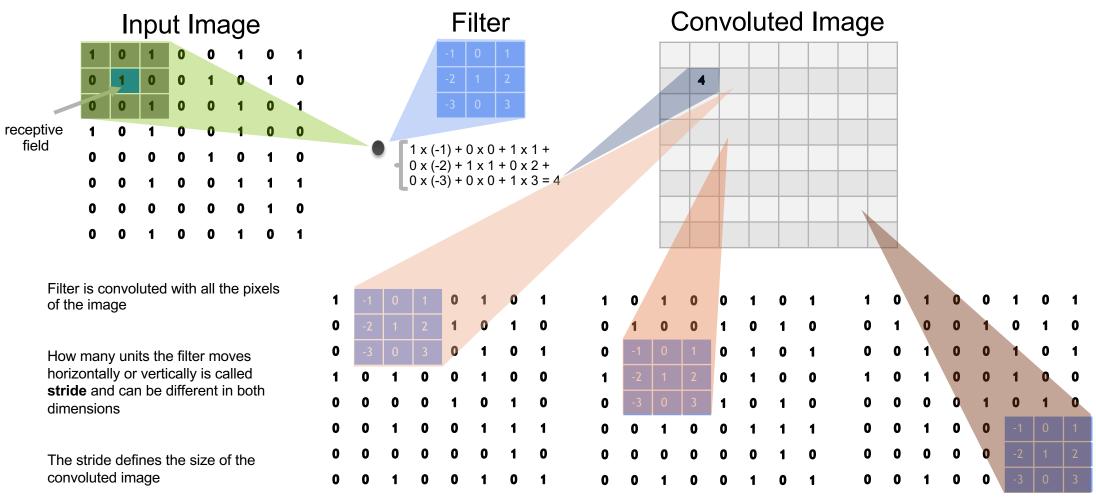
is a nine

NO MORE FEATURE ENGINEERING





LEARNING FEATURES FROM DATA: CONVOLUTIONS



*The London skyline image is designed by Freepik

FILTERS

Input Image:

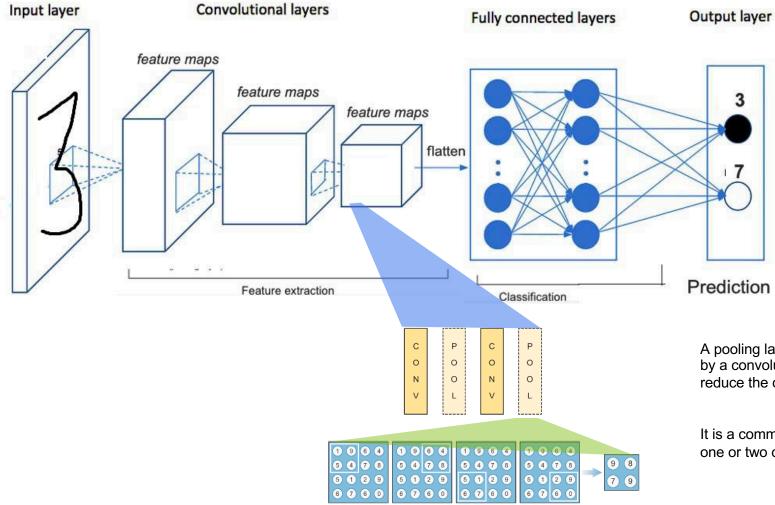
LONDON

try the code yourself (in octave)!

I=imread(<path-to-image>); GRAY=rgb2gray(I) FILTER=[1 0 -1; 1 0 -1; 1 0 -1]; % filter 2 CONVOLUTED=conv2(GREY,FILTER); Imwrite(CONVOLUTED, <path-to-result>); out of this picture? -1 filter 1 -1 0 -1 -1 filter 2 0 0 1 0 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 1 0 -1 filter 3

Can we get only vertical lines

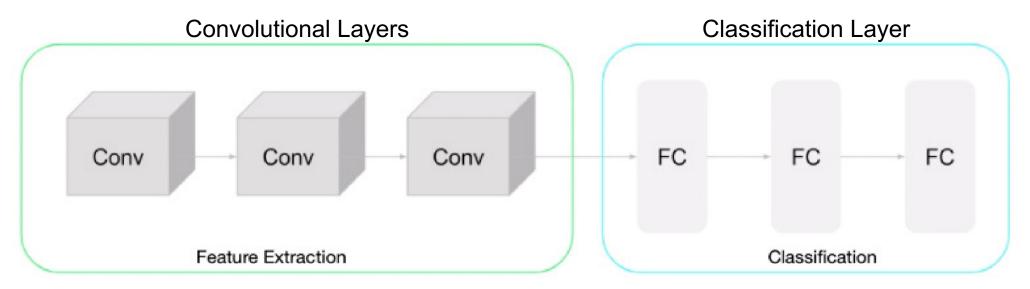
CONVOLUTIONAL NEURAL NETWORKS (CNN)



A pooling layer down sample the feature maps produced by a convolution into smaller number of parameters to reduce the computational complexity.

It is a common practice to add pooling layers after each one or two convolutions layers in the CNN architecture.

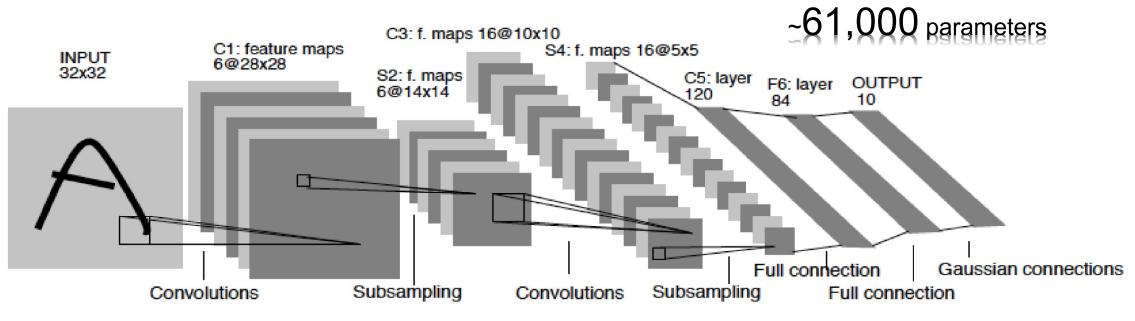
CNN ARCHITECTURE: A COMMON PATTERN AND ITS INFLUENCE



The execution time required during a forward pass through a neural network is bounded from below by the number of floating point operations (FLOPs).

This FLOP count depends on the deep neural network architecture and the amount of data.

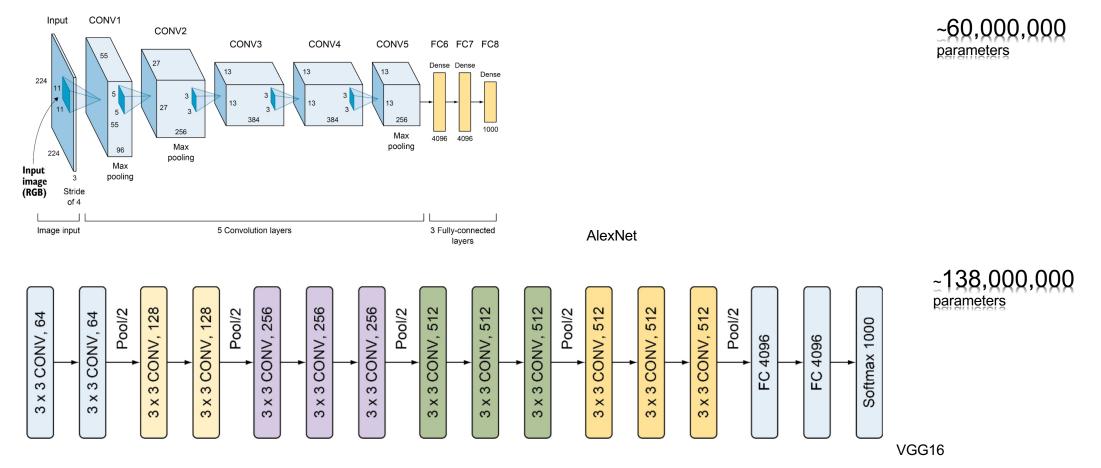
LENET ARCHITECTURE

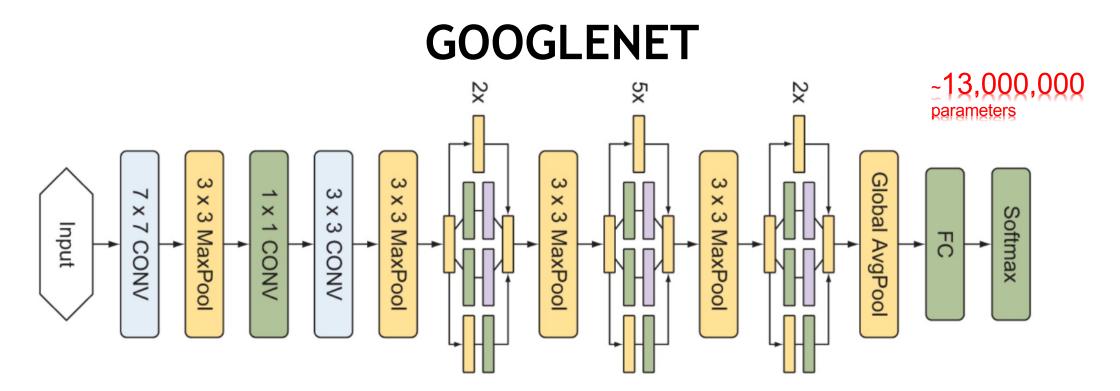


Architecture summary :

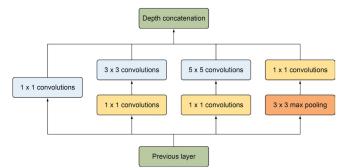
- 3 convolutional layers filters in all the layers equal to 5x5 (layer 1 depth = 6, layer 2 depth = 16, layer 3 depth = 120)
- As activation function the tanh function is used

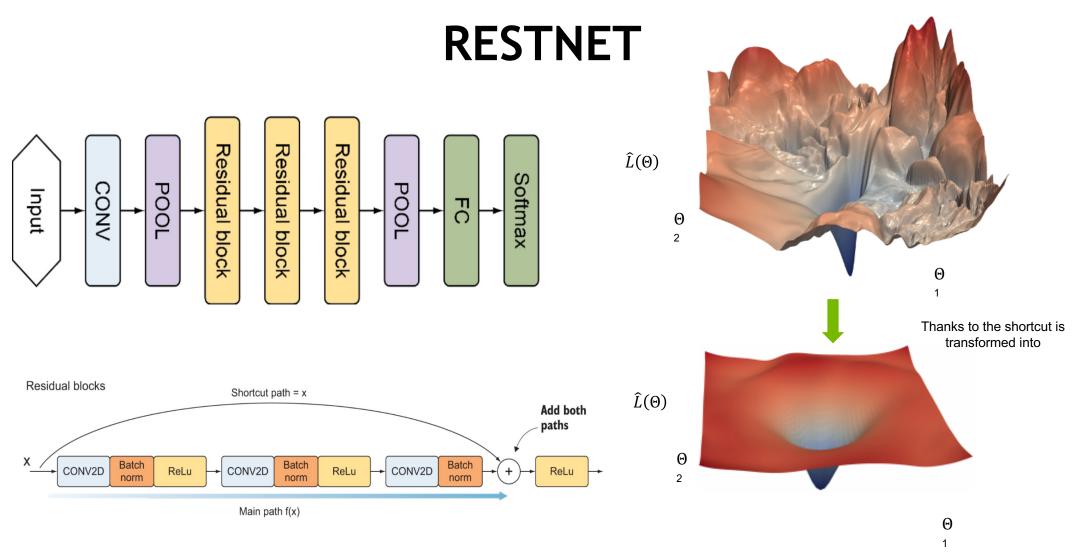
ALEXNET AND VGG ARCHITECTURES





- What is the best kernel size for each layer?
- Concatenating filters instead of stacking them for reducing computational expenses





INCREASING COMPLEXITY

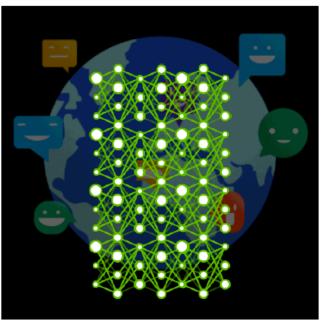
7 Exaflops 60 Million Parameters

2015 - Microsoft ResNet Superhuman Image Recognition

20 Exaflops 300 Million Parameters

2016 - Baidu Deep Speech 2 Superhuman Voice Recognition

100 Exaflops 8700 Million Parameters



2017 - Google Neural Machine Translation Near Human Language Translation

SUMMARY

Brief introduction to Deep Learning with emphasis in Deep Convolutional Neural Networks

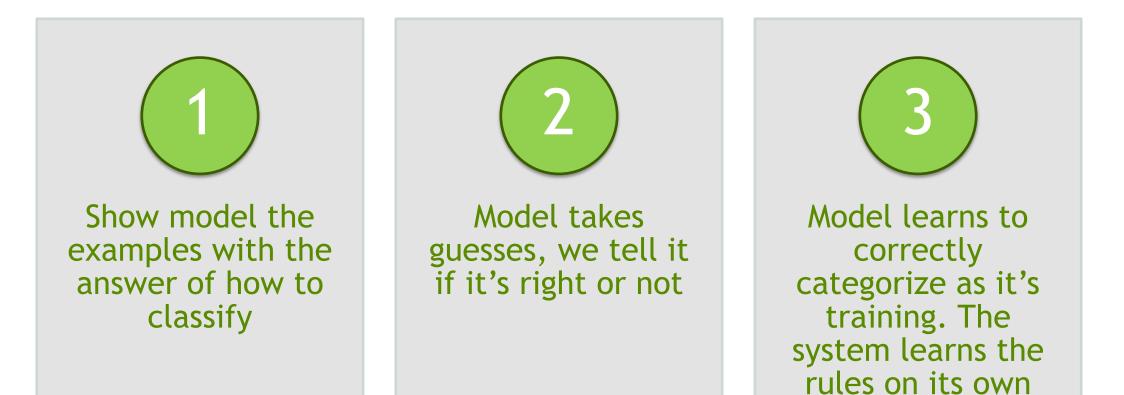
Review of basic concepts: from perceptron to the learning task

Debrief of most important concepts of neural network architectures

DEEP LEARNING FLIPS TRADITIONAL PROGRAMMING ON ITS HEAD

TRADITIONAL PROGRAMMING Building a Classifier

MACHINE LEARNING Building a Classifier



THIS IS A FUNDAMENTAL SHIFT

WHEN TO CHOOSE DEEP LEARNING

Classic Programming

If rules are clear and straightforward, often better to just program it

Deep Learning

If rules are nuanced, complex, difficult to discern, use deep learning

DEEP LEARNING COMPARED TO OTHER AI

Depth and complexity of networks

Up to billions of parameters (and growing)

Many layers in a model

Important for learning complex rules

HOW DEEP LEARNING IS TRANSFORMING THE WORLD

COMPUTER VISION

ROBOTICS AND MANUFACTURING

OBJECT DETECTION SELF DRIVING CARS

NATURAL LANGUAGE PROCESSING

REAL TIME TRANSLATION

VOICE RECOGNITION

VIRTUAL ASSISTANTS

RECOMMENDER SYSTEMS

CONTENT CURATION TARGETED ADVERTISING

SHOPPING RECOMMENDATIONS

REINFORCEMENT LEARNING

ALPHAGO BEATS WORLD CHAMPION IN GO

AI BOTS BEAT PROFESSIONAL VIDEOGAMERS

STOCK TRADING ROBOTS

OVERVIEW OF THE COURSE

HANDS ON EXERCISES

- Get comfortable with the process of deep learning
- Exposure to different models and datatypes
- Get a jump-start to tackle your own projects

STRUCTURE OF THE COURSE

"Hello World" of Deep Learning

Train a more complicated model

New architectures and techniques to improve performance

Pre-trained models

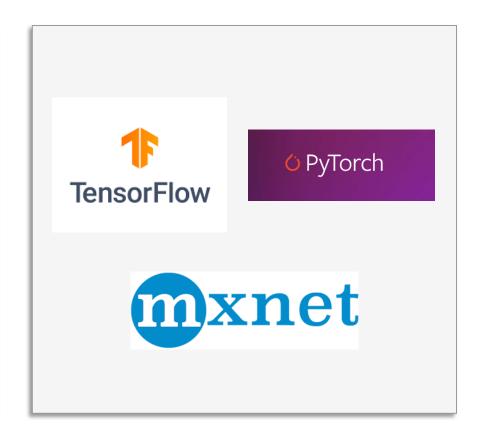
Transfer learning

PLATFORM OF THE COURSE

Jupyter notebooks for interactive coding

SOFTWARE OF THE COURSE

- Major deep learning platforms:
 - TensorFlow + Keras (Google)
 - Pytorch (Facebook)
 - MXNet (Apache)
- We'll be using TensorFlow and Keras
- Good idea to gain exposure to others moving forward



FIRST EXERCISE: CLASSIFY HANDWRITTEN DIGITS

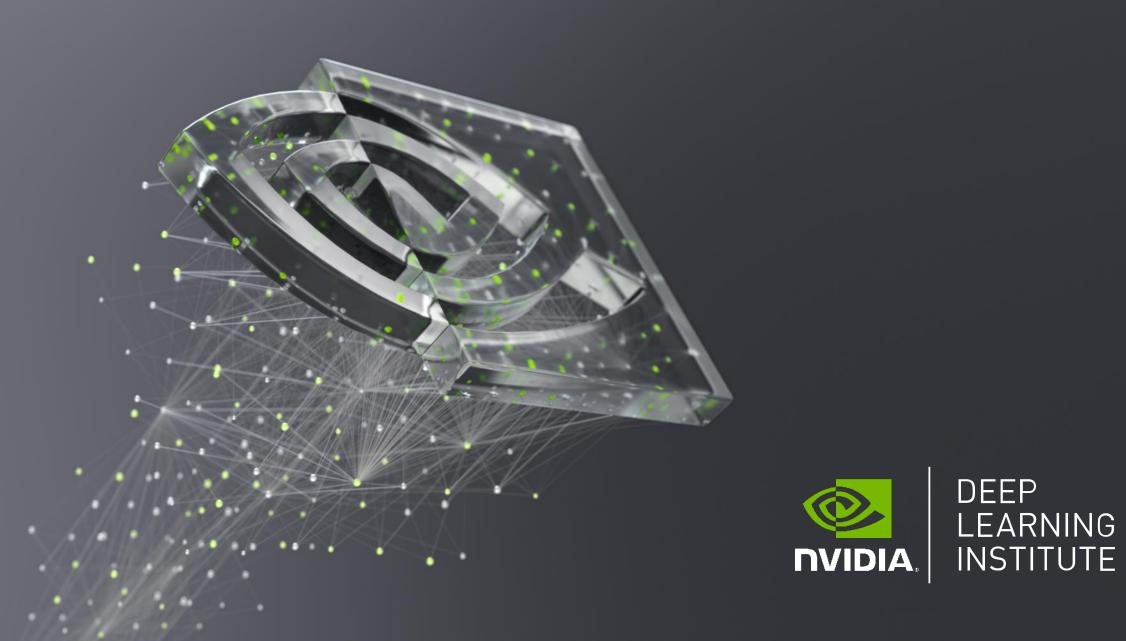
HELLO NEURAL NETWORKS

Train a network to correctly classify handwritten digits

• Historically important and difficult task for computers

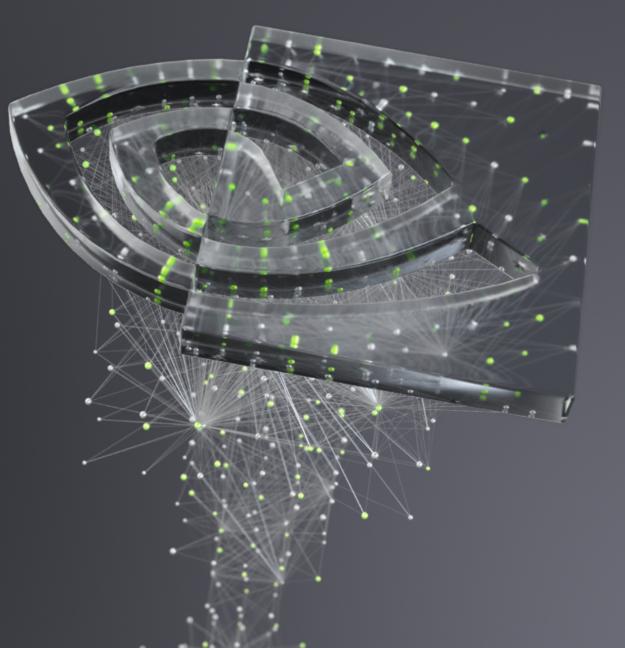
Try learning like a Neural Network Get exposed to the example, and try to figure out the rules to how it works

LET'S GO!



