A gentle introduction to Deep Learning

14.07.2020 | PD Dr. Juan J. Durillo

Agenda

Introduction

Introduction to (Deep) Neural Networks for Machine Learning

Computer Vision as working example

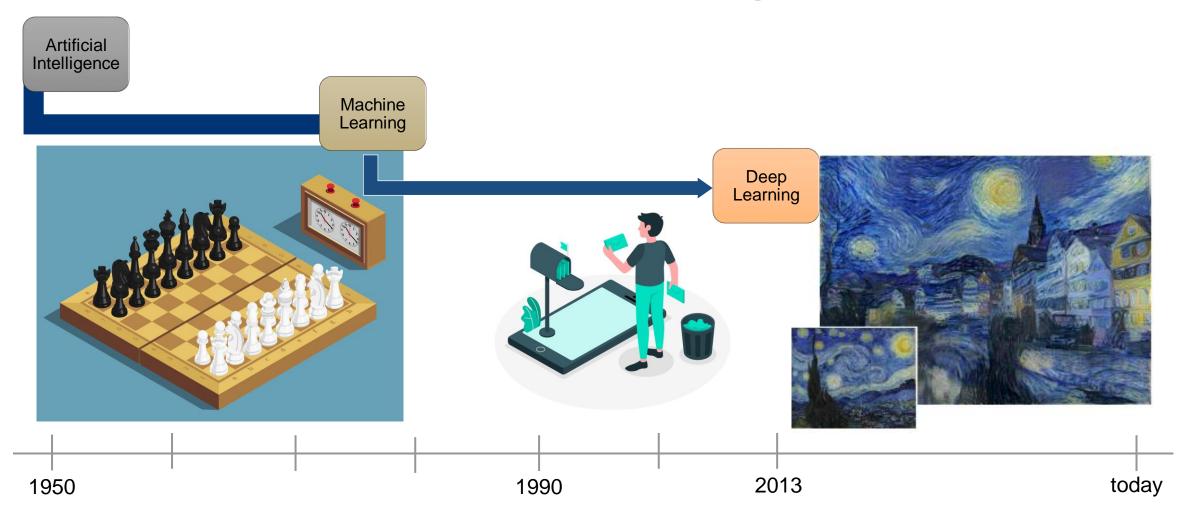
Introduction to Convolutional Neural Networks

