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DEEP LEARNING INSTITUTE
DLI Mission

Training you to solve the world’s most 
challenging problems.

• Developers, data scientists and 
engineers

• Self-driving cars, healthcare and 
robotics

• Training, optimizing, and deploying 
deep neural networks



4

• Train first network

• Introduce Image 
Classification

• Necessary ingredients for 
successful training

Training

• Role of Neural Networks in 
Applications

• Building around networks

Deployment
• Improving accuracy

• Improving capability

• Solving novel problems

• Changing layers of network

• Beyond Image 
Classification

Performance

This Course: Deep Learning Fundamentals



ACCOMPLISHING COMPLEX GOALS
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DEEP LEARNING IN PRODUCTION

Speech Recognition

Recommender Systems

Autonomous Driving

Real-time Object 
Recognition

Robotics

Real-time Language 
Translation

Many More…



Achieving Complex Goals
4th revolution in knowledge acquisition

1st - Evolution

2nd - Experience/Brain

4th – Machine Intelligence

3rd - Culture



ML Tribes
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[ based on hand engineering effort ]
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THE BIG BANG IN MACHINE LEARNING

DNN GPU BIG DATA
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Deep Neural Networks



Difference in Workflow

Input

Hand 

Designed 

Features

Output

Classic Machine Learning [ 1990 : now ]
Examples [ Regression and SVMs ]

Model / 

Mapping

Example [ Conv Net ]

Input
Simple 

Features
Output

Deep/End-to-End Learning [ 2012 : now ]

Model/ 

Mapping

Complex 

Features



Difference in Workflow

Input

Hand 

Designed 

Features

Output

Classic Machine Learning [ 1990 : now ]
Examples [ Regression and SVMs ]

Model / 

Mapping

Challenge: How would you give instructions to 
differentiate the handwritten digit on the right from 

other digits to:

A two-year-old child learning numbers OR
A computer using any programming language (including 
pseudocode)

Answer in discussion section– 3 minutes
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Work through Introduction Section

• courses.nvidia.com/dli-event
• Browser Recommendation: Chrome

• Event code: [will be given during the lecture]
• Create an Account
• Work through the Introduction Section and ‘Start’ launching your first GPU 

task
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Join course with the big green button above
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Select the “Course” Tab
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Open the first hands-on section



2020

Biological Inspiration

https://courses-dev.nvidia.com/courses/course-v1:DLI+C-FX-01+V2/courseware/7e7d09938eec4d88b4a54b5146c0a25f/e65ac7d505884a77ad40ec79ae1a5f3a/?child=first
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Biological Inspiration
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Artificial Neural Networks: GPU Task 1
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Inputs and Outputs
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Learning Principle

x1 x2 xn…..

-Error:

Output/Prediction

Target Output

Dataset

= 5
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Learning Principle

x1 x2 xn…..

-Error:

Output/Prediction

Target Output

= 15
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Learning Principle

x1 x2 xn…..

-Error:

Output/Prediction

Target Output

= 2.5
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DEEP LEARNING APPROACH - TRAINING

Input

Process
• Forward propagation 

yields an inferred label 
for each training image

• Loss function used to 
calculate difference 
between known label 
and predicted label for 
each image

• Weights are adjusted 
during backward 
propagation

• Repeat the process

Forward propagation

Backward propagation
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THE BIG BANG IN MACHINE LEARNING

DNN GPU BIG DATA



OVERFITTING
What to do about it?
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Two Violets – Who is right?
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Features vs Data
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Big Data: GPU Task 2
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Loss function
(Validation)

Loss function
(Training)

Accuracy
obtained from 

validation dataset

Next Page - EVALUATE THE MODEL



HOW IT WORKS



HOW IT WORKS



HOW IT WORKS
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THE BIG BANG IN MACHINE LEARNING

DNN GPU BIG DATA



HOW IT WORKS



LUNCH
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Exclusive Doggy Door
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Deployment
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Deep Learning Approach

Deploy:

Dog

Cat

Honey badger

Errors

Dog

Cat

Raccoon

Dog

Train:

DNN

DNN



44NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Deployment
How do I use a trained neural network as part of a solution?
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Deep Learning Approach
Neural network training and inference
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Expected Inputs and Useful Outputs
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TOOL - UINETWORKFRAMEWORK

Our current architecture

We’ve been working in a 
framework called Caffe. 

Each framework requires a 
different way (syntax) of 
describing architectures 
and hyperparameters. 

Other frameworks include 
TensorFlow, MXNet, etc.

We’ve been working with 
a UI called DIGITS

The community works to 
make model building and 
deployment easier.

Other tools include Keras, 
Tensorboard, or APIs with 
common programming 
languages. 

We’ve been working with 
a network called AlexNet.