FUNDAMENTALS OF DEEP LEARNING

Part 2: How a Neural Network Trains



Part 1: An Introduction to Deep Learning

Part 2: How a Neural Network Trains

Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures

- •
- •
- •
- •
- •
- •

RECAP OF THE EXERCISE

What just happened?

Loaded and visualized our data

Edited our data (reshaped, normalized, to categorical)

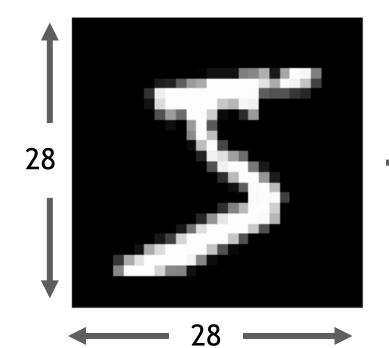
Created our model

Compiled our model

Trained the model on our data

DATA PREPARATION

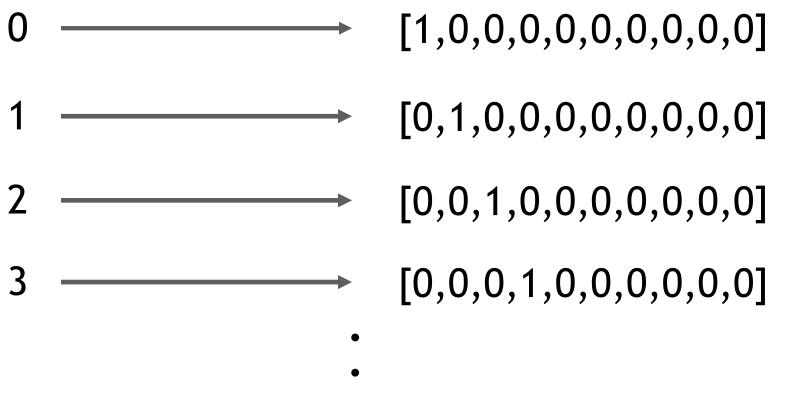
Input as an array



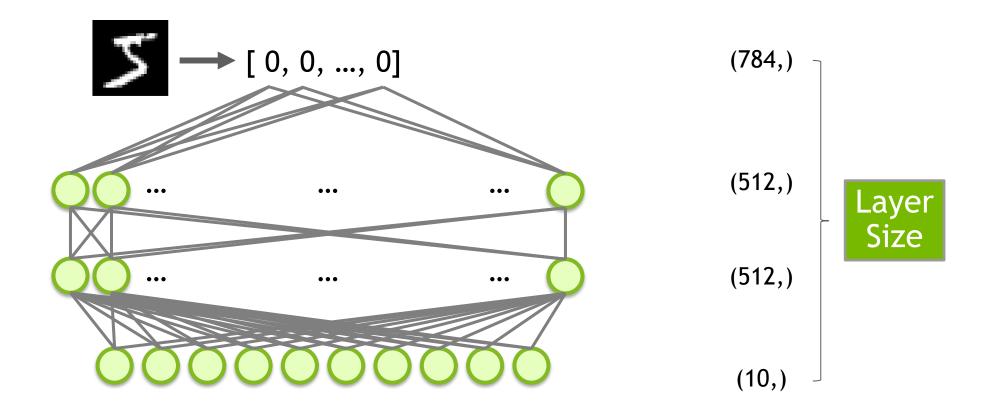
[0,0,0,24,75,184,185,78,32,55,0,0,0...]

