

Fundamentals of Deep Learning for Multiple Data Types

PD Dr. Juan J. Durillo

DEEP LEARNING INSTITUTE

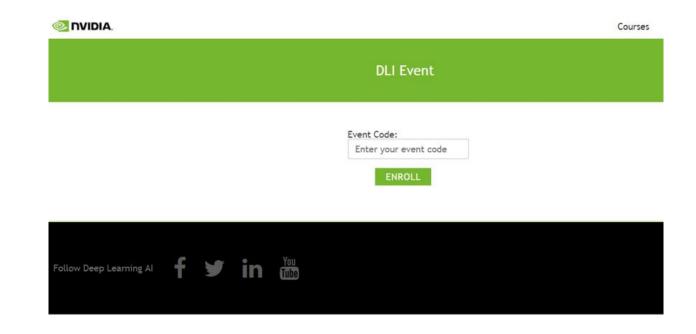
DLI Mission

Helping people solve challenging problems using AI and deep learning.

- Developers, data scientists and engineers
- Self-driving cars, healthcare, robotics, etc.
- Training, optimizing, and deploying deep neural networks

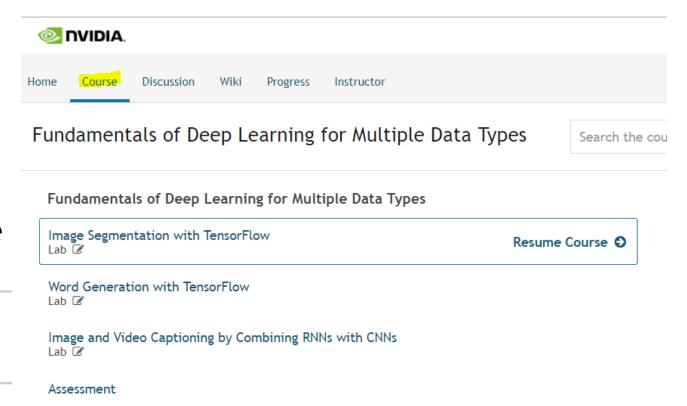
NAVIGATING TO THE DLI PLATFORM

- 1. Navigate to: <u>https://courses.nvidia.com/</u> <u>dli-event</u>
- 2. Use given event code
- 1. "Log in with my NVIDIA Account"
- 2. Log in or "Create an Account"
- 3. Note: After confirming email address, close the newly opened tab!



NAVIGATING TO THE DLI PLATFORM

- 1. You have arrived when you have reached the "Course" tab
- 2. Open the first lab: "Image Segmentation with TensorFlow" and launch the task with the "Start" button.
- "Start" will become "Loading" which will become "Launch" -
- START
- become "Launch"
 4. Launch the task when it is ready and begin working through Task 1



Today's Project: Generating Captions

Learning Targets

- Introduce TensorFlow
- Compare Computer Vision Workflows
- Introduce Natural Language Processing
- Highlight the value of mid-network information
- Increase the diversity of solvable problems with Deep Learning

This course is not:

- A PhD in Data Science/Deep Learning/etc.
- A deep dive into the role of the GPU or CUDA
- A comparison of approaches/frameworks/technology
- A playbook to achieve state-of-the-art performance
- Simply a how-to for the workflows taught

DEEP

LEARNING INSTITUTE

Image Segmentation with TensorFlow

PD Dr. Juan J. Durillo Certified Instructor, NVIDIA Deep Learning Institute

WHAT THIS LAB IS

 Discussion/Demonstration of Image Segmentation using Deep Learning

 Hands-on exercises using TensorFlow for CNN training and evaluation of Image Segmentation workflow

WHAT THIS LAB IS NOT

Intro to machine learning from first principles

• Rigorous mathematical formalism of convolutional neural networks

• Survey of all the features and options of TensorFlow

ASSUMPTIONS

- You are familiar with convolutional neural networks (CNN)
- Helpful to have:
 - Image recognition experience
 - TensorFlow experience
 - Python experience