Deep Neural Network Architecture

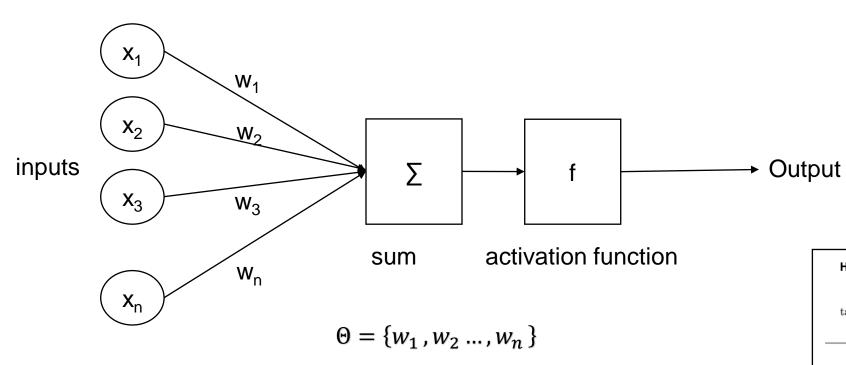
Data Augmentation

Hands on session: Implementing a Convolutional Neural Network from scratch

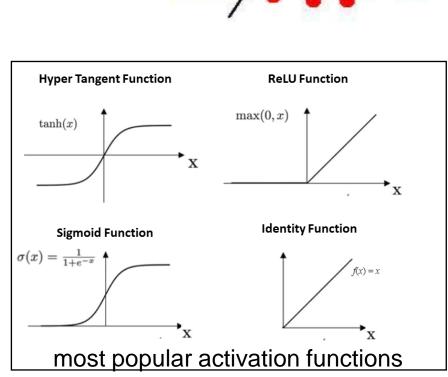
Artificial + Intelligence



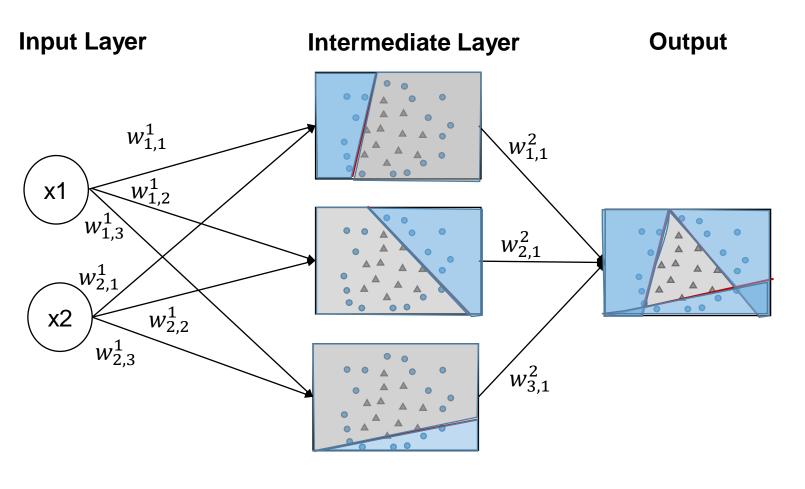
Perceptron - Artificial Neuron



Single artificial neurons work well for linearly separable datasets (indeed output is the activation effect on a linear combination of the input)

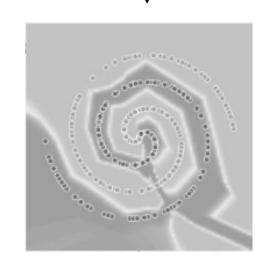


Neural Network



$$\Theta = \left\{ w_{1,1}^1, w_{1,2}^1, w_{1,3}^1, w_{1,1}^1, w_{2,1}^1, w_{2,2}^1, w_{2,3}^1, w_{1,1}^2, w_{2,1}^2, w_{2,3}^2 \right\}$$

 Works well even when the data is not linearly separable

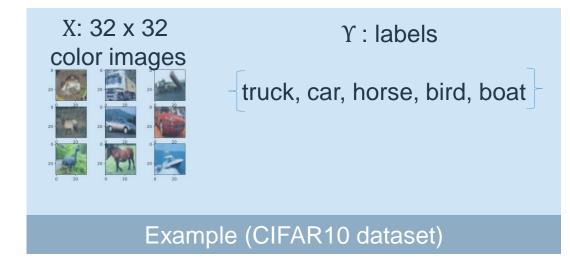


(Supervised) Learning

• Data domain Z: $X \times Y$

 $X \rightarrow$ domain of the input data

 $\Upsilon \rightarrow$ set of labels (knowledge)



- Data Distribution is a probability distribution over a data domain
- Training set $z_1, ..., z_n$ from Z assumed to be drawn from the Data Distribution D
- Validation set v_1 , ..., v_m from Z also assumed to be drawn from D
- A machine learning model is a function that given a set of parameters Θ and z from Z produces a prediction
- The prediction quality is measured by a differentiable non-negative scalar-valued loss function, that we denote $\ell(\Theta;z)$

(Supervised) Learning

- Given Θ we can define the expected loss as: $L(\Theta) = \mathbb{E}_{z \sim D}[\ell(\Theta; z)]$
- Given D, ℓ , and a model with parameter set Θ , we can define learning as: "The task of finding parameters Θ that achieve low values of the expected loss, while we are given access to only n training examples"
- The mentioned task before is commonly referred to as training
- Empirical average loss given a subset of the training data set $S(z_1, ..., z_n)$ as:

$$\widehat{L}(\Theta) = \frac{1}{n} \sum_{t=1}^{n} [\ell(\Theta; z_t)]$$

 Usually a proxy function, easier to understand by humans, is used for describing how well the training is performed (e.g., accuracy)