DATA PREPARATION

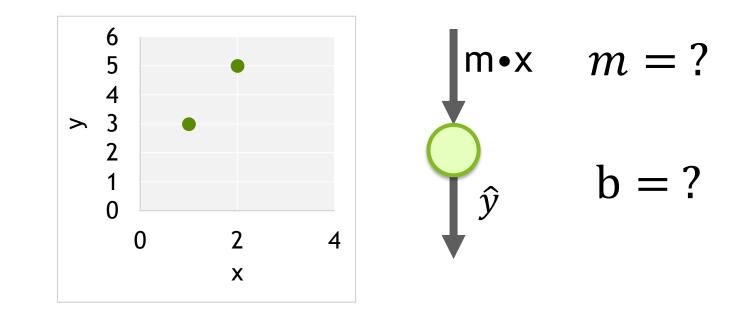
Targets as categories

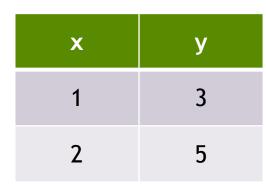


AN UNTRAINED MODEL

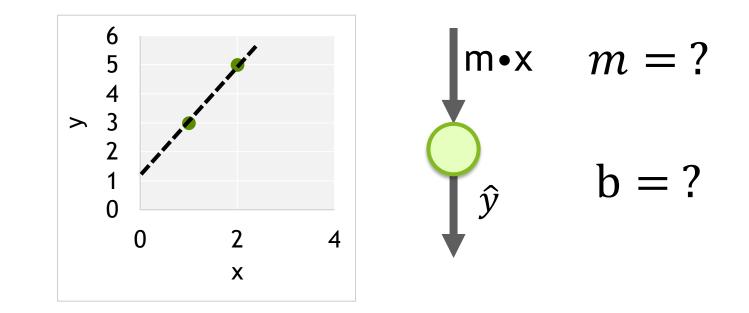


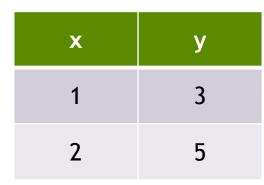
$$y = mx + b$$



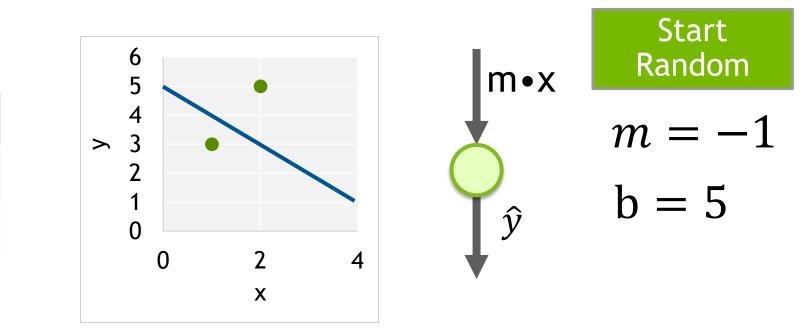


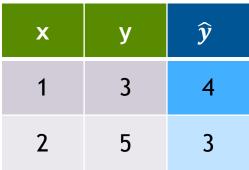
$$y = mx + b$$



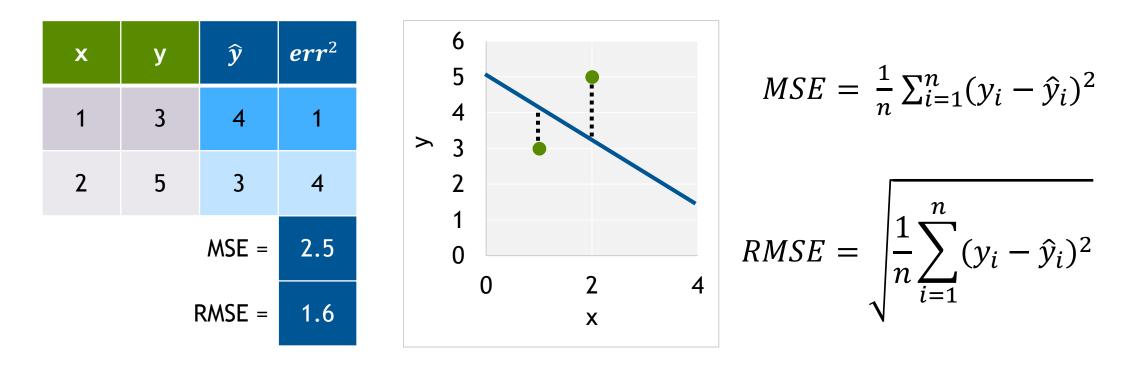


$$y = mx + b$$

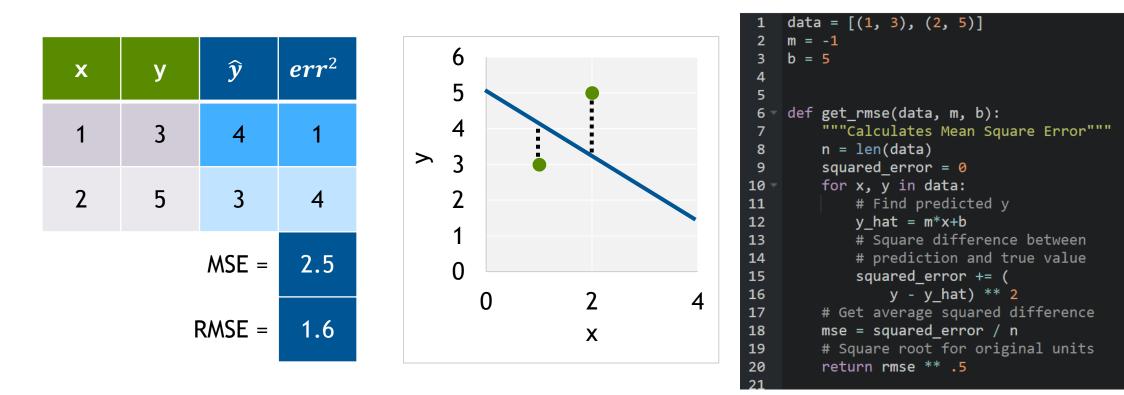




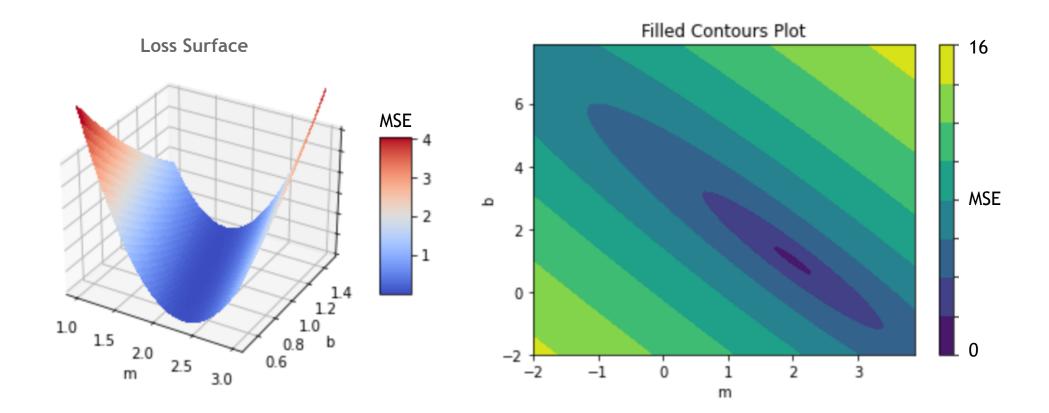
$$y = mx + b$$



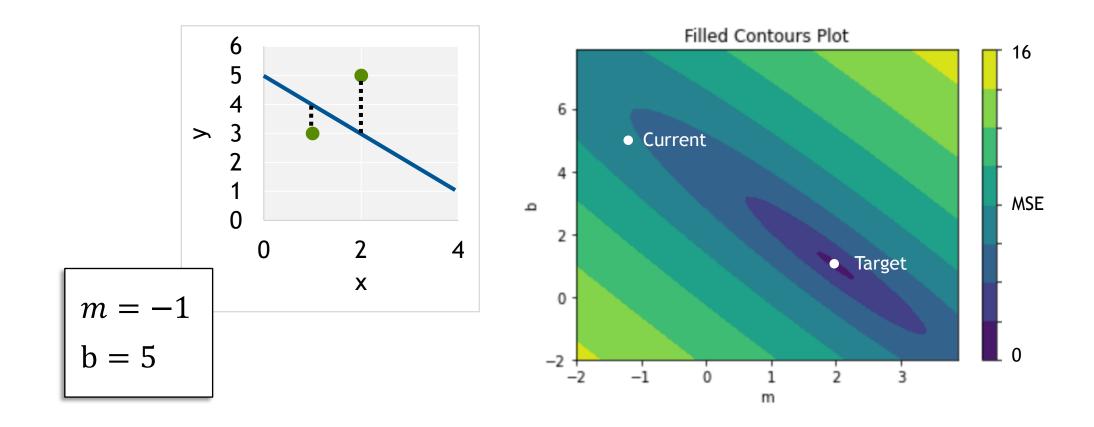
y = mx + b



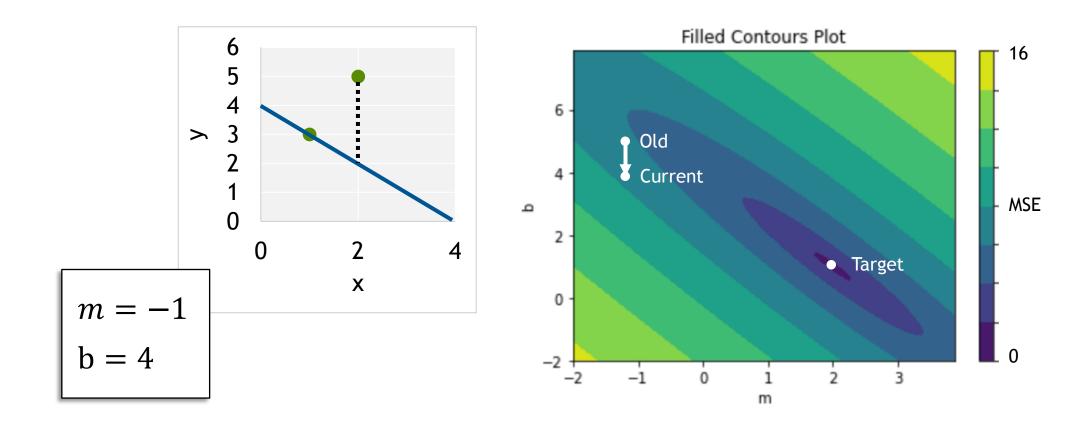
THE LOSS CURVE

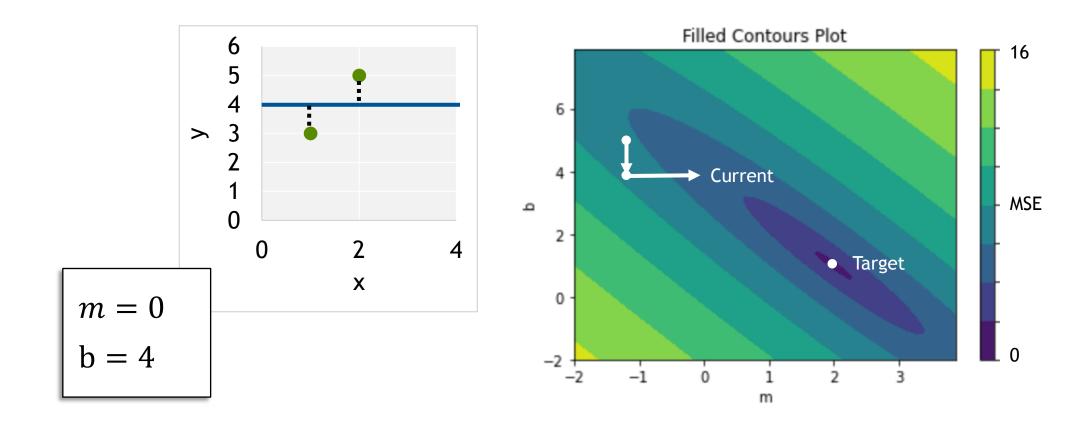


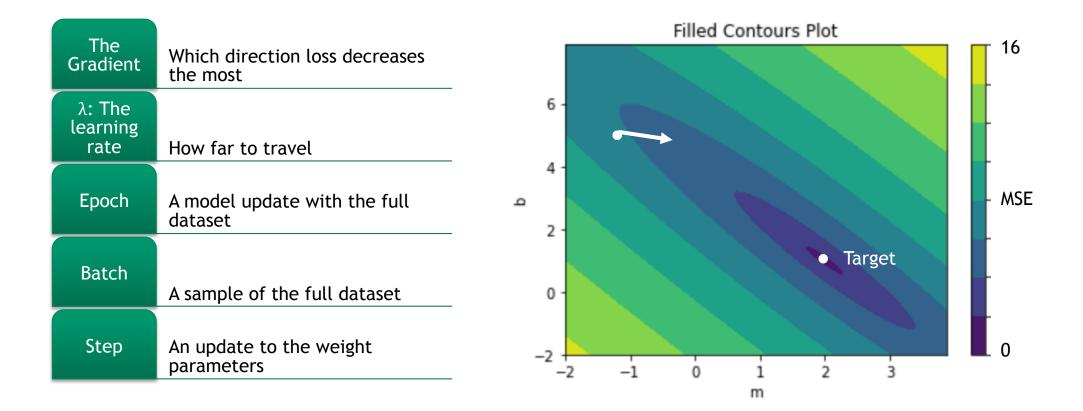
THE LOSS CURVE

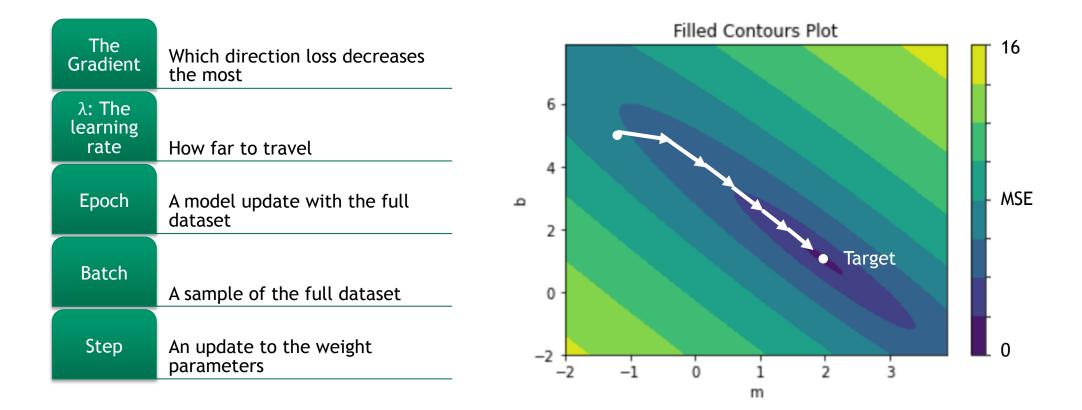


THE LOSS CURVE

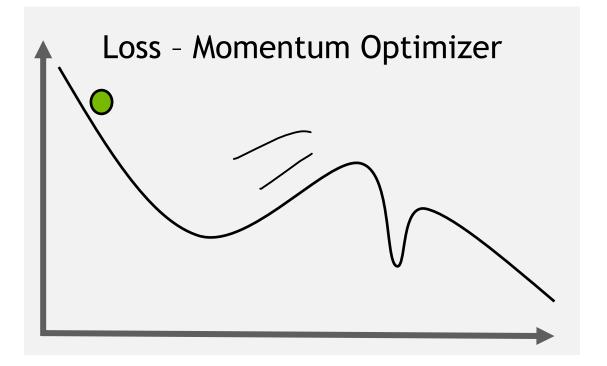








OPTIMIZERS



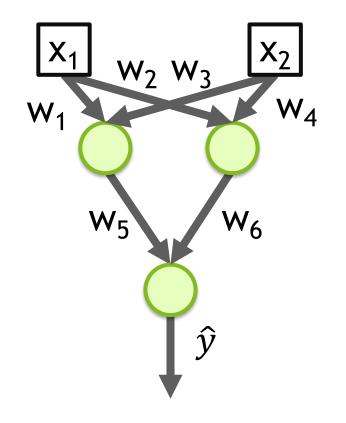
- Adam
- Adagrad
- RMSprop
- SGD

FROM NEURON TO NETWORK

BUILDING A NETWORK

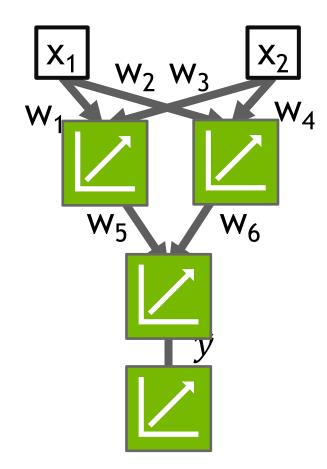
W₁

BUILDING A NETWORK

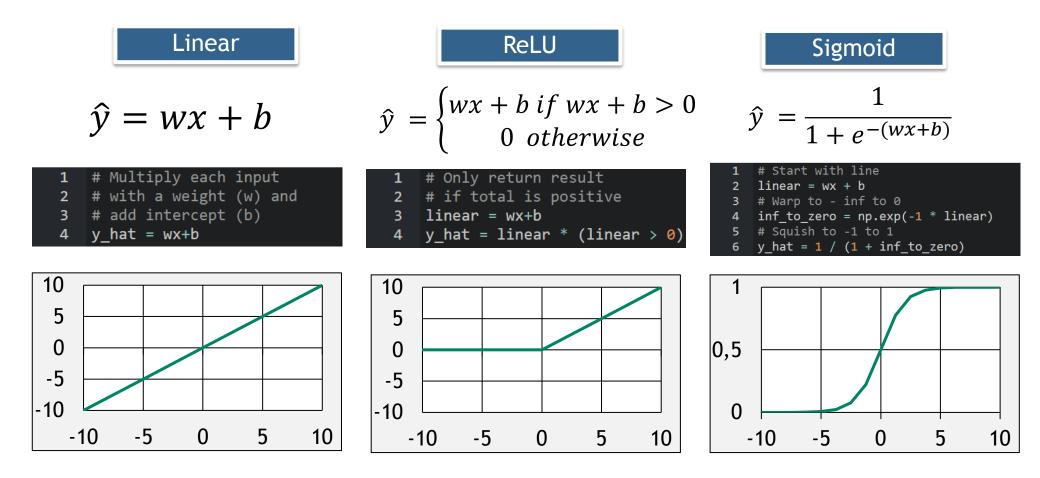


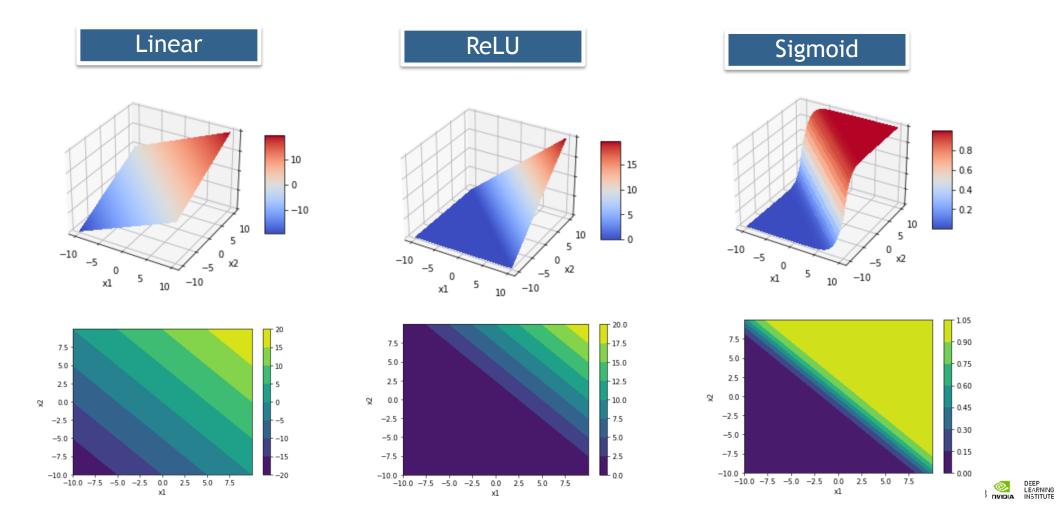
• Can chain neurons

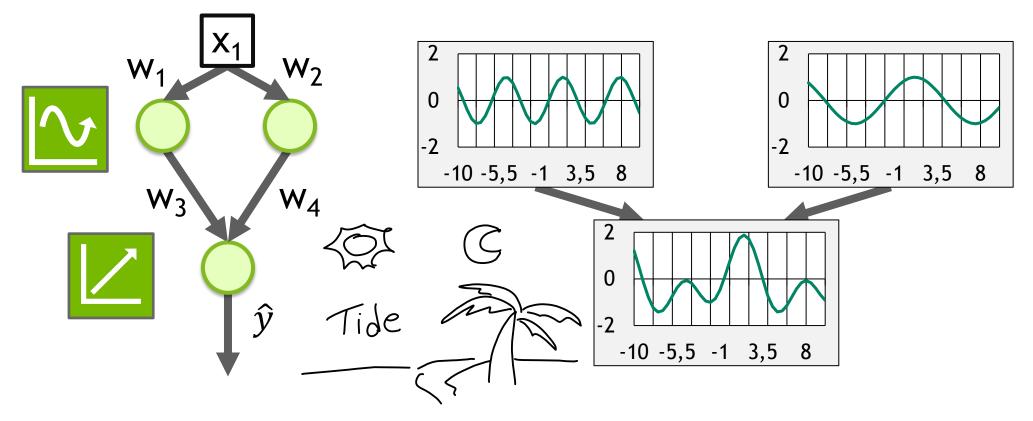
BUILDING A NETWORK



- Scales to more inputs
- Can chain neurons
- If all regressions are linear, then output will also be a linear regression

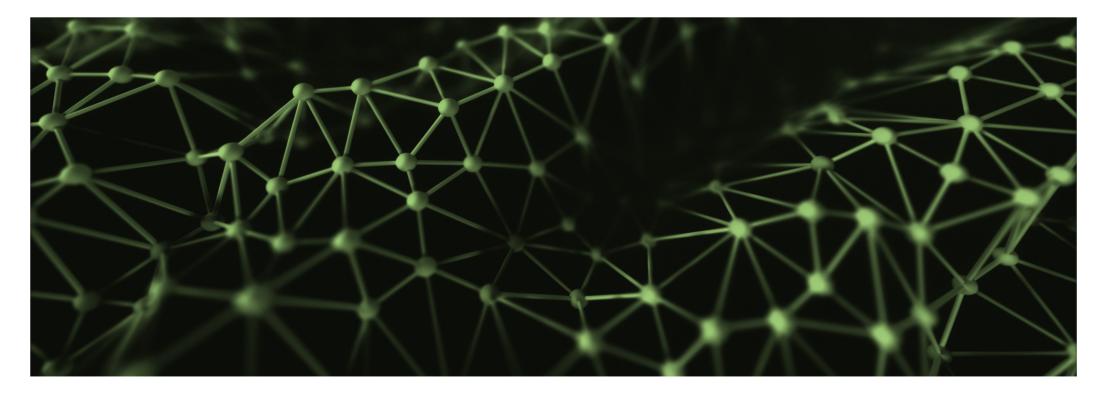




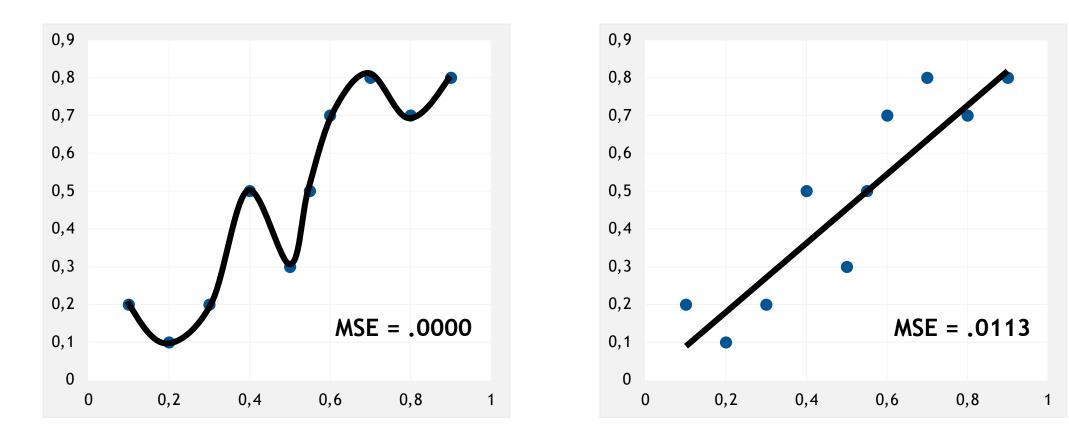


OVERFITTING

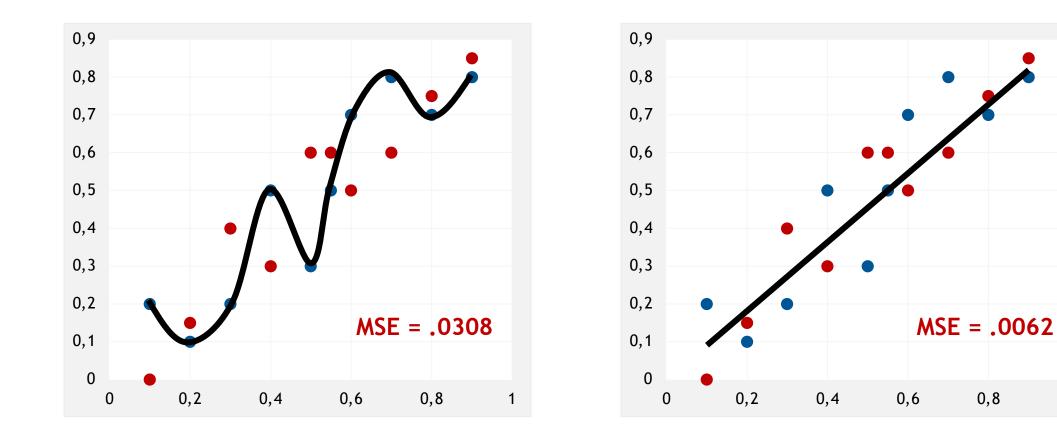
OVERFITTING Why not have a super large neural network?



OVERFITTING Which Trendline is Better?



OVERFITTING Which Trendline is Better?



1

0,8

TRAINING VS VALIDATION DATA

Avoid memorization

Training data

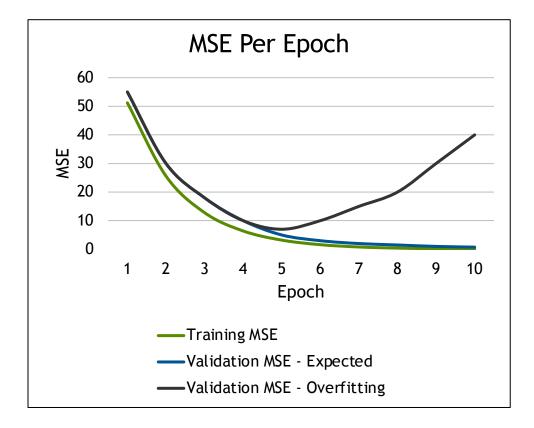
Core dataset for the model to learn on

Validation data

• New data for model to see if it truly understands (can generalize)

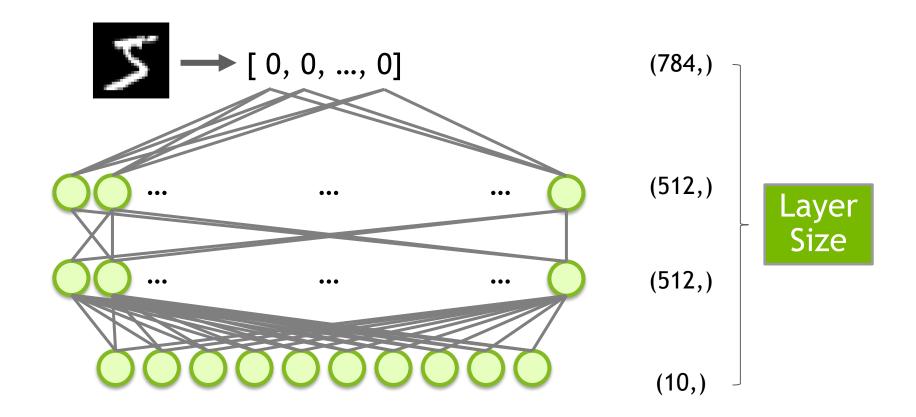
Overfitting

- When model performs well on the training data, but not the validation data (evidence of memorization)
- Ideally the accuracy and loss should be similar between both datasets

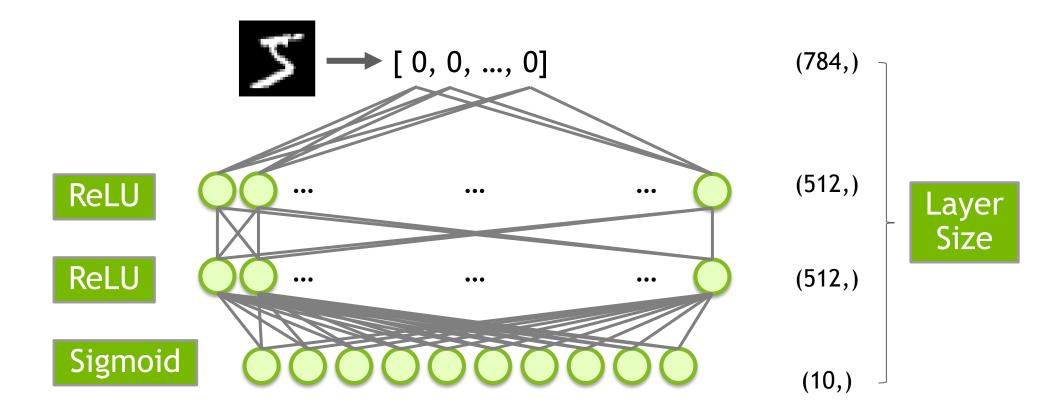


FROM REGRESSION TO CLASSIFICATION

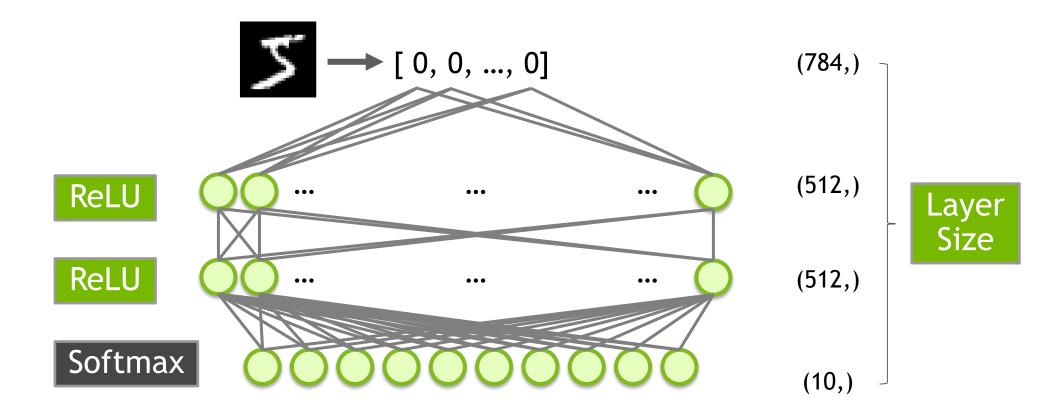
AN MNIST MODEL



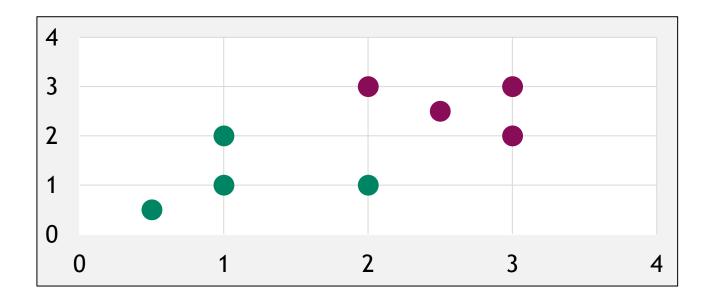
AN MNIST MODEL



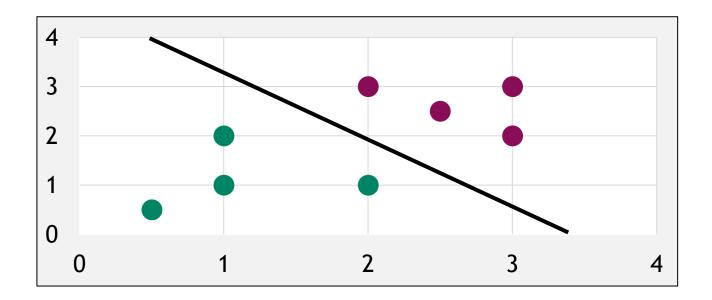
AN MNIST MODEL



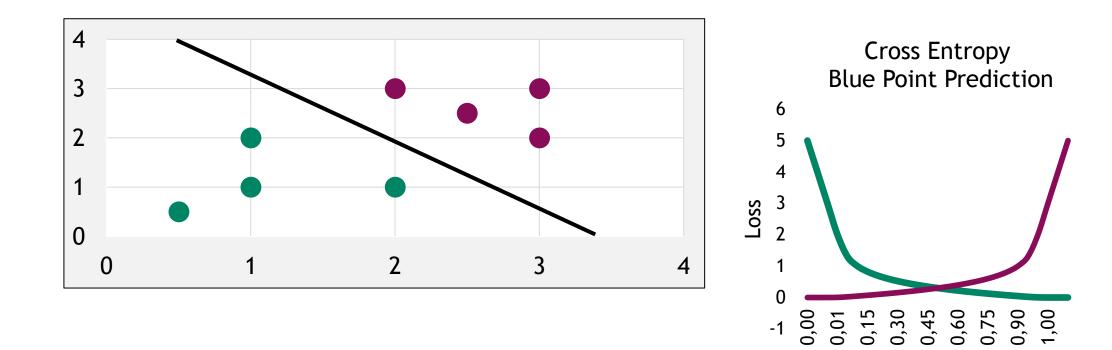
RMSE FOR PROBABILITIES?