TAKE AWAYS

- You can setup your own image segmentation workflow in TensorFlow and adapt it to your use case
- Know where to go for more info
- Familiarity with TensorFlow

IMAGE SEGMENTATION

COMPUTER VISION TASKS

Image Classification



Image Classification + Localization

Object Detection

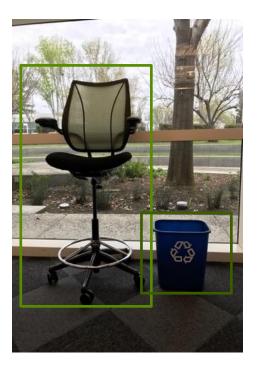


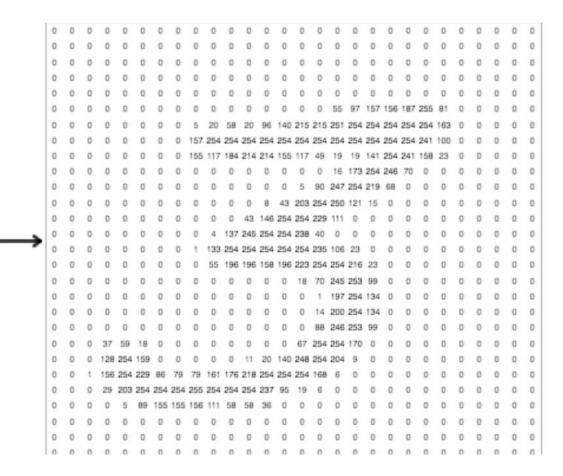
Image Segmentation

(inspired by a slide used in cs231n lecture from Stanford University)