(Supervised) Learning

- The dominant algorithms for training neural networks are based on mini-batch stochastic gradient descent (SGD)
- Given an initial point Θ_0 SGD attempt to decrease \hat{L} via the sequence of iterates

$$\Theta_t \leftarrow \Theta_{t-1} - n_t g(\Theta_{t-1}; B_t)$$

$$g(\Theta; B) = \frac{1}{|B|} \sum_{z \in B} \nabla \ell(\Theta; z)$$

 B_t : random subset of training examples

Definitions

 n_t : positive scalar (learning rate)

epoch: update the weights after going over all training set

Computer Vision

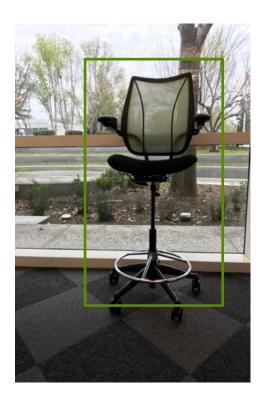
Why? Focus on a kind of Deep Neural Network called Convolutional Neural Network (CNN)

CNNs ability to extract multi-scale localized spatial features and compose them to construct highly expressive representations led to breakthroughs in almost all machine learning areas

COMPUTER VISION TASKS

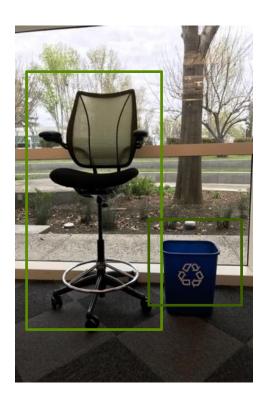
predicting the type or class of an object in an image

Image Classification



predicting the type or class on an object in an image and draw a bounding box around it

Image
Classification +
Localization



predicting the location of objects in an image via bounding boxes and the classes of the located objects