Each network can be 
described and trained 
using ANY framework.

Different networks learn 
differently: different 
training rates, methods, 
etc. Think different 
learners.
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Components of a Model

Model Architecture = deploy.prototxt Learned Weights = ***.caffemodel Model

https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/deploy.prototxt
https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/deploy.prototxt
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Caffe files
*.caffemodel: a binary file containing the weights for the model at the 

iteration it was saved

*.prototxt: a text file describing the network model and its layers

image_mean.binaryproto: the image mean of the dataset, the model 
requires this to be subtracted from each image before classifying
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Deploying Our Model: GPU Task 3
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Performance
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Performance – Deployment
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CATEGORIES OF PERFORMANCE
Requirement Challenges

High Throughput 
Unable to processing high-volume, high-velocity data
➢ Impact: Increased cost ($, time) per inference 

Low Response Time

Applications don’t deliver real-time results
➢ Impact: Negatively affects user experience (voice recognition, 

personalized recommendations, real-time object detection)

Power and Memory 

Efficiency

Inefficient applications
➢ Impact: Increased cost (running and cooling), makes deployment 

infeasible

Deployment-Grade 

Solution

Research frameworks not designed for production
➢ Impact: Framework overhead and dependencies increases time 

to solution and affects productivity
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Levers

• Batch size

• Reduce for less latency

• Increase for more throughput

• Tools

• The right deployment platform

• TensorRT
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NVIDIA TENSORRT
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NVIDIA TENSORRT
Programmable Inference Accelerator

developer.nvidia.com/tensorrt

DRIVE PX 2

JETSON TX2

NVIDIA DLA

TESLA P4

TESLA V100

FRAMEWORKS GPU PLATFORMS

TensorRT

Optimizer Runtime
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TENSORRT DEPLOYMENT WORKFLOW

TensorRT Optimizer

TensorRT Runtime Engine

Trained Neural 
Network

Step 1: Optimize trained model

Plan 1

Plan 2

Plan 3

Optimized Plans

Step 2: Deploy optimized plans with runtime

EmbeddedAutomotive

Data center

Import
Model

Serialize
Engine

Plan 1

Plan 2

Plan 3

Optimized Plans

De-serialize
Engine

Deploy 
Runtime
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TENSORRT OPTIMIZATIONS
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Un-Optimized Network

concat

max pool

input

next input

3x3 conv.

relu

bias

1x1 conv.

relu

bias

1x1 conv.

relu

bias

1x1 conv.

relu

bias

concat

1x1 conv.

relu

bias
5x5 conv.

relu

bias

LAYER & TENSOR FUSION

max pool

input

next input

3x3 CBR 5x5 CBR 1x1 CBR

1x1 CBR

TensorRT Optimized Network
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Un-Optimized Network

concat

max pool

input

next input

3x3 conv.

relu

bias

1x1 conv.

relu

bias

1x1 conv.

relu

bias

1x1 conv.

relu

bias

concat

1x1 conv.

relu

bias
5x5 conv.

relu

bias

LAYER & TENSOR FUSION

max pool

input

next input

3x3 CBR 5x5 CBR 1x1 CBR

1x1 CBR

TensorRT Optimized Network
• Vertical Fusion 

• Horizonal Fusion 

• Layer Elimination

Network Layers 

before

Layers 

after

VGG19 43 27

Inception 

V3

309 113

ResNet-152 670 159
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TENSORRT KEY INFO

✓ Generate optimized, deployment-ready 

runtime engines for low latency inference

✓ Import models trained from Caffe or 

TensorFlow, or use Network Definition API

✓ Deploy in FP32 or reduced precision INT8, FP16 

for higher throughput

✓ Optimize frequently used layers and integrate 

user defined custom layers
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Performance – Training



6363

Next Page
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Learning Principle

x1 x2 xn…..

-Error:

Output/Prediction

Target Output

Dataset

= 5
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Learning Principle

x1 x2 xn…..

-Error:

Output/Prediction

Target Output

= 15
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Learning Principle

x1 x2 xn…..

-Error:

Output/Prediction

Target Output

= 2.5
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One HyperParameter: Learning Rate



68

TECHNIQUES TO IMPROVE MODEL

• More training – GPU Time
• More/better data – Data Science
• Searching Hyperparameters – Learning Design
• Modify the network – Network Architecture – Next Section
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Performance Improvement

•Increase accuracy and 
confidence with similar data

•Generalize performance to 
more diverse data

Ideas?
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SMALL DATASET FULL DATASET

1 : 99.90 % 0 : 93.11 %

2 : 69.03 % 2 : 87.23 %

8 : 71.37 % 8 : 71.60 %

8 : 85.07 % 8 : 79.72 %

0 : 99.00 % 0 : 95.82 %

8 : 99.69 % 8 : 100.0 %

8 : 54.75 % 2 : 70.57 %

More data
Full dataset ( 10 epochs )