RMSE FOR PROBABILITIES?



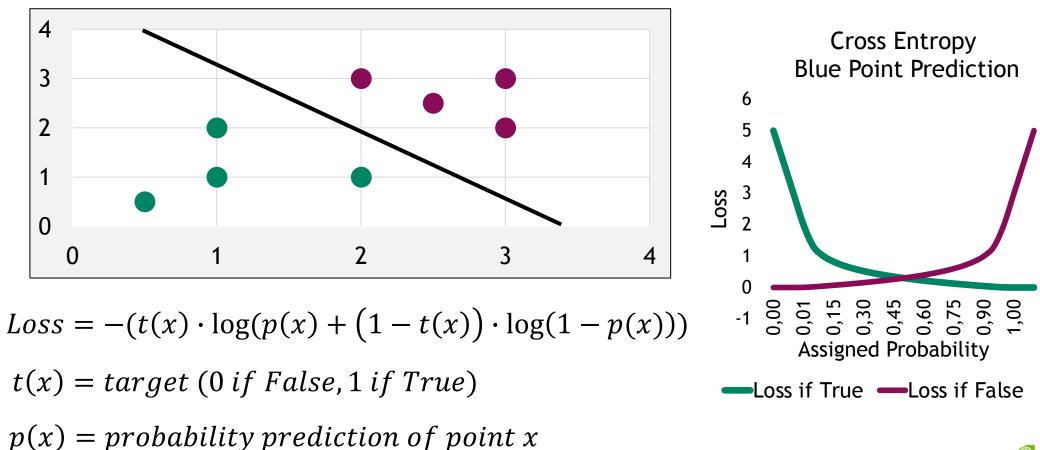
CROSS ENTROPY



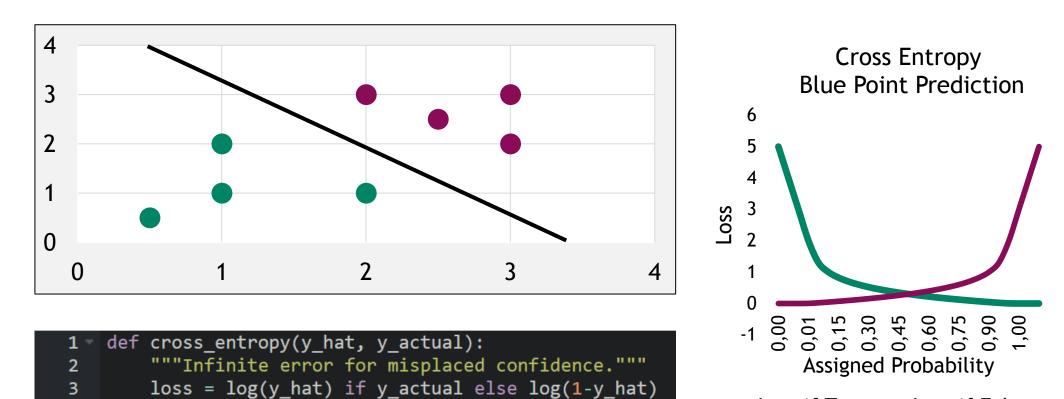
Assigned Probability

Loss if True —Loss if False

CROSS ENTROPY



CROSS ENTROPY

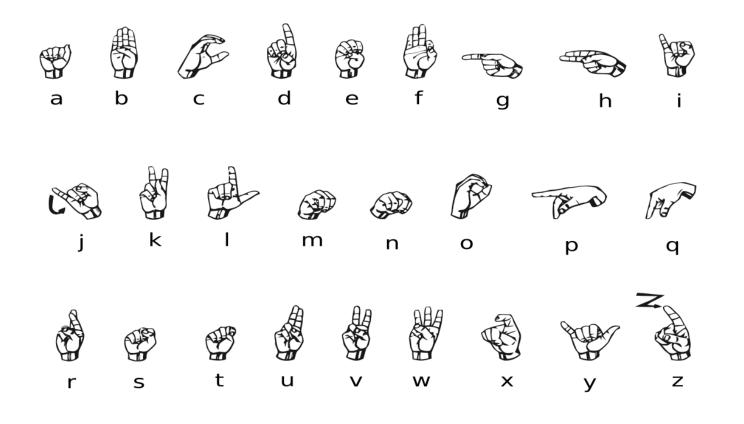


return -1*loss

-Loss if True -Loss if False

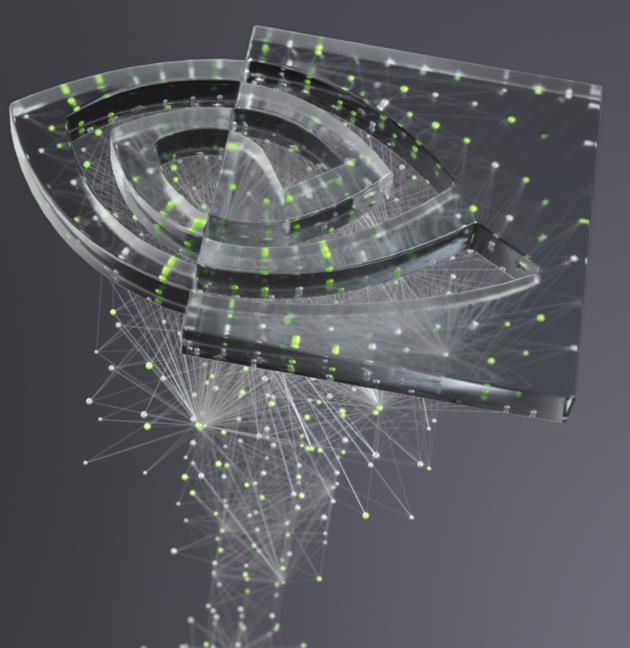
BRINGING IT TOGETHER

THE NEXT EXERCISE The American Sign Language Alphabet



APPENDIX: GRADIENT DESCENT

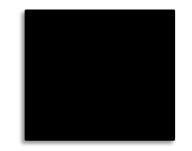
HELPING THE COMPUTER CHEAT CALCULUS

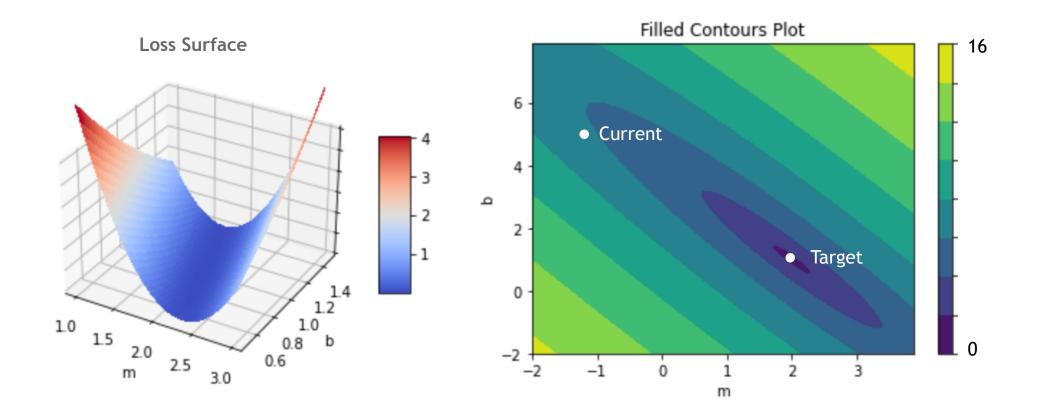


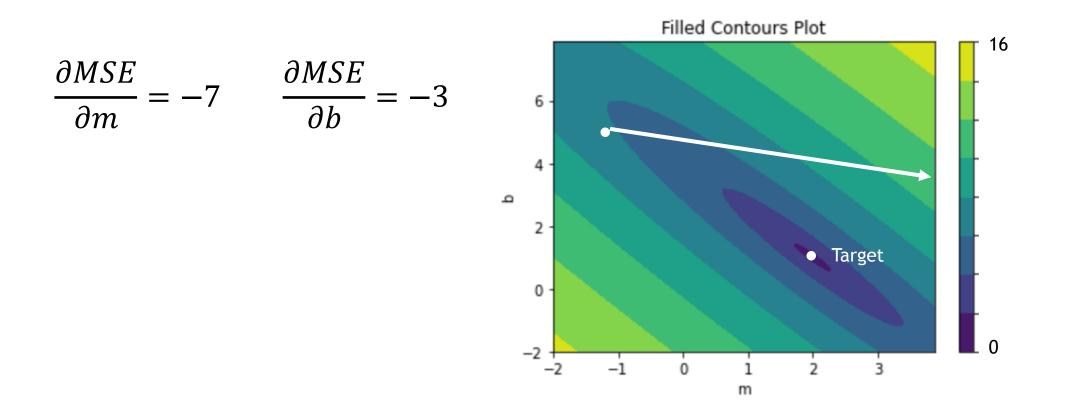
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2 = \frac{1}{n} \sum_{i=1}^{n} (y - (mx + b))^2$$

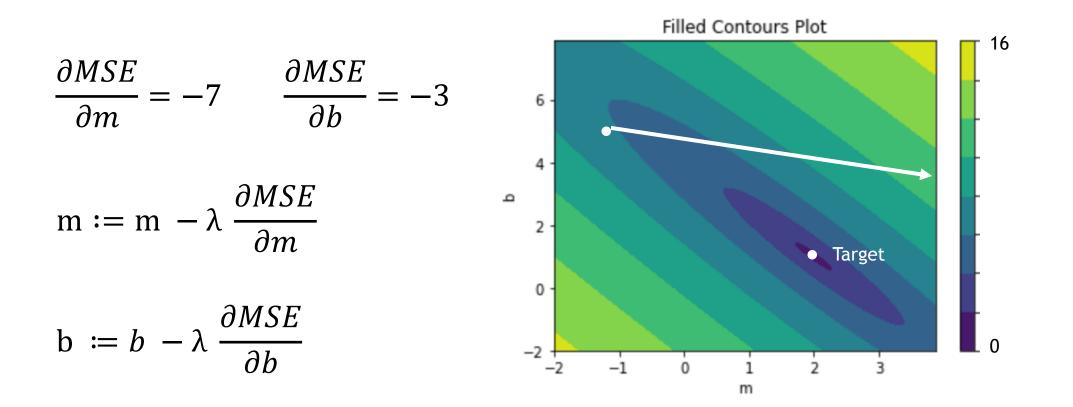
$$MSE = \frac{1}{2}((3 - (m(1) + b))^2 + (5 - (m(2) + b))^2)$$

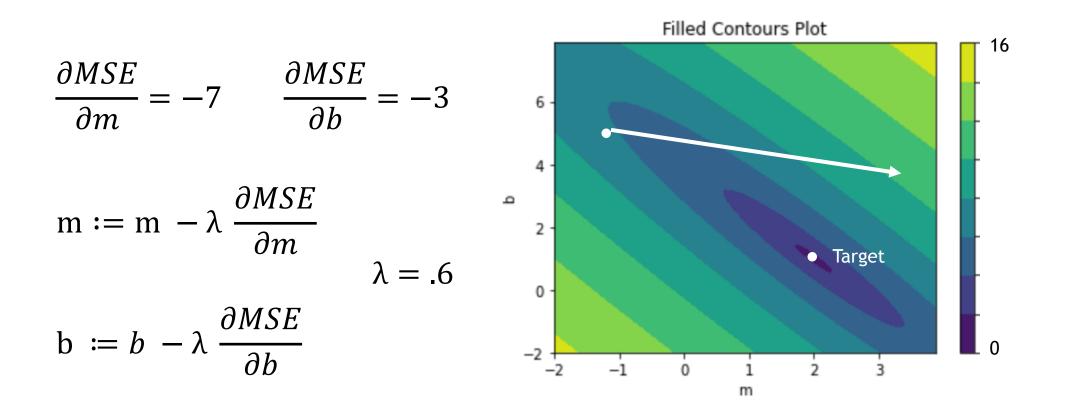
$$\frac{\partial MSE}{\partial m} = 9m + 5b - 23 \qquad \qquad \frac{\partial MSE}{\partial b} = 5m + 3b - 13$$
$$\frac{\partial MSE}{\partial m} = -7 \qquad \qquad \frac{\partial MSE}{\partial b} = -3$$