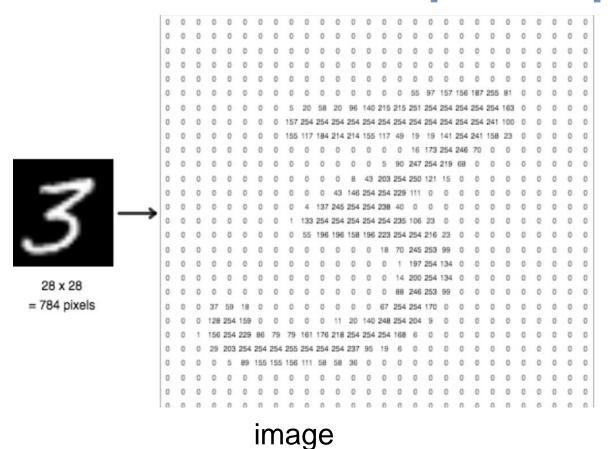
Object Detection



predicting the class to which each pixel in the image belongs to

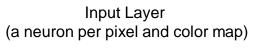
Image Segmentation

On Input Representation

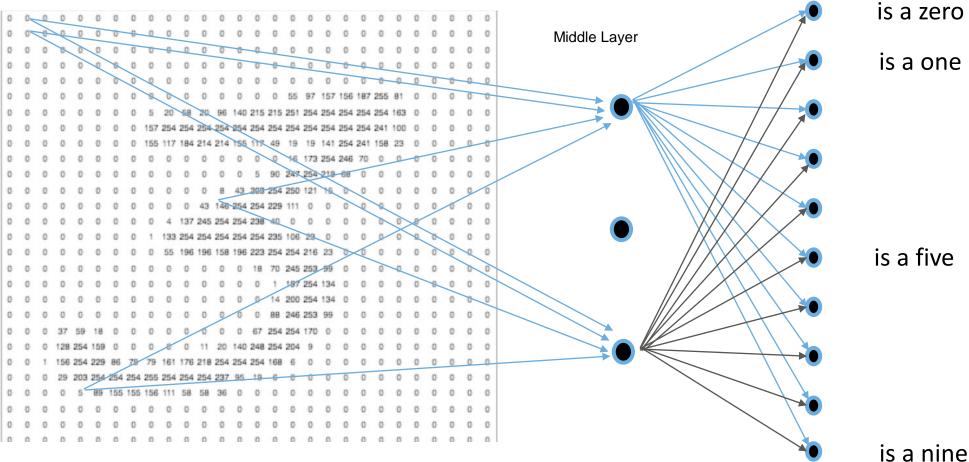


language

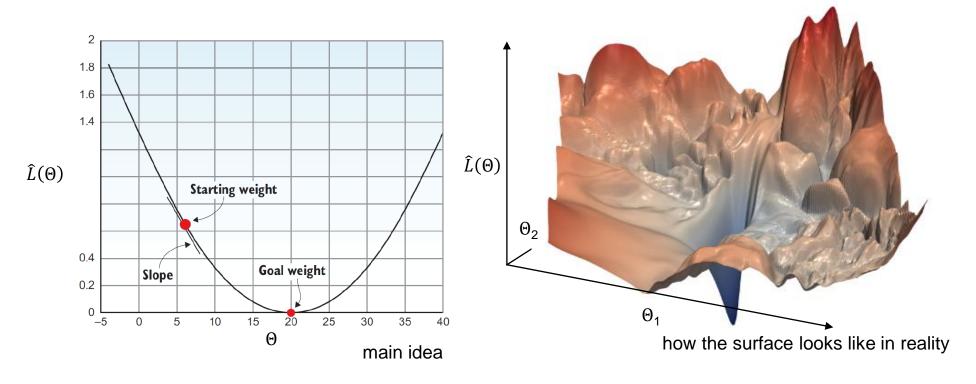
Neural Networks for Image Classification



Output Layer (a neuron per possible outcome)



Training Neural Networks

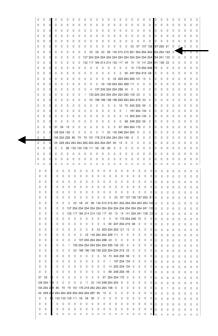


Stochastic Gradient Descent

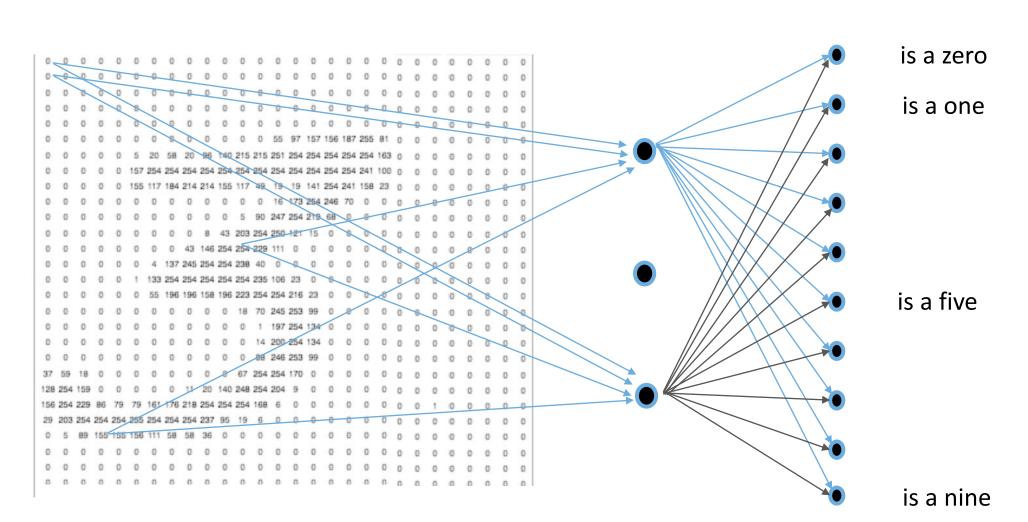
$$\Theta_{t} \leftarrow \Theta_{t-1} - n_{t} g(\Theta_{t-1}; B_{t})$$

$$g(\Theta; B) = \frac{1}{|B|} \sum_{z \in B} \nabla \ell(\Theta; z)$$

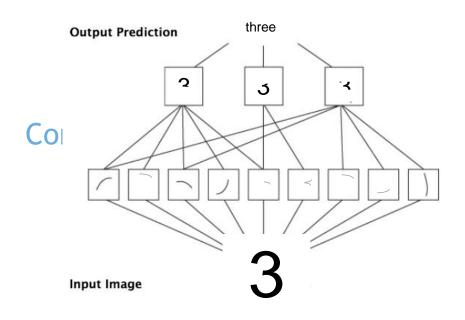
Neural Networks for Image Classification