• 99% of accuracy 
achieved

• No improvements in 
recognizing real-
world images
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DATA AUGMENTATION
Adding Inverted Images

• Pixel(Inverted) = 255 – Pixel(original)

• White letter with black background

• Black letter with white background

• Training Images:
/home/ubuntu/data/train_invert

• Test Image:
/home/ubuntu/data/test_invert

• Dataset Name: MNIST invert
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SMALL DATASET FULL DATASET +INVERTED

1 : 99.90 % 0 : 93.11 % 1 : 90.84 %

2 : 69.03 % 2 : 87.23 % 2 : 89.44 %

8 : 71.37 % 8 : 71.60 % 3 : 100.0 %

8 : 85.07 % 8 : 79.72 % 4 : 100.0 %

0 : 99.00 % 0 : 95.82 % 7 : 82.84 %

8 : 99.69 % 8 : 100.0 % 8 : 100.0 %

8 : 54.75 % 2 : 70.57 % 2 : 96.27 %

DATA AUGMENTATION
Adding inverted images ( 10 epochs )



73

Break
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Beyond Image Classification
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Inputs and Outputs
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Inputs and Outputs
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Object 
Detection

Finding a 
whale face in 

the ocean. 

We want to know IF 
there are whale 
faces in aerial 

images, and if so, 
where.
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Next Page:

How can we 
use what we 
know about 

Image 
Classification 

to detect 
whale faces 
from aerial 

images?

Take 2 minutes to 
think through and 

write down (paper or 
computer) ideas.
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AI at scale

Applications that combine trained networks with 
code can create new capabilities

Trained networks play the role of functions

Building applications requires writing code to 
generate expected inputs and useful outputs

Solving novel problems with code
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Approach 1: Sliding Window

• Technique:
• Build a dog/’not dog’ classifier
• Sliding window python application runs classifier on each 256X256 segment
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Next Page
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Approach 1: Sliding Window

• Works but:
• Needs human supervision
• Slow – constrained by image size
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Discuss: Intro to Network architecture
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Approach 2 – Modifying Network 
Architecture

Layers are mathematical operations on tensors (Matrices, vectors, etc.)

Layers are combined to describe the architecture of a neural network

Modifications to network architecture impact capability and performance

Each framework has a different syntax for describing architectures

Regardless of framework: The output of each layer must fit the input of the 
next layer.
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CAFFE FEATURES

Protobuf model format

• Strongly typed format

• Human readable

• Auto-generates and checks Caffe 
code

• Developed by Google, currently 
managed by Facebook

• Used to define network 
architecture and training 
parameters

• No coding required!

name: “conv1”

type: “Convolution”

bottom: “data”

top: “conv1”

convolution_param {

num_output: 20

kernel_size: 3

stride: 1

weight_filler {

type: “xavier”

}

}

Deep Learning model definition
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Image Classification Network (CNN)

Input Result

Application components:

Task objective
e.g. Identify face

Training data
10-100M images

Network architecture
~10s-100s of layers
1B parameters

Learning algorithm
~30 Exaflops
1-30 GPU days

Raw data Low-level features Mid-level features High-level features
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Source 

Pixel

Convolution 

kernel (a.k.a. 

filter) New pixel value 

(destination 

pixel)

Center element of the kernel is 

placed over the source pixel. 

The source pixel is then 

replaced with a weighted sum 

of itself and nearby pixels.

CONVOLUTION
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APPROACH 2 – Network Modification

• Approach :
• Change the 

structure of 
the network

• FC = Fully 
Connected = 
Matrix 
Multiplication 
= Size 
Constraint
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Back to lab
• Replace layers by reading carefully

• Ask for help if you need

• Continue through end of lab

• We’ll discuss “Detectnet” post-lab
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Approach 3: End-to-End Solution
Need dataset with inputs and corresponding (often complex) output
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Approach 3 – End to end solution

High-performing neural network architectures require deep experimentation

You can benefit from the work of the community through the modelzoo of 
each framework 

Implementing a new network requires an understanding of data and training 
expectations.

Find projects similar to your project as starting points.



93

Approach 3: End-to-End Solution

• DetectNet:
• Like AlexNet, 

DetectNet is 
optimized for 
a certain type 
of learning, 
but is 
generalizable 
to multiple 
contexts. 
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Closing thoughts – Creating new 
functionality

• Approach 1: Combining DL with programming

• Scaling models programmatically to create new functionality

• Approach 2: Experiment with network architecture

• Study the math of neural networks to create new functionality

• Approach 3: Identify similar solutions

• Study existing solutions to implement new functionality
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www.nvidia.com/dli

Instructor:  [        ]

[email]