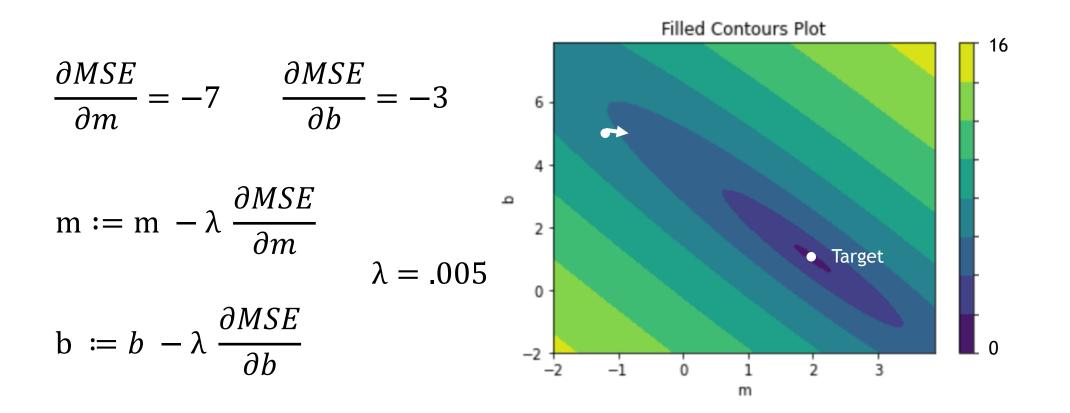




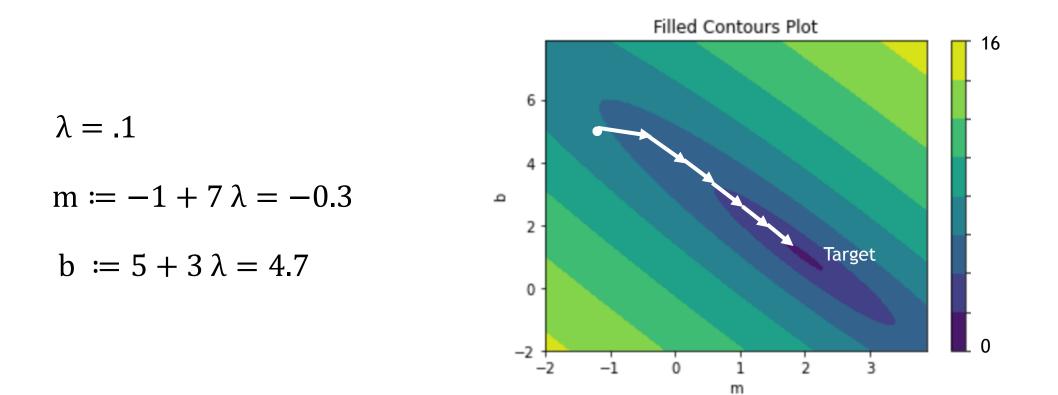


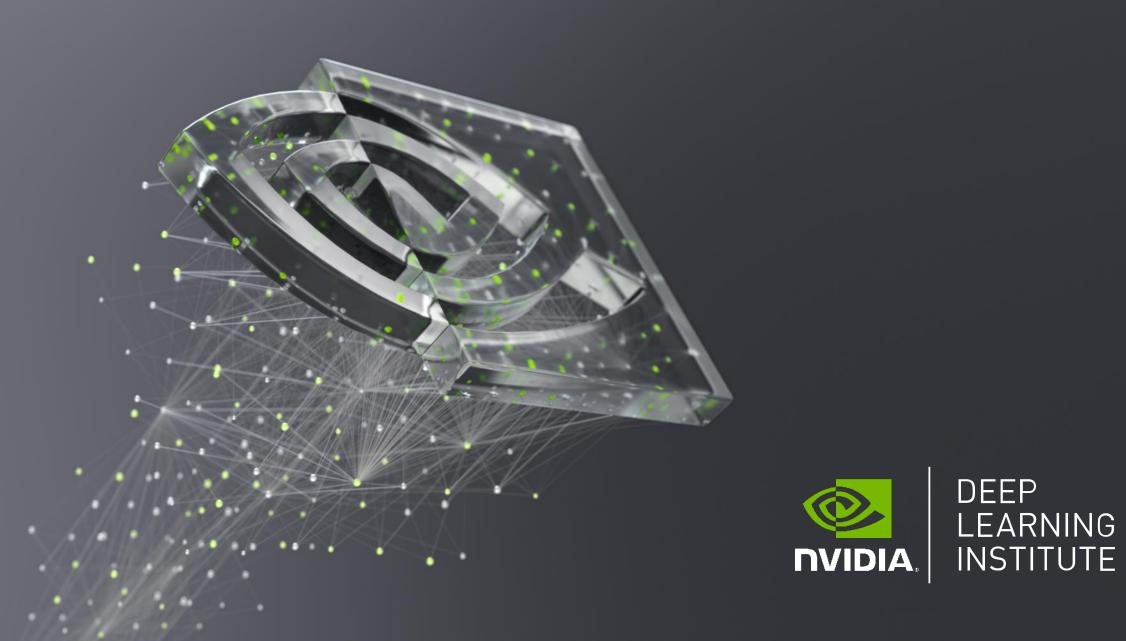






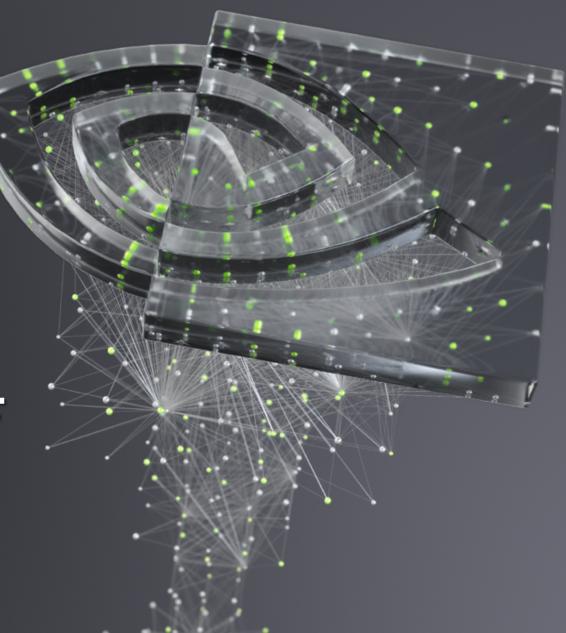
THE LOSS CURVE





FUNDAMENTALS OF DEEP LEARNING

Part 3: Convolutional Neural Networks



Part 1: An Introduction to Deep Learning

Part 2: How a Neural Network Trains

Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures

- •
- •
- •

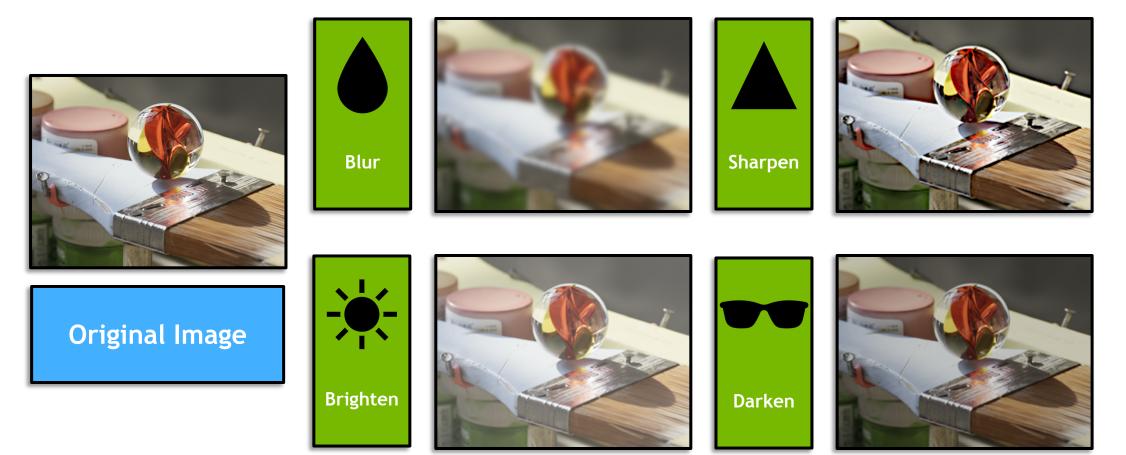
RECAP OF THE EXERCISE

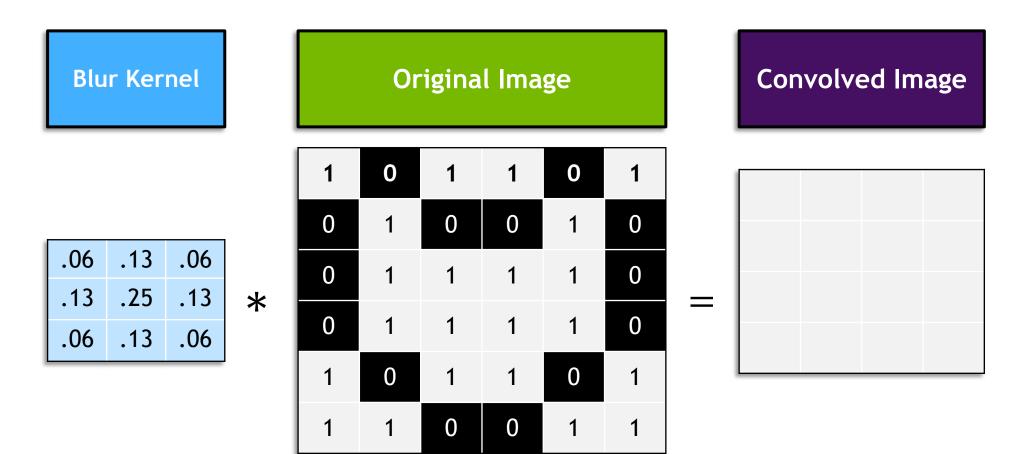
Trained a dense neural network model

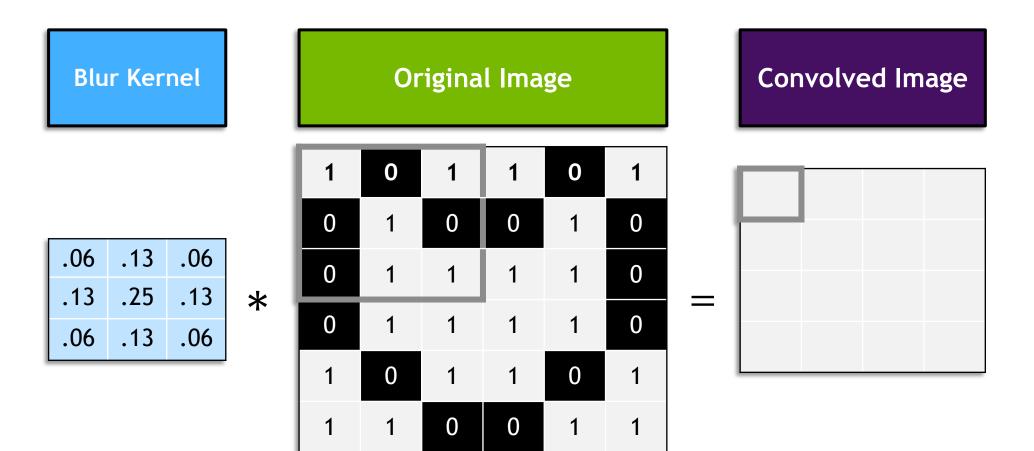
Training accuracy was high

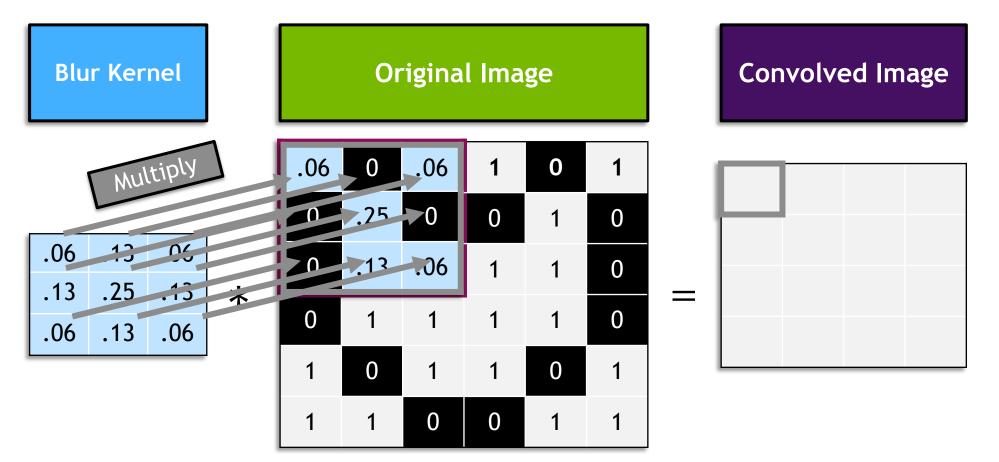
Validation accuracy was low

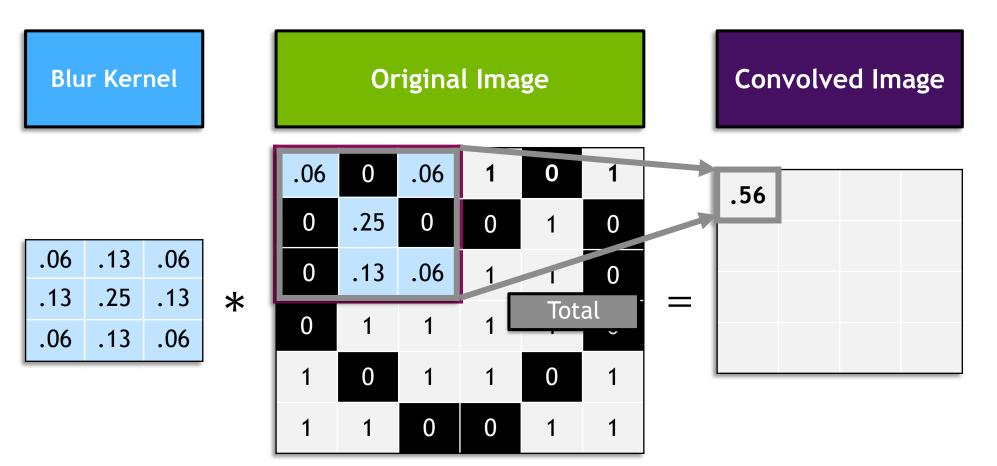
Evidence of overfitting







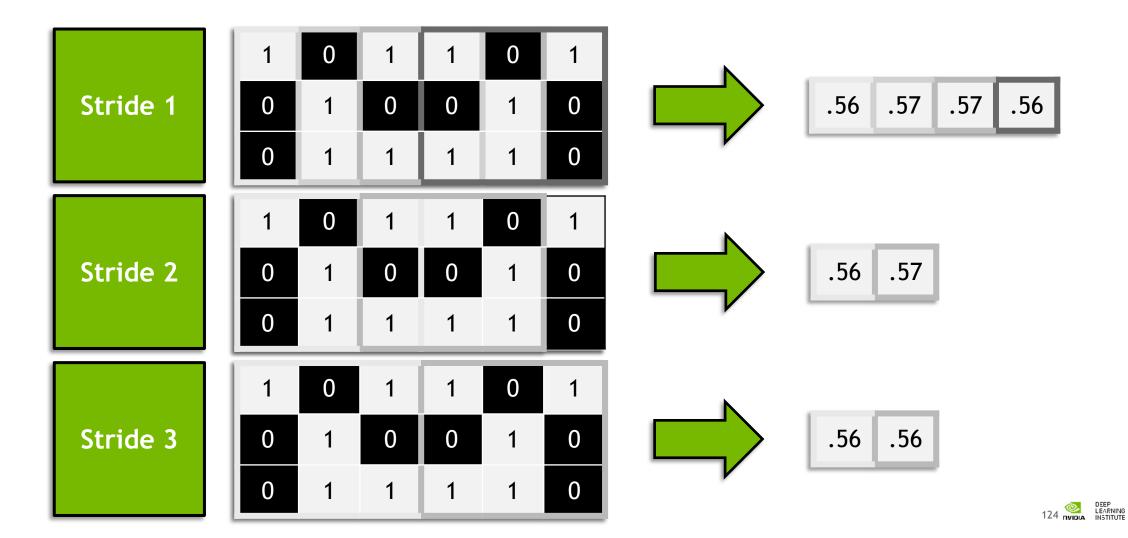




Blur Kernel				Or	rigina	l Ima	Convolved Ima				age			
				1	0	1	1	0	1		.56	.57	.57	.56
				0	1	0	0	1	0					
.06	.13	.06		0	1	1	1	1	0		.7	.82	.82	.7
.13	.25	.13	*		•			1		=	.69	.95	.95	.69
.06	.13	.06		0	1	1	1	1	0		.64	.69	.69	.64
			1	1	0	1	1	0	1					
				1	1	0	0	1	1					

.

STRIDE



PADDING

Original Image

Zero Padding

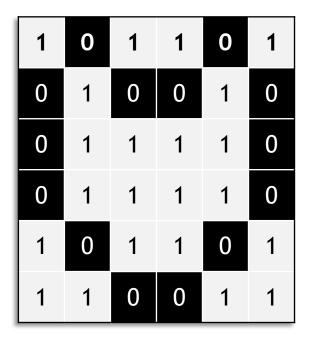
1	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	1	0
0	1	1	1	1	0
1	0	1	1	0	1
1	1	0	0	1	1

0	0	0	0	0	0	0	0
0	1	0	1	1	0	1	0
0	0	1	0	0	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	1	0	1	1	0	1	0
0	1	1	0	0	1	1	0
0	0	0	0	0	0	0	0

PADDING

Original Image

Mirror Padding



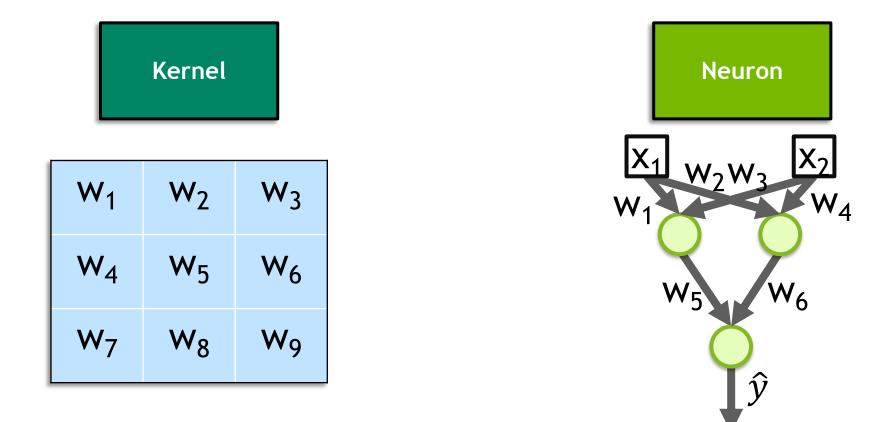
1	1	0	1	1	0	1	1
1	1	0	1	1	0	1	1
0	0	1	0	0	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
1	1	0	1	1	0	1	1
1	1	1	0	0	1	1	1
1	1	1	0	0	1	1	1