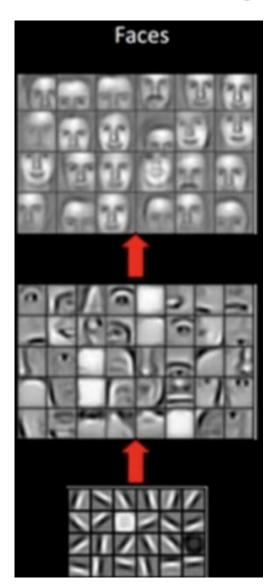


shift to the left



No More Feature Engineering





Learning features from data: Convolutions

Input Image

 1
 0
 1
 0
 1
 0
 1

 0
 1
 0
 0
 1
 0
 1
 0

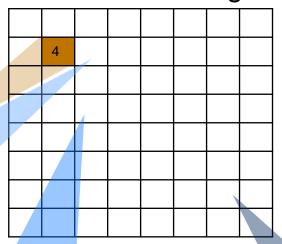
 0
 0
 1
 0
 0
 1
 0
 1
 0
 1

 1
 0
 1
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 0
 0
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</

Filter

-1	0	1
-2	1	2
-3	0	3

Convoluted Image



Filter is convoluted with all the pixels of the image

receptive

field

How many units the filter moves horizontally or vertically is called **stride** and can be different in both dimensions

The stride defines the size of the convoluted image

-								
	1	-1	0	1	0	1	0	1
	0	-2	1	2	1	0	1	0
	0	-3	0	3	0	1	0	1
	1	0	1	0	0	1	0	0
	0	0	0	0	1	0	1	0
	0	0	1	0	0	1	1	1
	0	0	0	0	0	0	1	0
	0	0	1	0	0	1	0	1

1	0	1	0	0	1	0	1
0	1	0	0	1	0	1	0
0	-1	0	1	0	1	0	1
1	-2	1	2	0	1	0	0
0	-3	0	3	1	0	1	0
0	0	1	0	0	1	1	1
0	0	0	0	0	0	1	0
0	0	1	0	0	1	0	1

1	0	1	0	0	1	0	1
0	1	0	0	1	0	1	0
0	0	1	0	0	7	0	1
1	0	1	0	0	1	0	0
0	0	0	0	1	0	1	0
0	0	1	0	0	-1	0	1
0	0	0	0	0	-2	1	2
0	0	1	0	0	-3	0	3

Filters

Input Image:

try the code yourself (in octave)!

I=imread(<path-to-image>);
GRAY=rgb2gray(I)
FILTER=[1 0 -1; 1 0 -1; 1 0 -1]; % filter 2
CONVOLUTED=conv2(GREY,FILTER);
Imwrite(CONVOLUTED, <path-to-result>);

Can we get only vertical lines out of this picture?