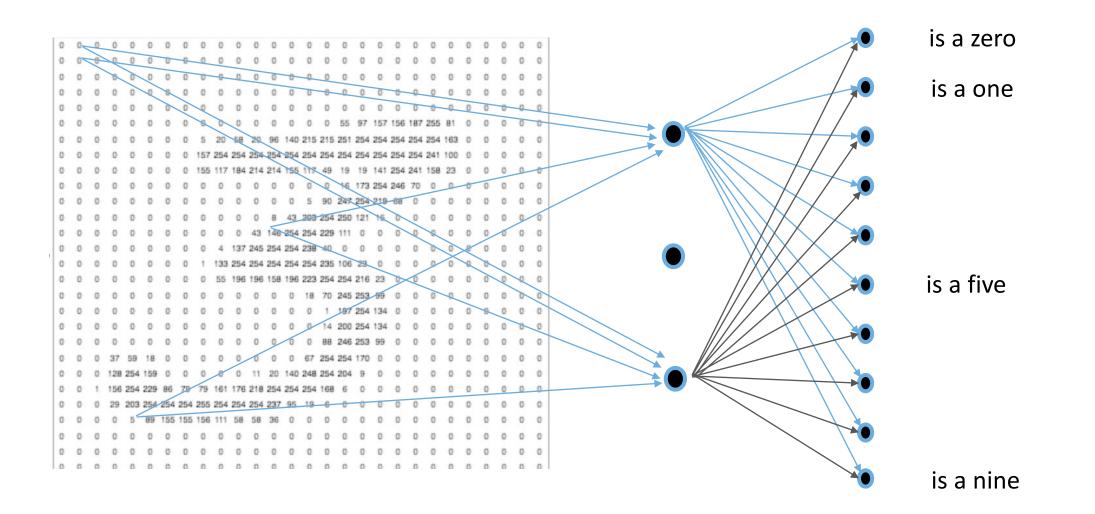
On Image Representation

28 x 28

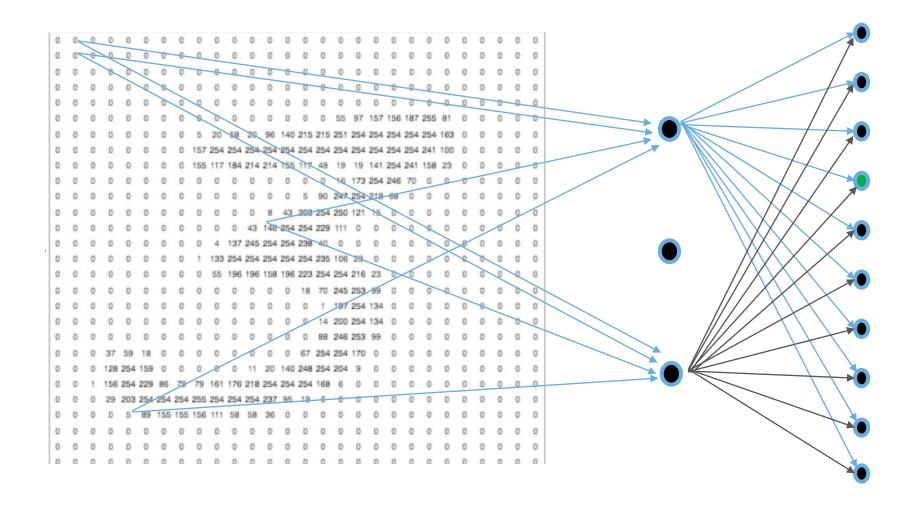
= 784 pixels



Fully Connected Neural Network



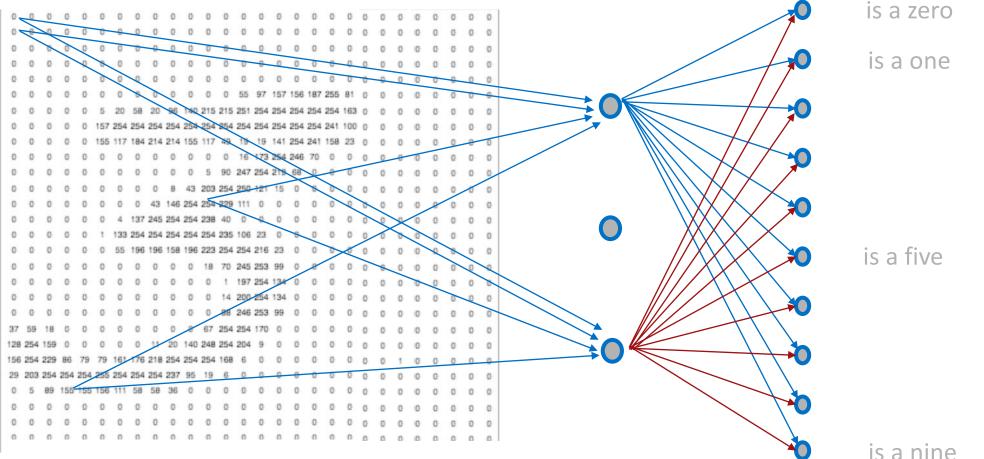
Fully Connected Neural Network



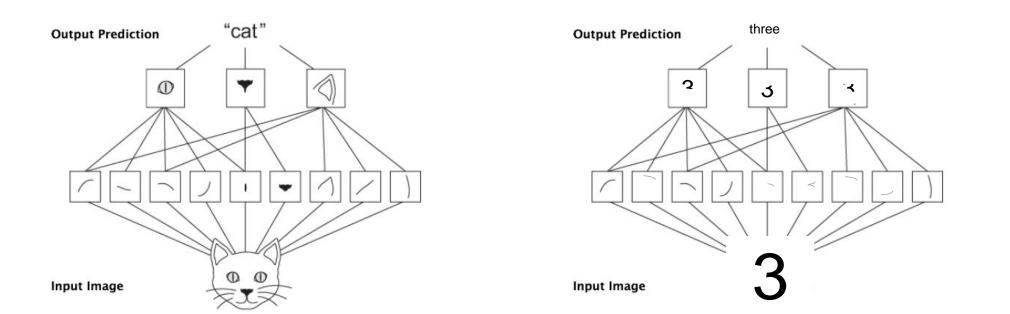
It is a three. The idea in training, modify the weights from previous layer to this one, so this output neuron provides 1 given that input and the rest of output neurons provides 0 given that input