KERNELS AND NEURAL NETWORKS

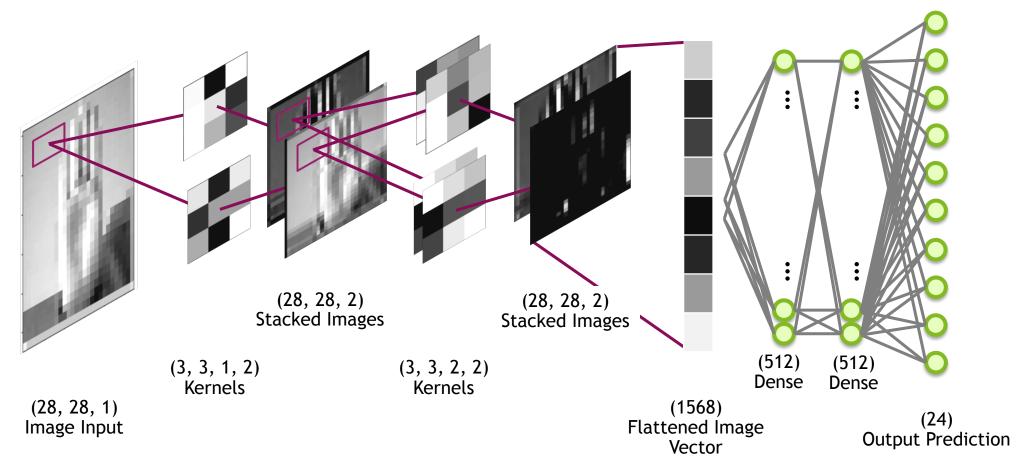
KERNELS AND NEURAL NETWORKS

W ₁	W ₂	W ₃	
W ₄	W_5	W ₆	
W ₇	W ₈	W9	

KERNELS AND NEURAL NETWORKS



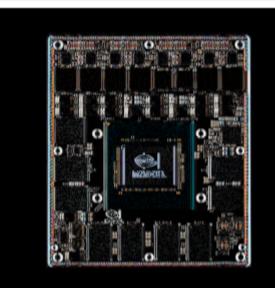
KERNELS AND NEURAL NETWORKS

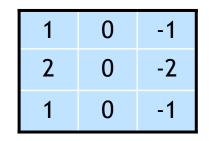


130 OPEN 130 INSTITUTE

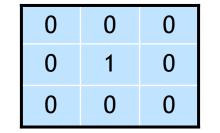
FINDING EDGES

Vertical Edges

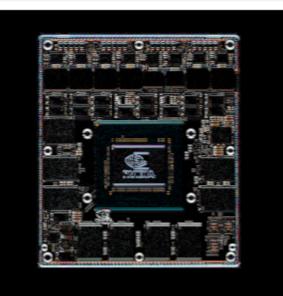


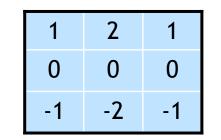


Original Image

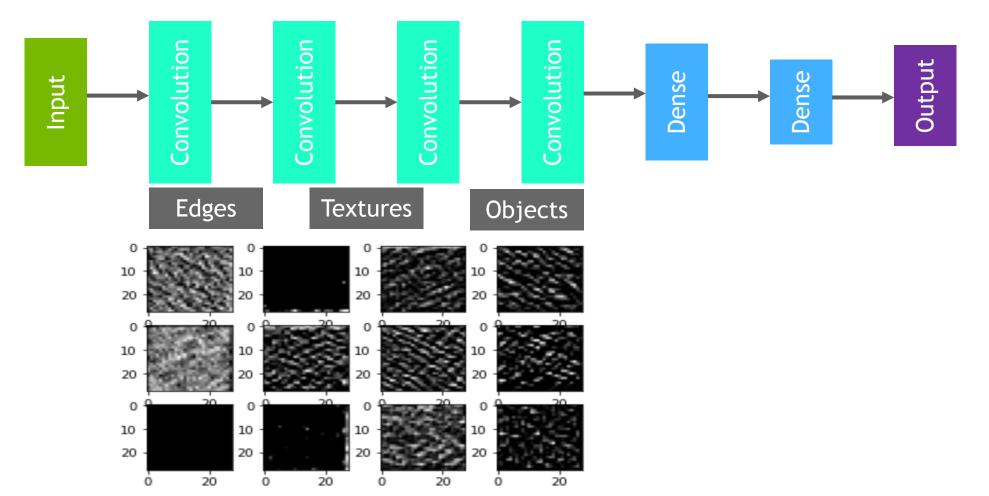


Horizontal Edges



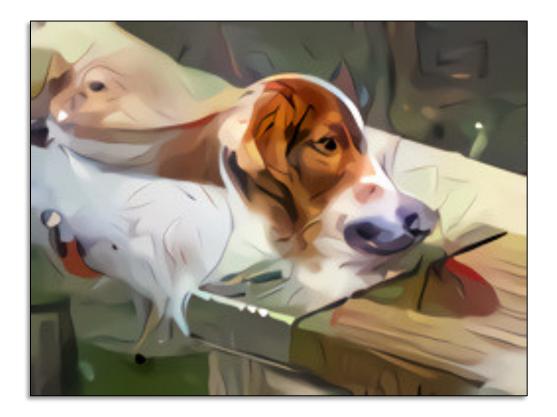


NEURAL NETWORK PERCEPTION



NEURAL NETWORK PERCEPTION



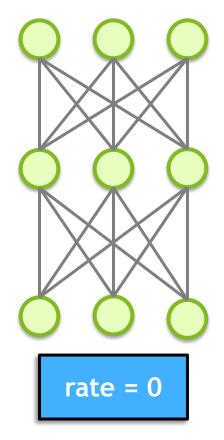


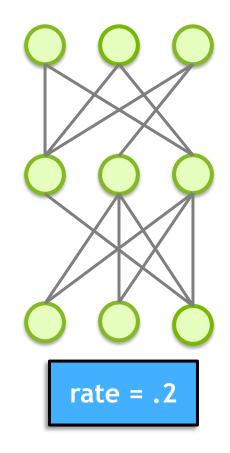
OTHER LAYERS IN THE MODEL

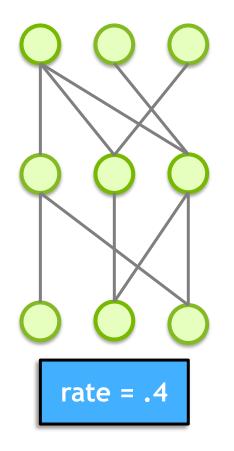
MAX POOLING

110	256	153	67	
12	89	88	43	256
10	15	50	55	23
23	9	49	23	

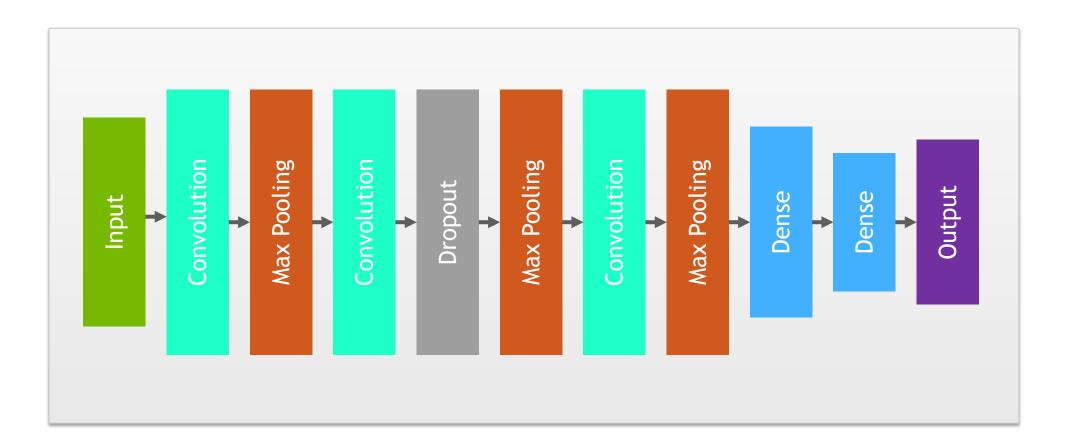
DROPOUT

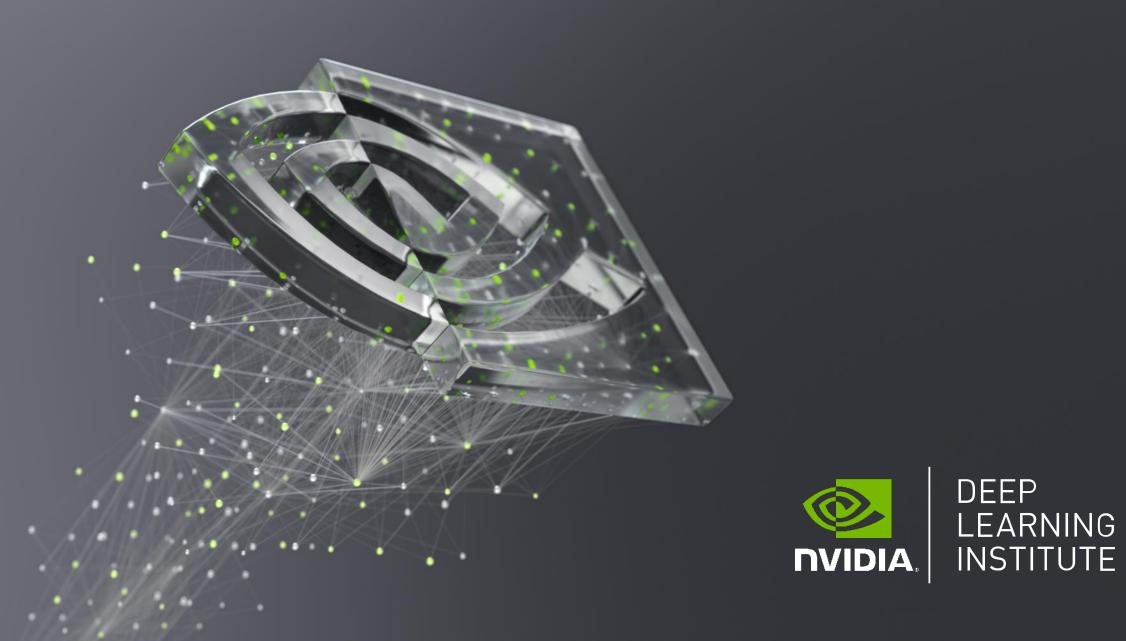






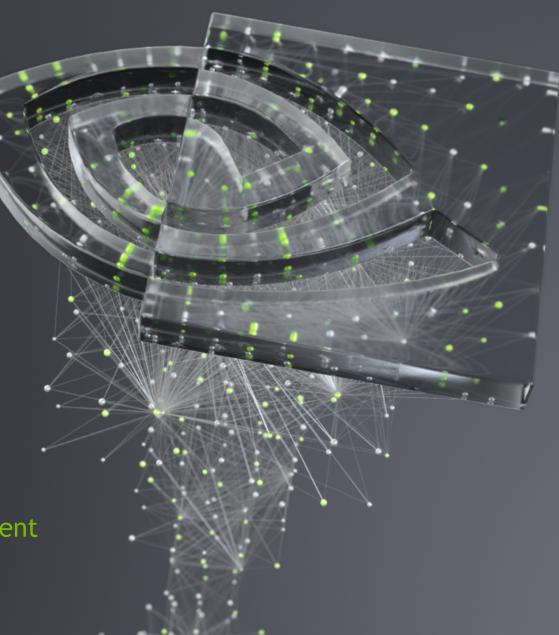
WHOLE ARCHITECTURE





FUNDAMENTALS OF DEEP LEARNING

Part 4: Data Augmentation and Deployment



Part 1: An Introduction to Deep Learning

Part 2: How a Neural Network Trains

Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures

- •
- •

RECAP OF THE EXERCISE

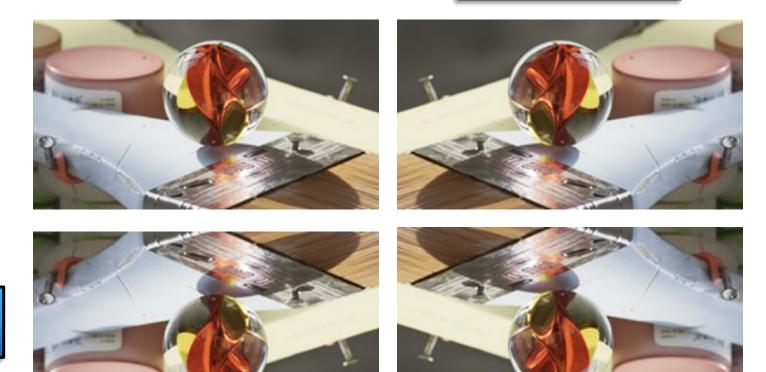


DATA AUGMENTATION

DATA AUGMENTATION

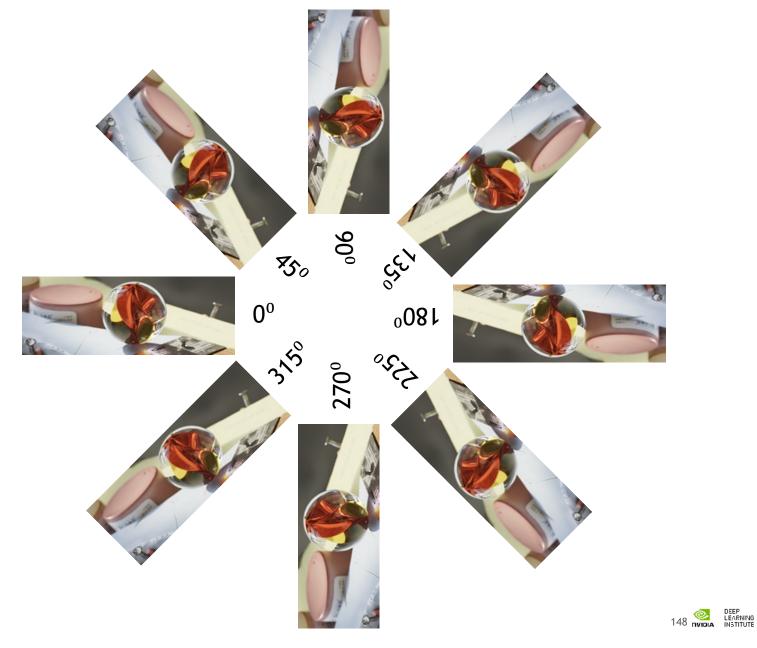
IMAGE FLIPPING

Horizontal Flip

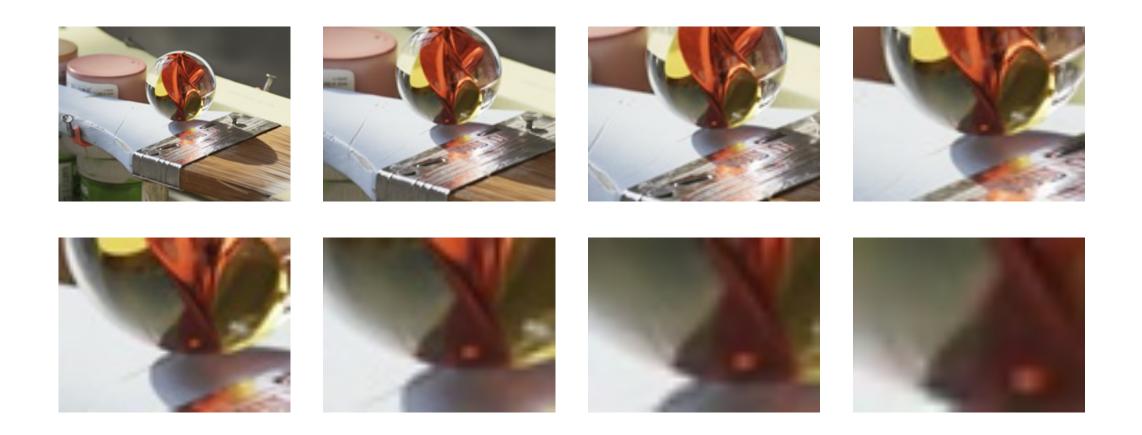


Vertical Flip

ROTATION

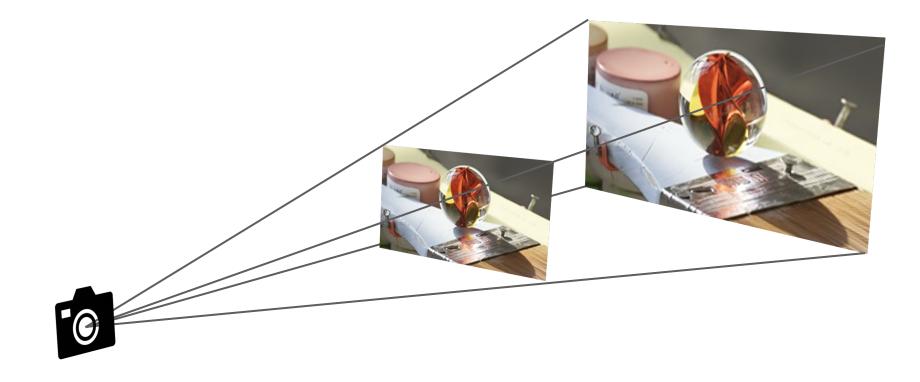


ZOOMING

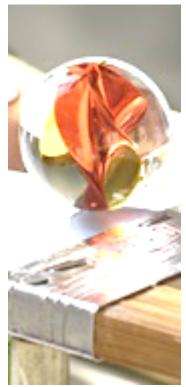


WIDTH AND HEIGHT SHIFTING

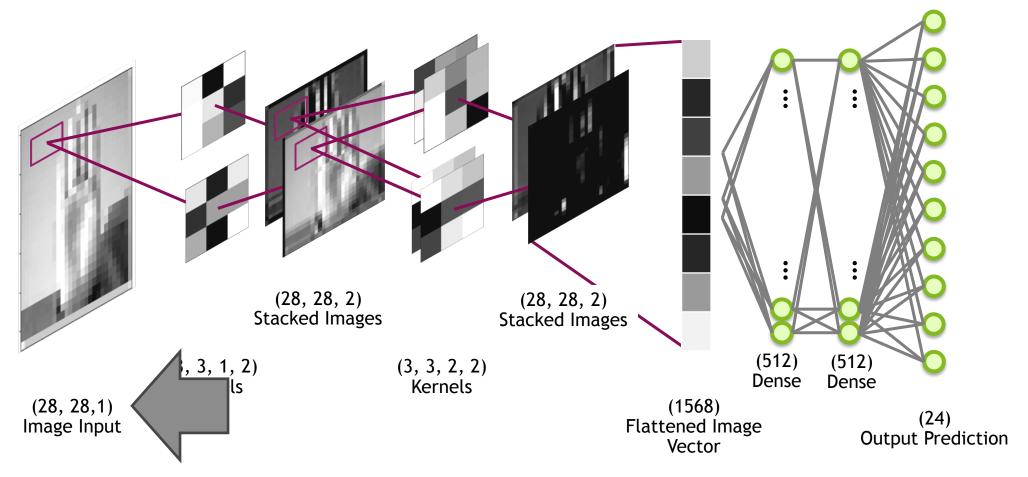
HOMOGRAPHY

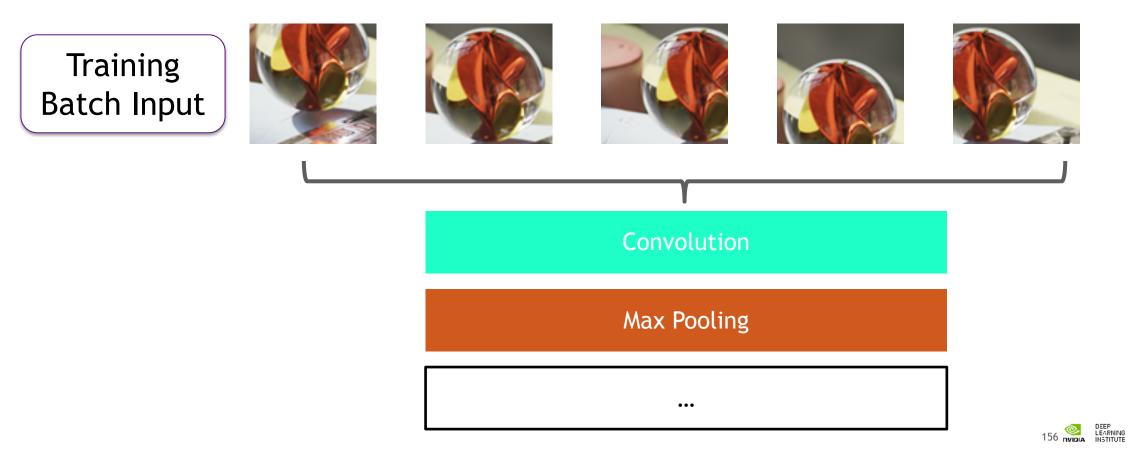


BRIGHTNESS



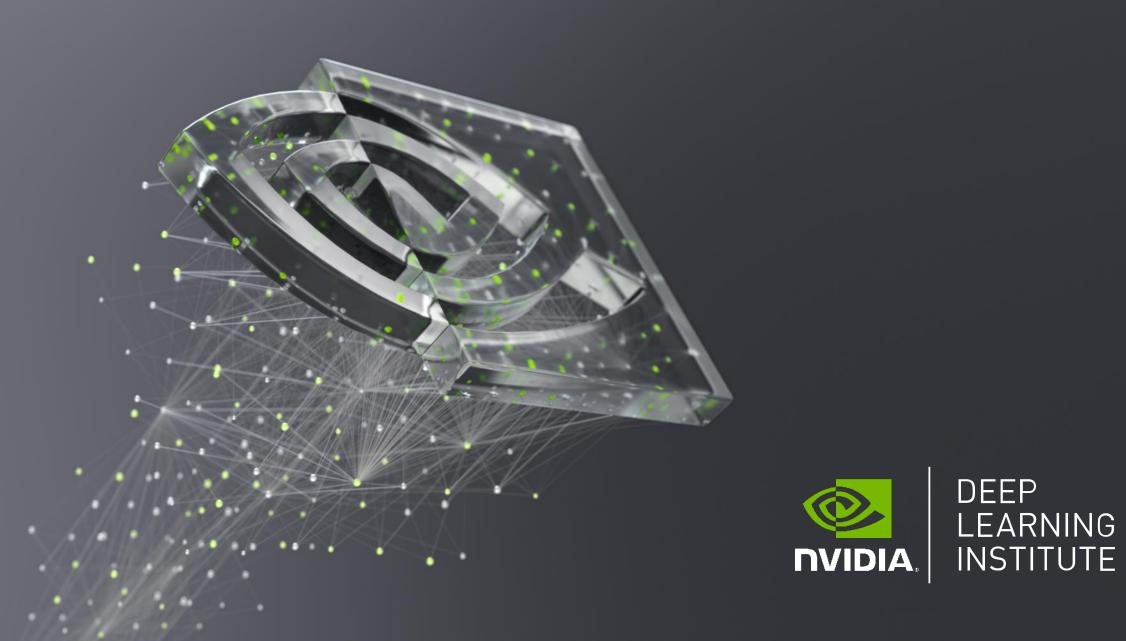
CHANNEL SHIFTING





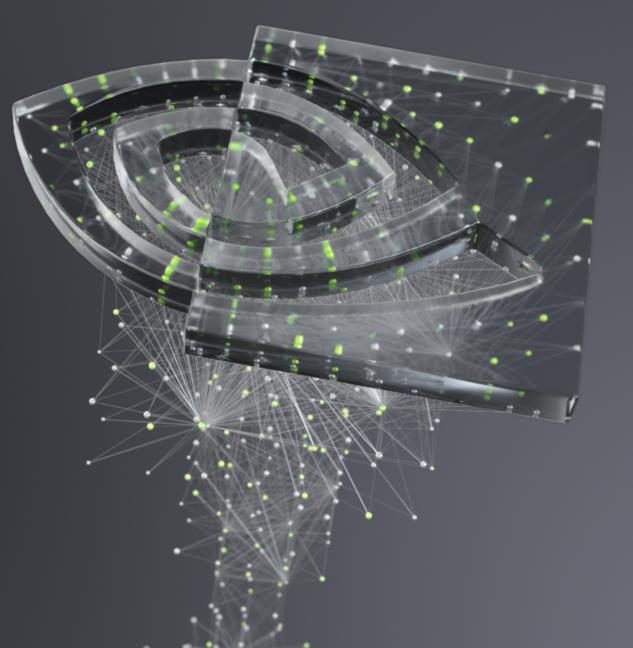


LET'S TRY IT OUT!