1 0 -1 filter 1

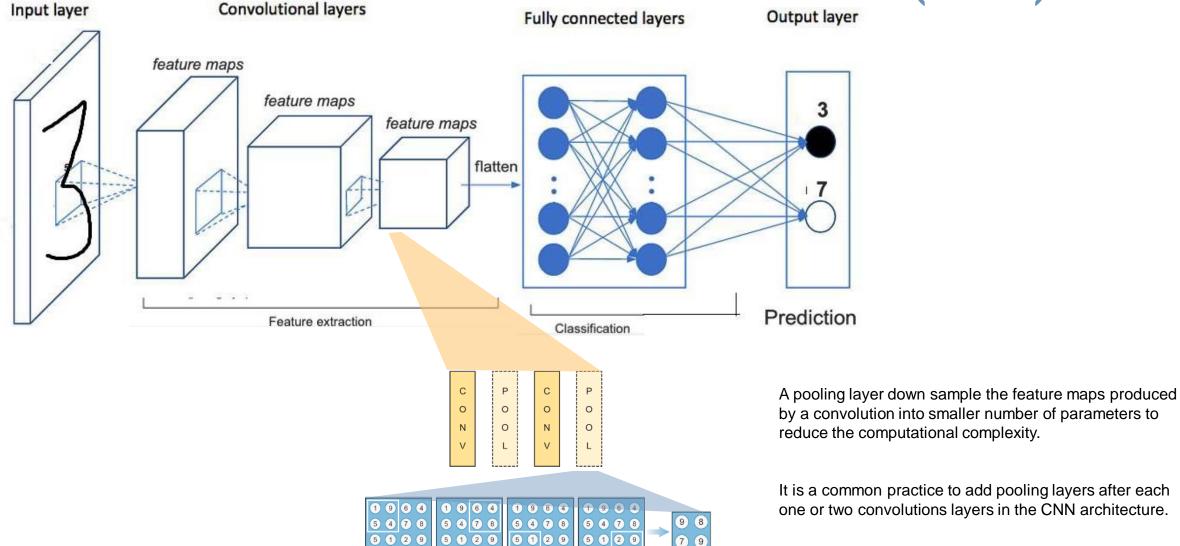
1	0	-1
1	0	-1
1	0	-1

filter 2

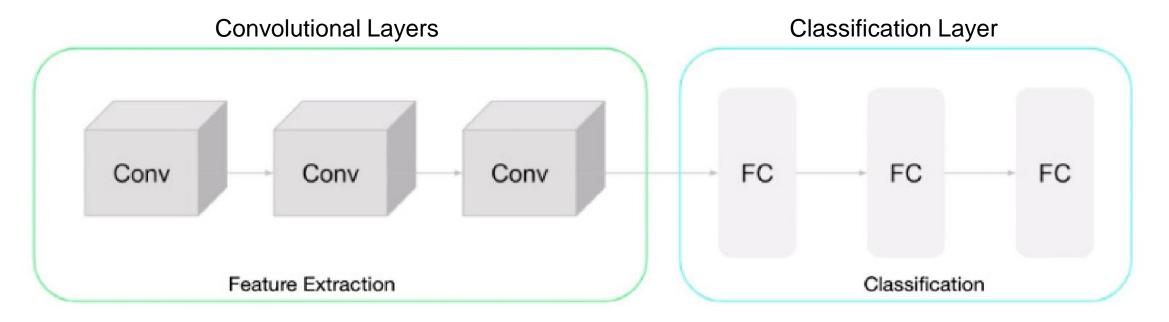
1	0	0	0	-1	
1	0	0	0	-1	
1	0	0	0	-1	_
1	0	0	0	-1	
1	0	0	0	-1	

filter 3

Convolutional Neural Networks (CNN)



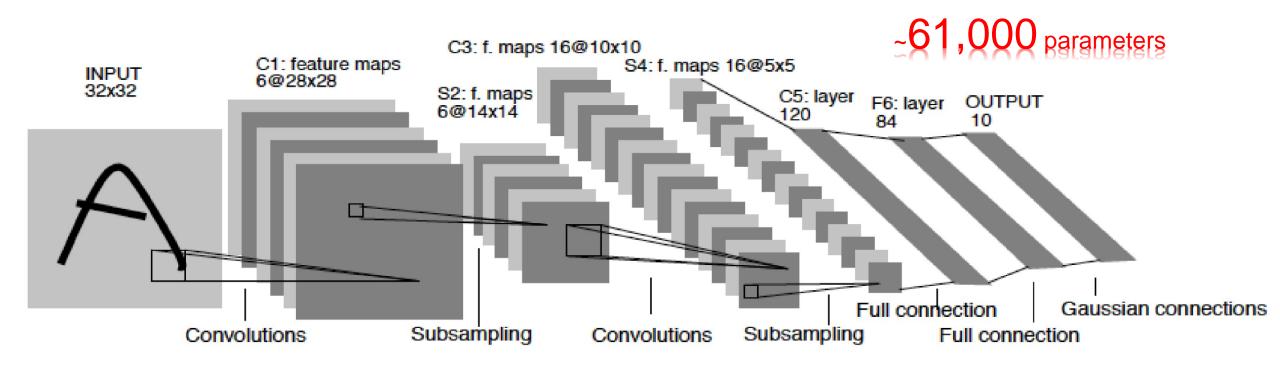
CNN Architecture: A Common Pattern and its Influence



The execution time required during a forward pass through a neural network is bounded from below by the number of floating point operations (FLOPs).

This FLOP count depends on the deep neural network architecture and the amount of data.