																										F 100																							
0	0	0	0	0 0	0	0	0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0		0	0	0	0	0	0	0	0 0	0 0	0	0 0	0 0	0	0	0	0 0	0 0	0	0	0 0	0 0	0	0	0
0	0	0	0	0 0	0	0	0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0		0	0	0	0	0	0	0	0 0	0 0	0	0 0	0 0	0	0	0	0 0	0 0	0	0	0 0	0 0	0	0	0
0	0	0	0	0 0	0	0	0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0		0	0	0	0	0	0	0	0 0	0 0	0	0 0	0 0	0	0	0	0 0	0 0	0	0	0 0	0 0	0	0	0
0	0	0	0	0 0	0	0	0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0		0	0	0	0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0 0	0	0	0 0	0 0	0	0	0
0	0	0	0	0 0	0	0	0	0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0		0	0	0	0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	0 0	0	0	0 0	0 0	0	0	0
0	0	0	0	0 0	0	0	0	0 0	0 0	0 0	0 0	0 0	0	55	97	157 1	56 1	87 25	55 8	1 0	0	0	0	0		0	0	0	0	0	0	0	0 0	0	0	0 0	0 55	97	157	156 1	87 25	55 81	0	0	0 0	0 0	0	0	0
0	0	0	0	0 0	0	0	5 3	20 5	8 2	0 9	6 14	10 21	5 215	5 251	254	254 2	54 2	54 25	54 16	3 0	0	0	0	0		0	0	0	0	0	5	20	58 2	0 96	140 2	215 21	15 25	1 254	254	254 2	54 25	54 16	3 0	0	0 0	0 0	0	0	0
0	0	0	0	0 0	0	0	157 2	54 2	54 25	54 25	54 25	54 25	4 254	4 254	254	254 2	54 2	54 24	1 10	0 0	0	0	0	0		0	0	0	0	0	157 2	254 2	154 21	4 254	254 2	254 21	54 25	4 254	254	254 2	54 24	41 10	0 0	0	0 (0 0	0	0	0
0	0	0	0	0 0	0	0	155 1	17 18	84 21	14 21	14 15	55 11	7 49	19	19	141 2	54 2	41 15	58 23	3 0	0	0	0	0		0	0	0	0	0	155 1	117 1	84 21	4 214	155 1	117 4	9 19	19	141.2	254 2	41 15	58 23	3 0	0	0 (0 0	0	0	0
0	0	0	0	0 0	0	0	0	0 0	0 0	0 0	5 0	0 0	0	16	173		46 7	0 0	0 0	0	0	0	0	0		0	0	0	0	0	0	0	0 0	0	0	0 0	0 16	173	254	246	70 0	0 0	0	0	0 0	0 0	0	0	0
0	0	0	0	0 0	0	0	0	0 0	0 0	0 0		5	90	247	254	219	68	0 0	0	0	0	0	0	0		0	0	0	0	0	0	0	0 0	0	0	5 9	0 24	7 254	219	68	0 0	0 0	0	0	0 0	0 0	0	0	0
0			0	0 0		0	0	0 0	n r			3 20	9 95/	1 250	121	15	0	0 0	3 0			0	0	0		0	0	0	0	0	0	0	0 0	в	43 2	203 21	54 25	121	15	0	0 0	0 0		0	0 1			0	0
0	0	0	0	0 0	0	0	0	0 0	n 4	9 14	10 26	14 25	4 226	9 111	0	0				0	0	0	0	0	shift to the left	0		0	0	0	0	0	0 4	3 146	254 2	254 22	29 11	0	0	0	0 0	5 0		0	0 0			0	0