FUNDAMENTALS OF DEEP LEARNING

Part 5: Pre-trained Models



Part 1: An Introduction to Deep Learning

Part 2: How a Neural Network Trains

Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures

- •
- •
- •

REVIEW SO FAR

REVIEW SO FAR

- Learning Rate
- Number of Layers
- Neurons per Layer
- Activation Functions
- Dropout
- Data

PRE-TRAINED MODELS

PRE-TRAINED MODELS

TensorFlow Hub Keras

PYTORCH HUB

PRE-TRAINED MODELS

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

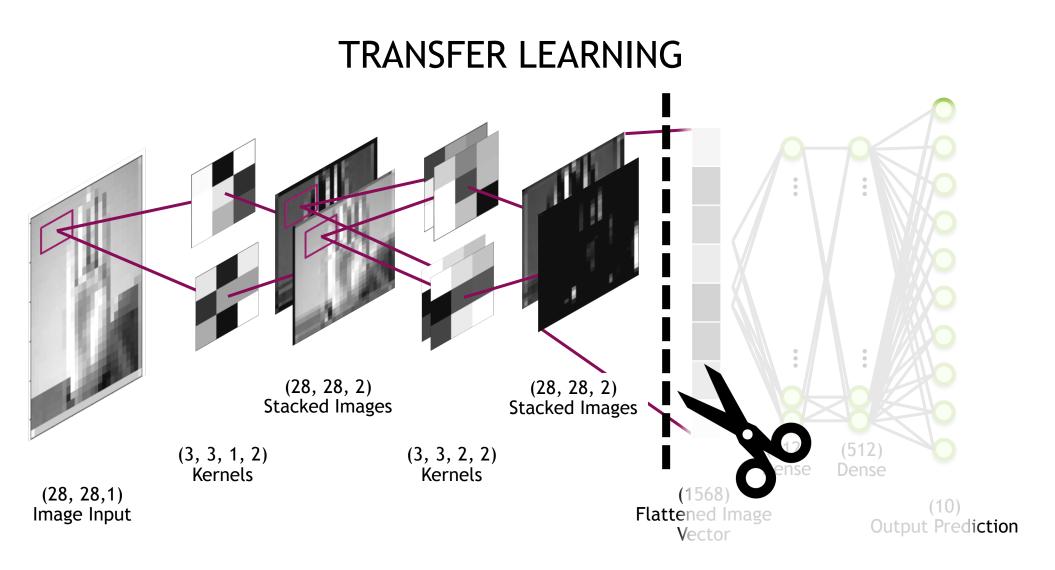
Karen Simonyan^{*} & Andrew Zisserman⁺ Visual Geometry Group, Department of Engineering Science, University of Oxford {karen,az}@robots.ox.ac.uk

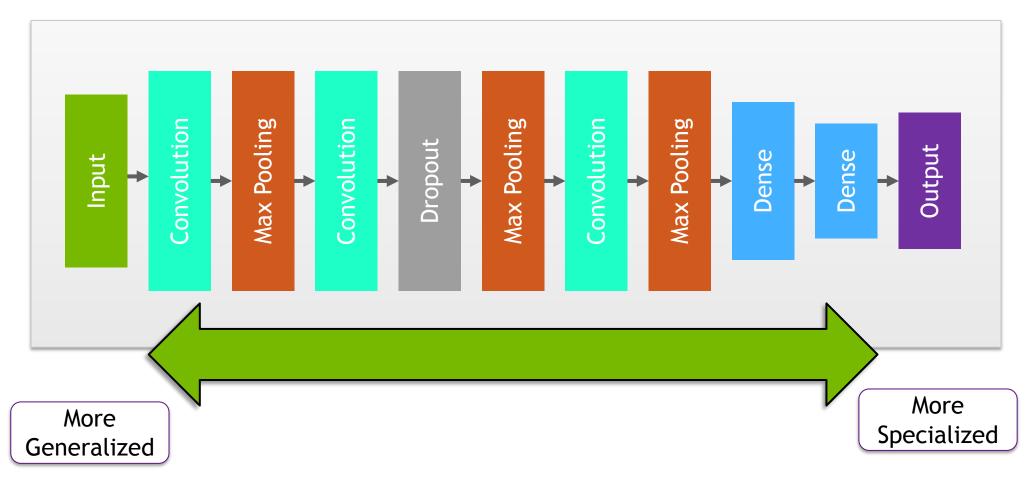
IM^AGENET

THE NEXT CHALLENGE An Automated Doggy Door

X

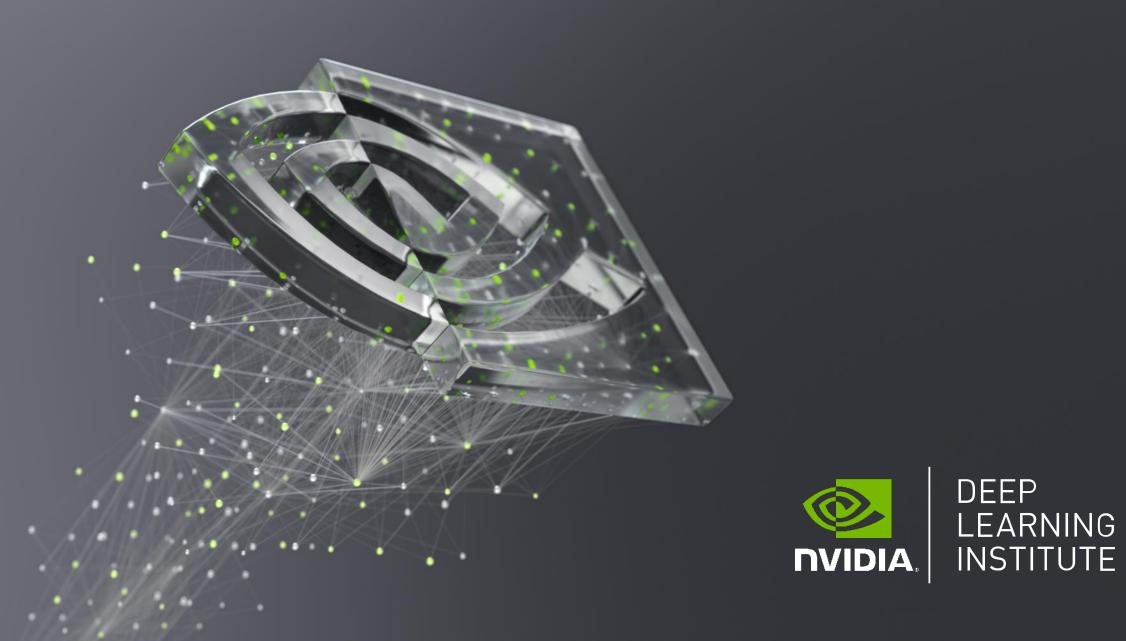
THE CHALLENGE AFTER An Automated Presidential Doggy Door





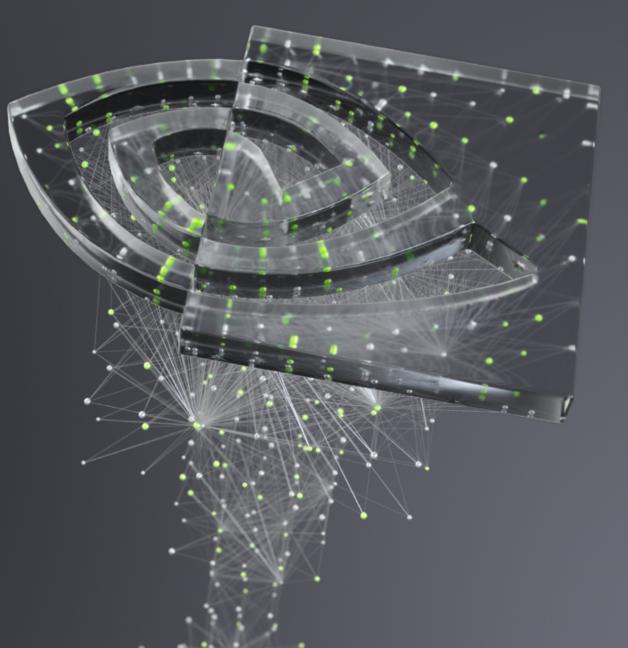
Freezing the Model?

LET'S GET STARTED!



FUNDAMENTALS OF DEEP LEARNING

Part 6: Advanced Architectures



Part 1: An Introduction to Deep Learning

Part 2: How a Neural Network Trains

Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures

- •
- •

٠

•

MOVING FORWARD

FIELDS OF AI

Computer Vision

• Optometry

Natural Language Processing

Linguistics

Reinforcement Learning

• Game Theory

Psychology

Anomaly Detection

• Security

Medicine

FIELDS OF AI

Computer Vision
• Optometry

Natural Language Processing

• Linguistics

Reinforcement Learning

• Game Theory

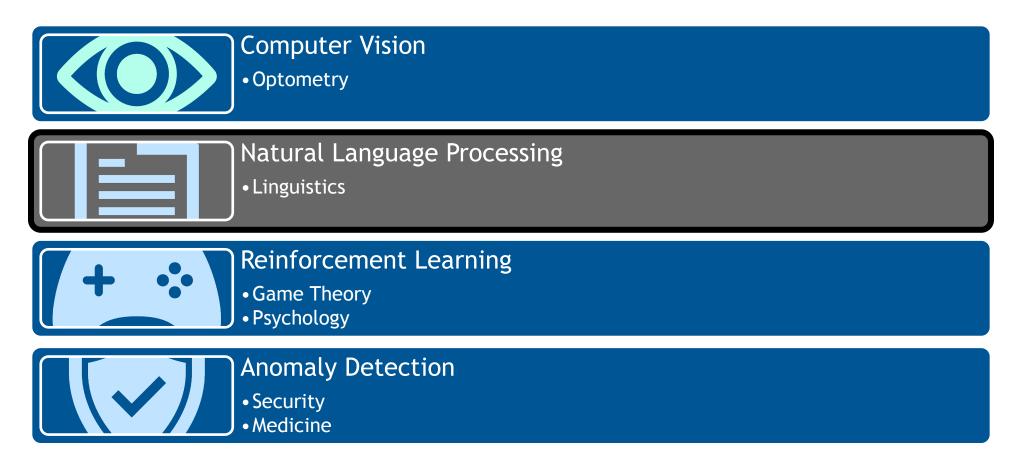
Psychology

Anomaly Detection

• Security

Medicine

FIELDS OF AI



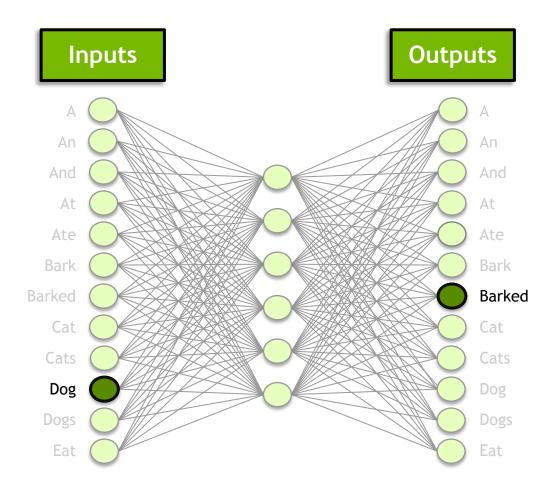
NATURAL LANGUAGE PROCESSING

(

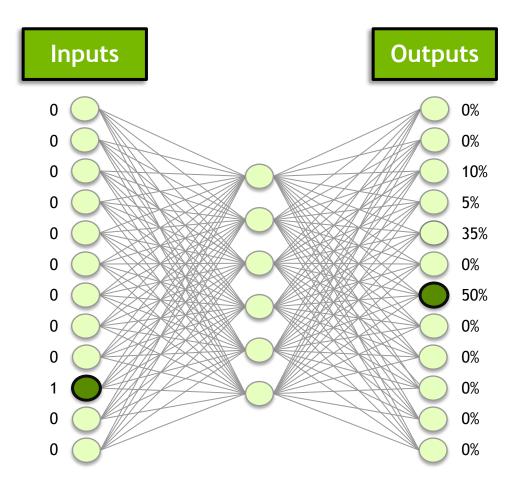
"A dog barked at a cat."

[1, 10, 7, 4, 1, 8]

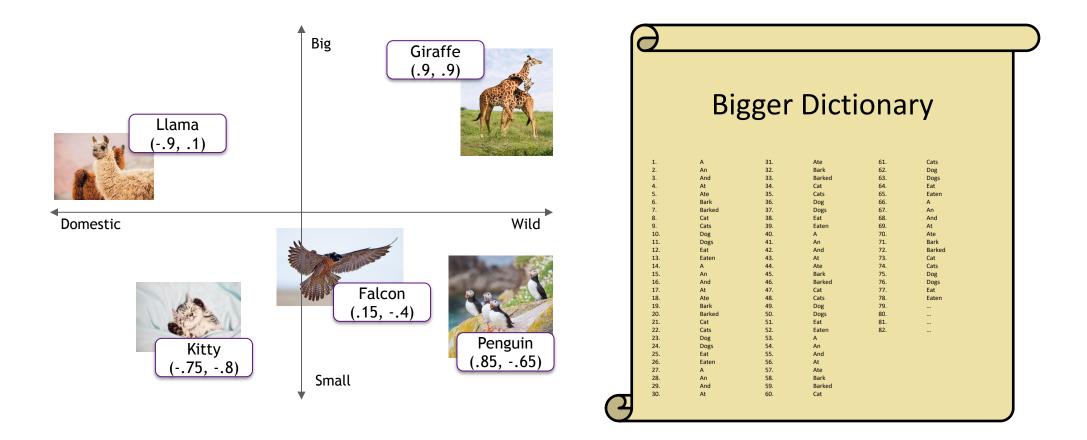
		Dic	ctiona	ry	
	1.	А	8.	Cat	
	2.	An	9.	Cats	
	3.	And	10.	Dog	
	4.	At	11.	Dogs	
	5.	Ate	12.	Eat	
	6.	Bark			
	7.	Barked			
E					

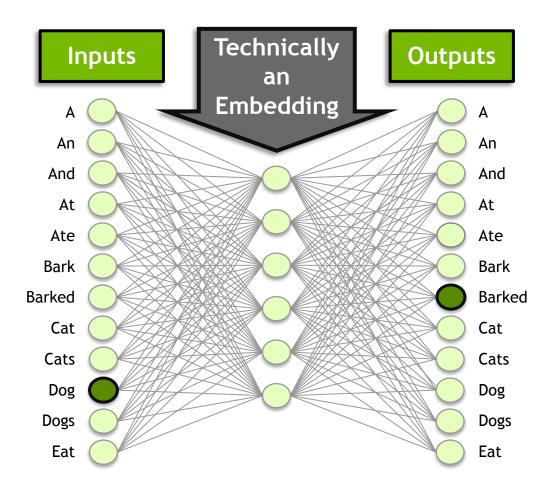


					\mathbf{D}
		Die	ctiona	ry	
	1.	А	8.	Cat	
	2.	An	9.	Cats	
	3.	And	10.	Dog	
	4.	At	11.	Dogs	
	5.	Ate	12.	Eat	
	6.	Bark			
	7.	Barked			
E					

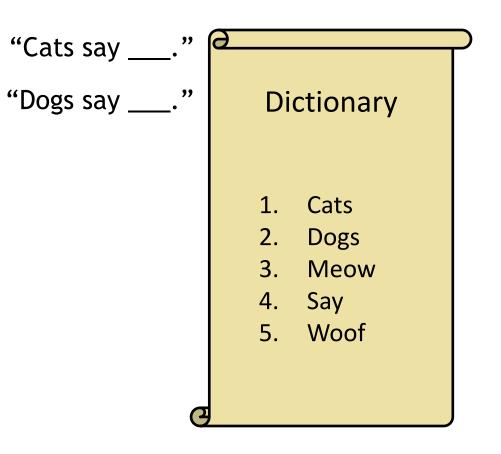


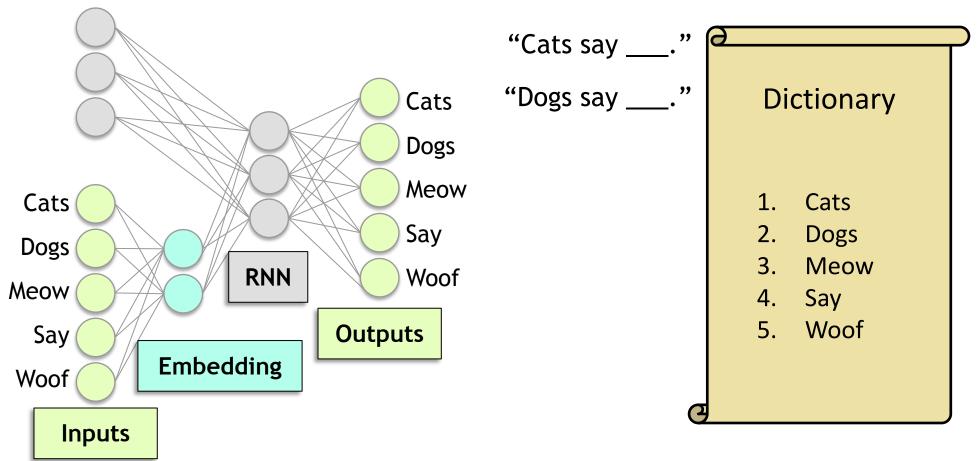
	2				\bigcirc
		Di	ctiona	ry	
	1.	А	8.	Cat	
	2.	An	9.	Cats	
	3.	And	10.	Dog	
	4.	At	11.	Dogs	
	5.	Ate	12.	Eat	
	6.	Bark			
	7.	Barked			
G					