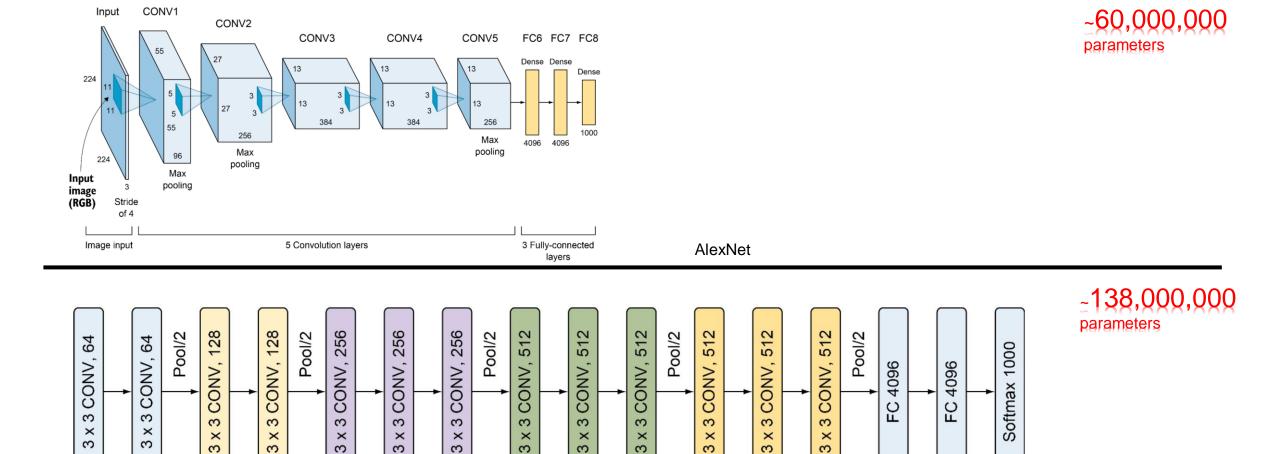
LeNet Architecture



Architecture summary:

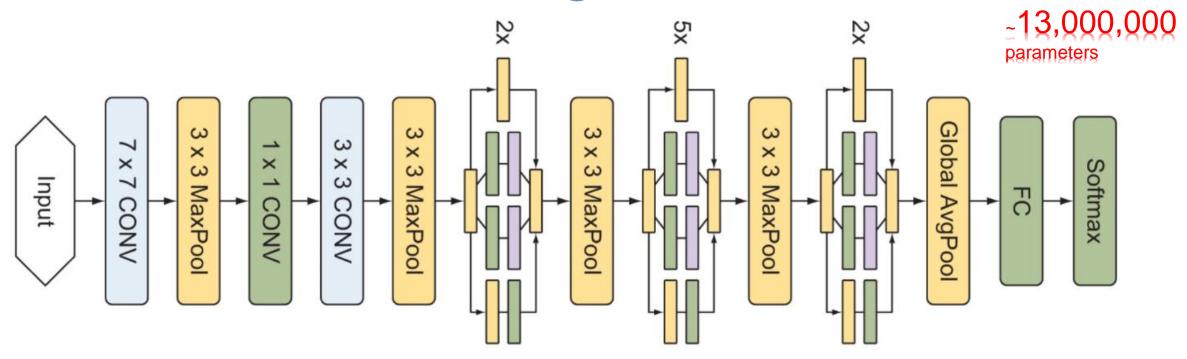
- 3 convolutional layers filters in all the layers equal to 5x5
 (layer 1 depth = 6, layer 2 depth = 16, layer 3 depth = 120)
- As activation function the tanh function is used