0	0	0	0	0 0		0	0	4 11	37 9/	45 96	LA 26	LA 23	B 40		0	0		0 0	3 0		0	0	0	0	Shint to the left	0		0	0	0	0	4 1	37 24	15 254	254 2	238 4	0 0	0	0	0	0 0	0		0	0 0	3 0		0	0
0	0	0	0	0 0	0	0		33 2	54 21	14 25	14 26	14 25	4 23	5 106	23	0			1 0		0	0	0	0		0		0	0	0		133 2	54 2	4 254	254 2	254 25	35 10	5 23	0	0	0 0	0 0		0	0 0			0	0
0	0	0	0	0 0		0		UL 10	00 10			6 22				23	0	0 0			0	0	0	0		0	0	0	0	0	0	55 1	96 11	6 158	196 2	223 2	54 25	4 216	23	0	0 0	0 0	0	0	0 0			0	0
0	0		0			0		A 1	0. 1	0. 0		1. 10	1 20	245		00										0			0	0	0	0	0 0	0				5 253		0	0 0	1 0		0				0	
0	0		0	0 0		0								107	203	124					0	0	0			0			0	0	0	0			0	0	1 19		134			1 0		0	0 0			0	
0	0	0	0	0 0		0	0	0 1					14	197	204	134					0	0	0			0											4 20		124					0	0 0			0	
0	0	0	0	0 0		0	0						88		254	00					0	0	0			0					0	0			0	3	8 24	2 269	00					0	0 0			0	
	0					0							88	240	203	99							0				7 58			0		0				0 0	10 E4	1 1 20							0 0			~	
0	0	0	37 1	59 18	5 0	0	0	0 0	0 (0 0) 67	254	4 254	170	0	0	0 0	0	0	0	0	0	0		1.1	8 25				0	0	0 1			0/ 2:	14 20	4 170	0				0	0	0 0	0 0	0	0	0
0		0	128 2	154 15	9 0	0	0	0 0	0 1	1 2	0 14	10 24	8 254	4 204		0	0	0 0	2 0	0	0	0	0	0		1.000		4 229		79	79 1	161 1			254 2	248 23	20 20	• •	0				0	0	0 0		0	0	0
0		1	156 2	254 22	9 86			61 17	76 21	18 25	54 25	54 25	4 168	8 6	0	0	0	0 0	0 0	0	0	0	0	0		1.000							10 21	:	254 2	254 16	08 0		0				0	0	1 0	0 0	0	0	0
0		0	29 2	203 25		254	255 2				\$7 9	5 19	, 6	0	0	0	0	0 (2 0	0	0	0	0	0		1.2							254 21		90	10 4	0 0	0	0	0	0 0		0	0	0 0	0	0	0	0
0		0	0	5 85	155	155	156 1	11 5	58 5	8 3	6 0	0 0	0	0	0	0	0	0 (0	0	0	0	0	0			5		100	100	156 1		58 5	8 36	0	0 0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0
0	0	0	0	0 0	0	0	0	0 0	0 0	0 0	3 0	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0	0			0	0	0	0	0	0	0 0	0 0	0	0 0	0 0	0	0	0	0 0	0 0	0	0	0 0	3 0	0	0	0
0	0	0	0	0 0	0	0	0	0 (0 0	0 0	0 0	0 0	0	0	0	0	0	0 0	3 0	0	0	0	0	0		0		0	0	0	0	0	0 0	0 0	0	0 0	0 0	0	0	0	0 0	0 0	0	0	0 0	0 0	0	0	0
0	0	0	0	0 0	0	0	0	0 0	0 0	0 0	3 0	0 0	0	0	0	0	0	0 0	0	0	0	0	0	0		0	0	0	0	0	0	0	0 0	0	0	0 0	0 0	0	0	0	0 0	5 0	0	0	0 0	3 0	0	0	0