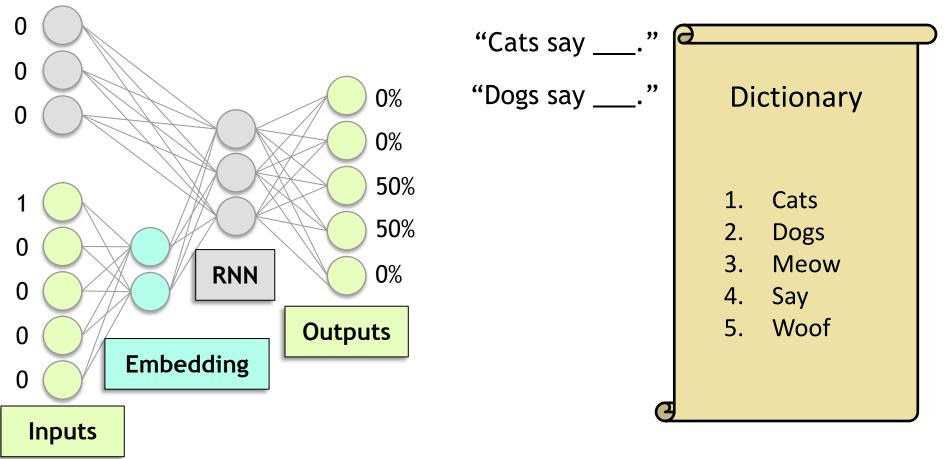


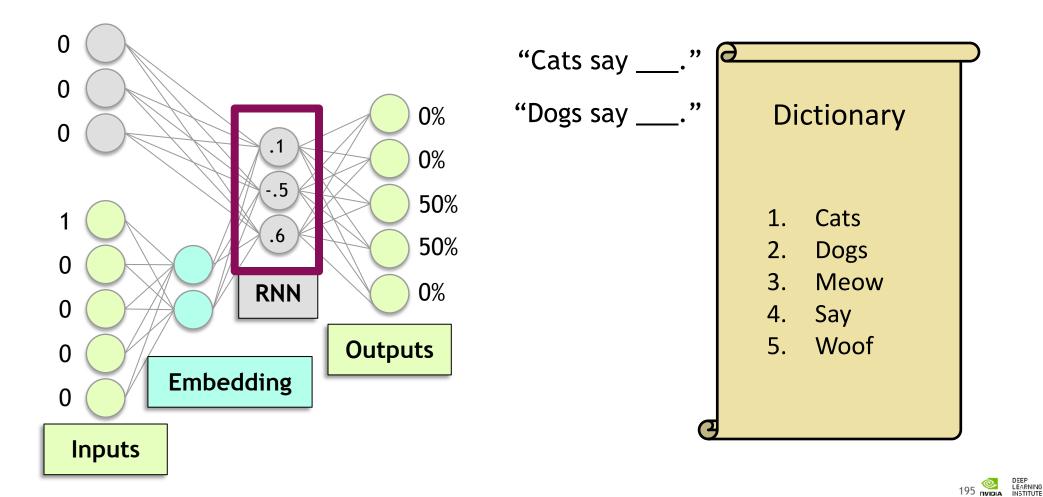


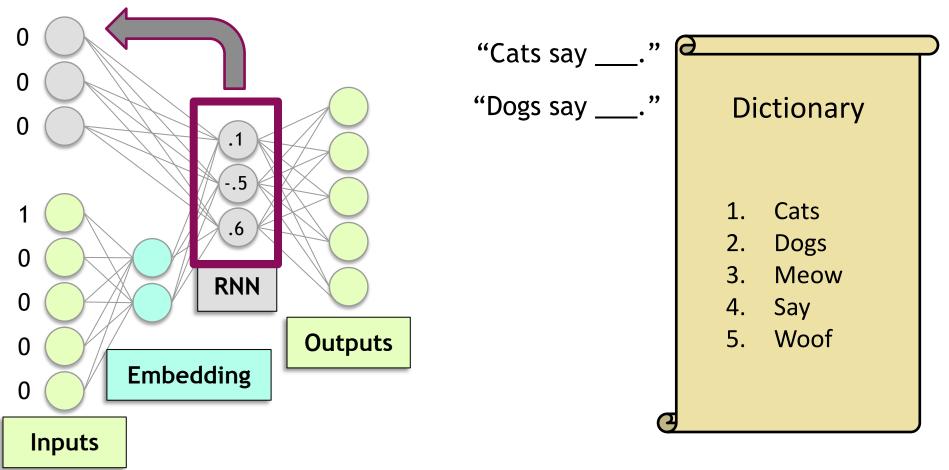
		Di	ctiona	ry	
	1.	А	8.	Cat	
	2.	An	9.	Cats	
	3.	And	10.	Dog	
	4.	At	11.	Dogs	
	5.	Ate	12.	Eat	
	6.	Bark			
	7.	Barked			
G					

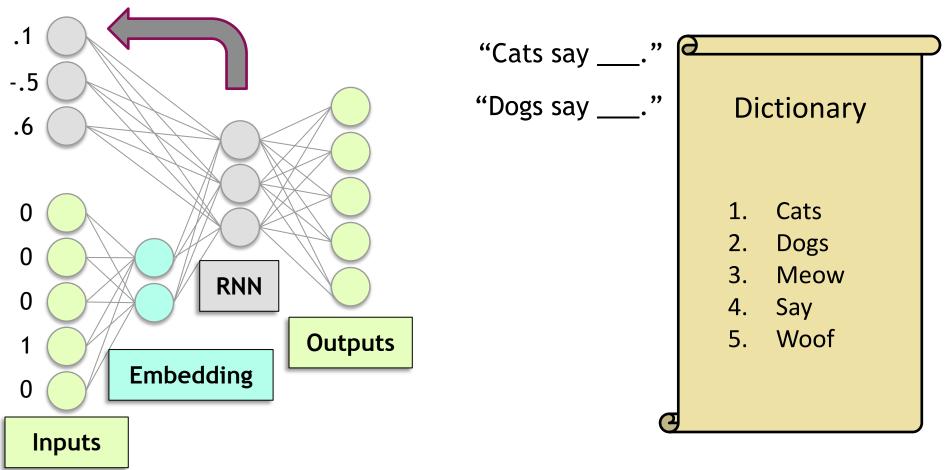


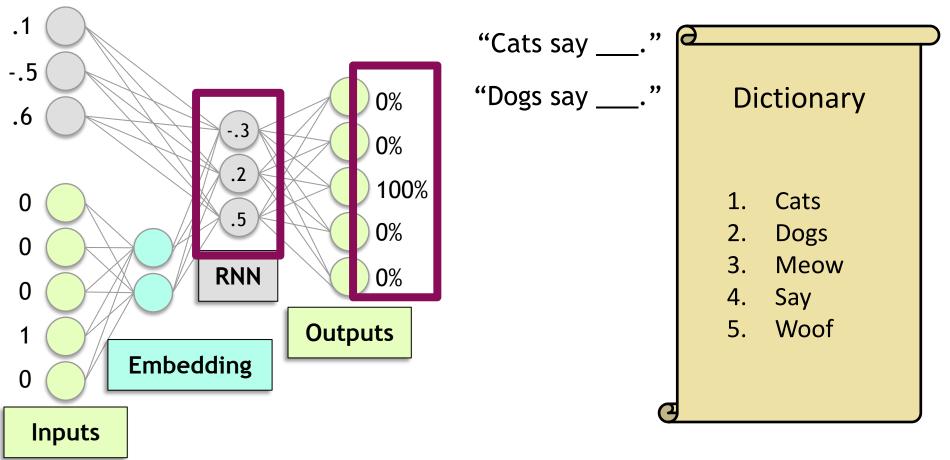


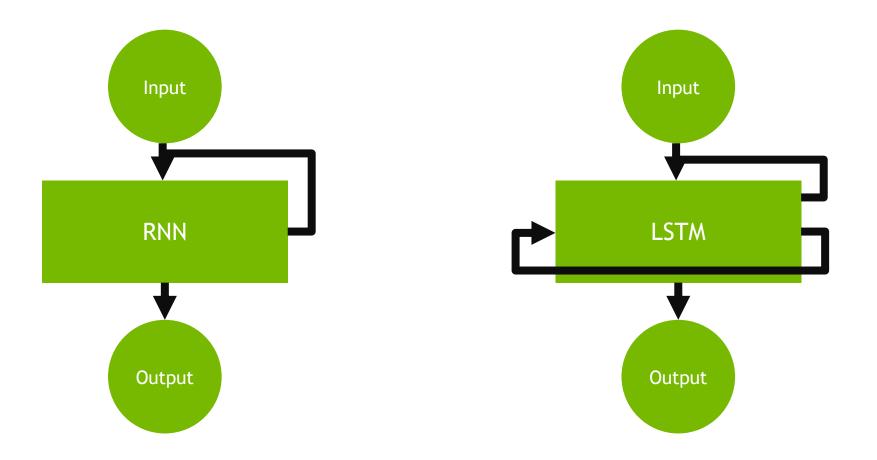






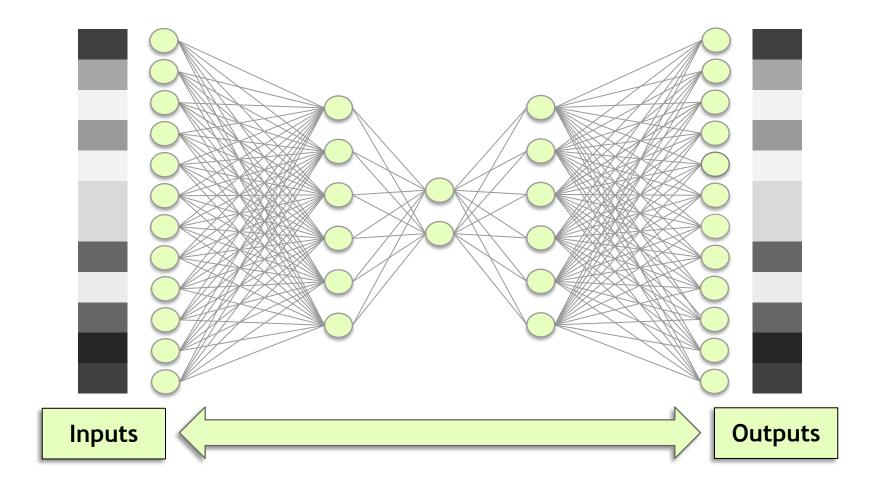




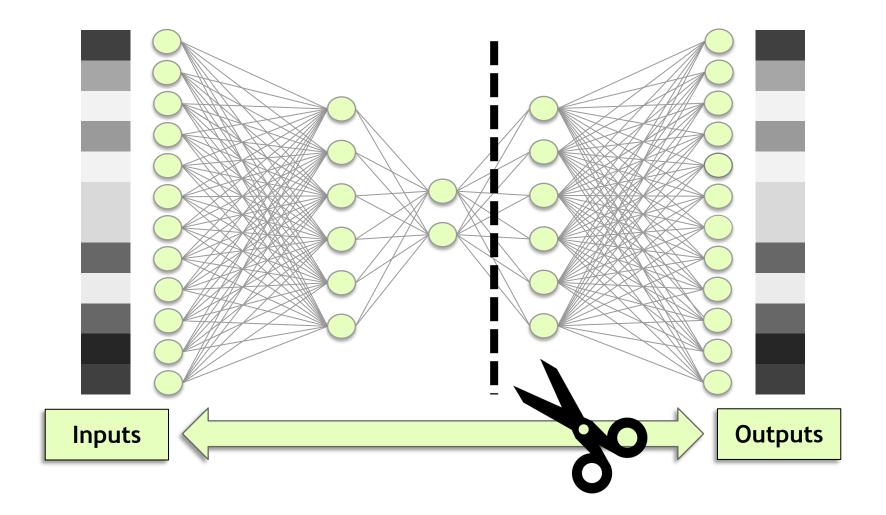


OTHER ARCHITECTURES

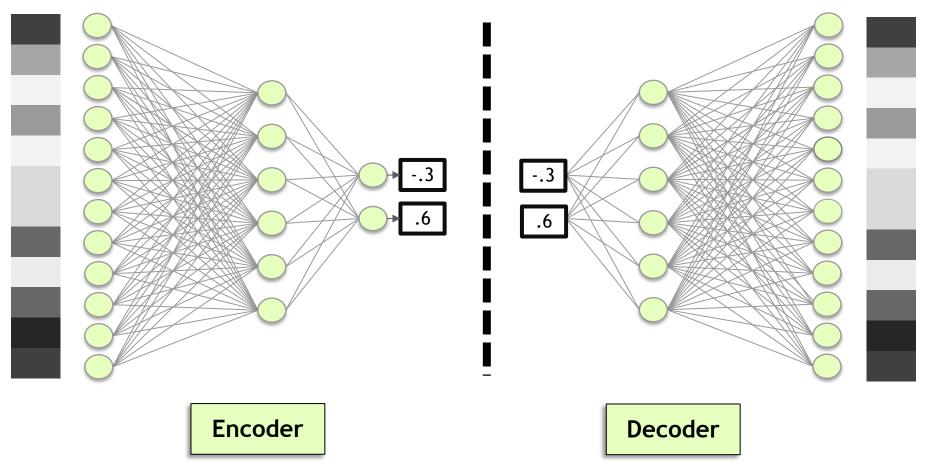
AUTOENCODERS



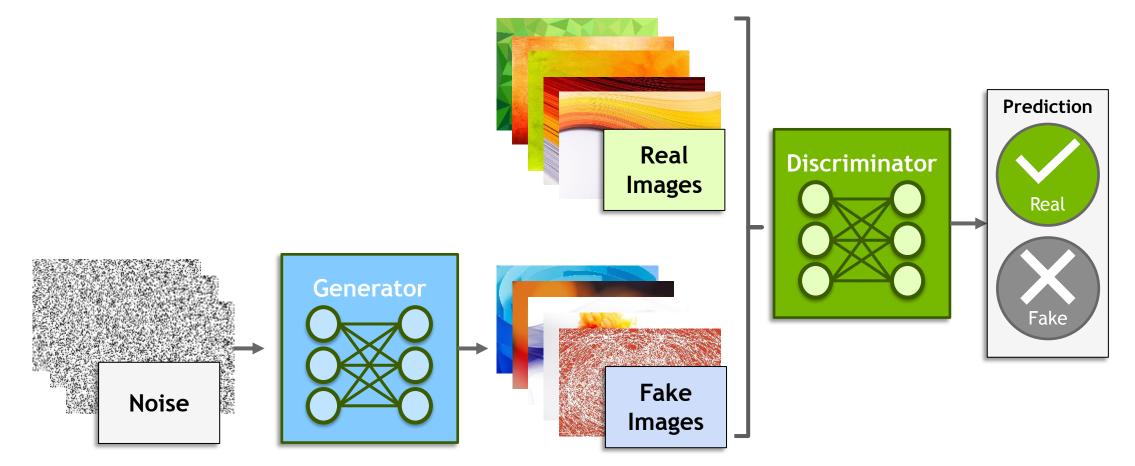
AUTOENCODERS



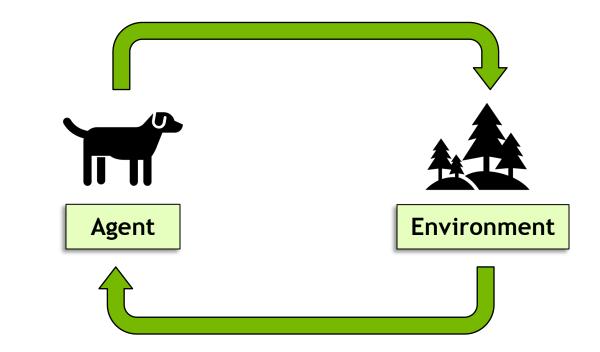
AUTOENCODERS



GENERATIVE ADVERSARIAL NETWORKS (GANS)



REINFORCEMENT LEARNING



NEXT STEPS

ENABLING PORTABILITY WITH NGC CONTAINERS

Extensive

- Diverse range of workloads and industry specific use cases

Optimized

- DL containers updated monthly
- Packed with latest features and superior performance

Secure & Reliable

- Scanned for vulnerabilities and crypto
- Tested on workstations, servers, & cloud instances

Scalable

Supports multi-GPU & multi-node systems

Designed for Enterprise & HPC

- Supports Docker, Singularity & other runtimes

Run Anywhere

- Bare metal, VMs, Kubernetes
- x86, ARM, POWER
- Multi-cloud, on-prem, hybrid, edge

NGC Deep Learning Containers

NEXT STEPS FOR THIS CLASS

Catalog: Containers / Co	ontainers: nvidia:dli-dl	-fundamentals			Step 1 Setup Docker
DLI Deep Lea	arning Funda	mentals Course			https://www.docker.com/
Publisher NVIDIA	Built By NVIDIA	Latest Tag v0.0.1	Modified October 27, 2020	Size 4.19 GB	
Multinode Support NO	Multi-Arch Support				Step 2 Visit NGC Catalog
Description Base environment used Labels	in the NVIDIA Deep Lea	arning Institute (DLI) Course Fu	ndamentals of Deep Learning, a	long with Next Steps project.	https://ngc.nvidia.com/catalog/ containers/nvidia:dli-dl- fundamentals
Computer Vision DLI	Jupyter Machine Le	warning Machine Learning & Al]		Step 3 Pull and Run Container
Pull Command	/nvidia/dli-dl-fundame	entals:v0.0.1		D	Visit <u>localhost:8888</u> to check out a JupyterLab environment with a Next Steps Project

CLOSING THOUGHTS

COPYING ROCKET SCIENCE

LET'S GET STARTED!