AlexNet and VGG Architectures

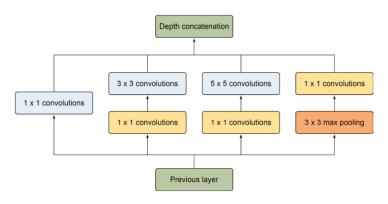


VGG16

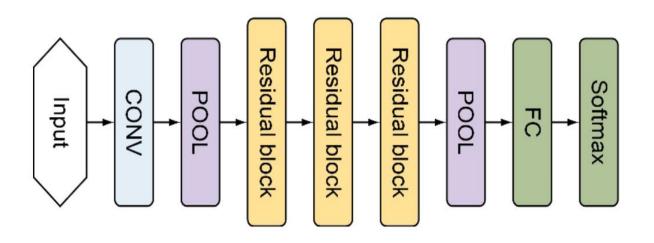
GoogleNet

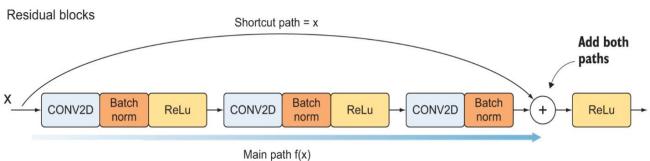


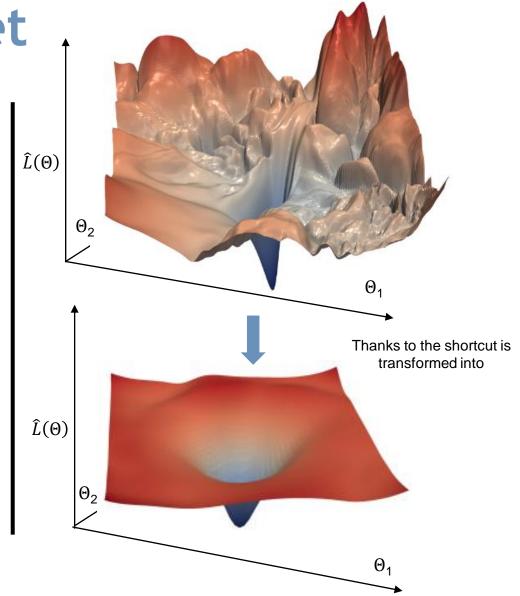
- What is the best kernel size for each layer?
- Concatenating filters instead of stacking them for reducing computational expenses



RestNet





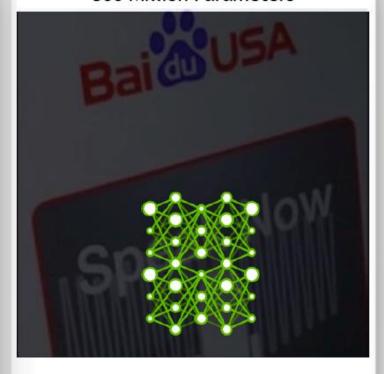


Increasing complexity

7 Exaflops 60 Million Parameters

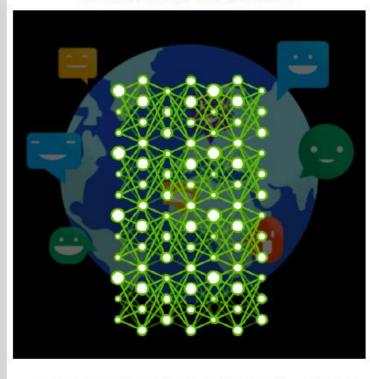
2015 - Microsoft ResNet Superhuman Image Recognition

20 Exaflops 300 Million Parameters



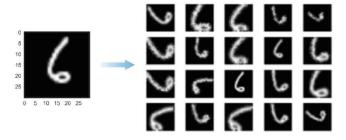
2016 - Baidu Deep Speech 2 Superhuman Voice Recognition

100 Exaflops 8700 Million Parameters



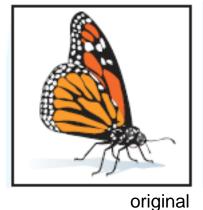
2017 - Google Neural Machine Translation Near Human Language Translation

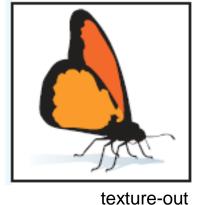
How much data?

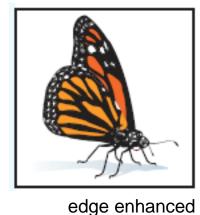


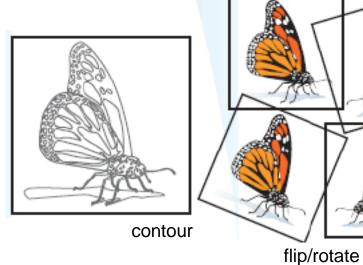
A non desired issue with NN is known as overfitting Getting more data not always viable

Data augmentation









Summary

Brief introduction to Deep Learning with emphasis in Deep Convolutional Neural Networks

Review of basic concepts: from perceptron to the learning task

Debrief of most important concepts of neural network architectures

Introduction to data augmentation

Code review