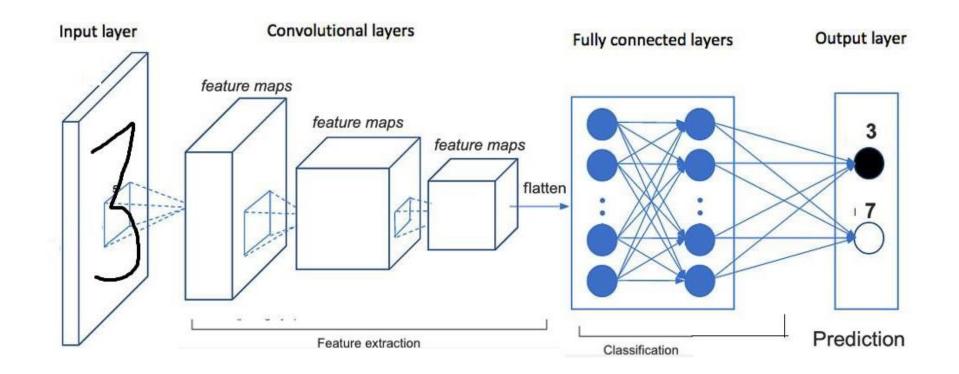
Fully Connected Neural Network



Convolutional Neural Networks



Convolutional Neural Networks



TENSORFLOW

WHAT IS TENSORFLOW?

Created by Google, tensorflow.org

- "Open source software library for machine intelligence"
 - Available on GitHub
- Flexibility—express your computation as a data flow graph
 - If you can express it in TF syntax you can run it
- Portability—CPUs and GPUs, workstation, server, mobile
- Language options—Python and C++
- Performance—Tuned for performance on CPUs and GPUs
 - Assign tasks to different hardware devices
 - Uses CUDNN

TensorFlow, the TensorFlow logo and any related marks are trademarks of Google Inc.

RUNNING TENSORFLOW

- Construct a graph—this happens before any real computation happens
 - Specify your neural network as a graph
 - Variables--characteristics of the graph that can change over time
 - i.e., learned weights
 - Operations—computations that combine the variables and the data
 - e.g., convolution, activation, matrix multiply, etc.
- Launch a session
 - This is TF verbiage for executing a graph
 - Taking data and running it through a previously-created graph

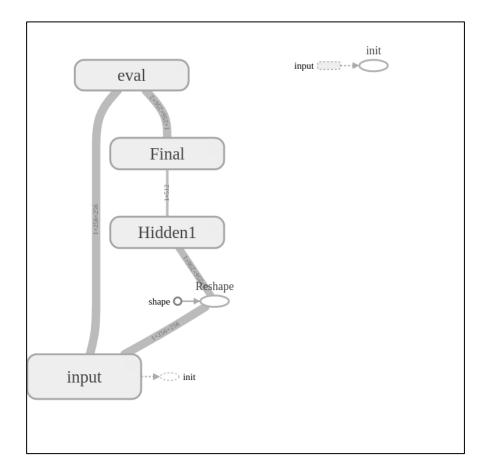
SAMPLE WORKFLOW

- Prepare input data
 - Can use numpy arrays but for very large datasets TFRecords are recommended
- Build the computation graph
 - Create inference, loss, training nodes
- Train the model
 - Inject input data into graph in a TF session and loop over your input data.
 - Specify things like batch size, number of epochs, learning rate, etc.
- Evaluate the model
 - Run inference on graph and then evaluate accuracy based on suitable metric

TENSORBOARD

- TF tool to visualize training progress
 - Plots of loss, learning rate, accuracy
 - Visualize computation graph
- Will use TensorBoard during this lab
 - Extremely useful to aggregate training and evaluation statistics for clear analysis of the model behavior

TENSORBOARD GRAPH EXAMPLE



 Evaluation graph for NN with 1 hidden layer

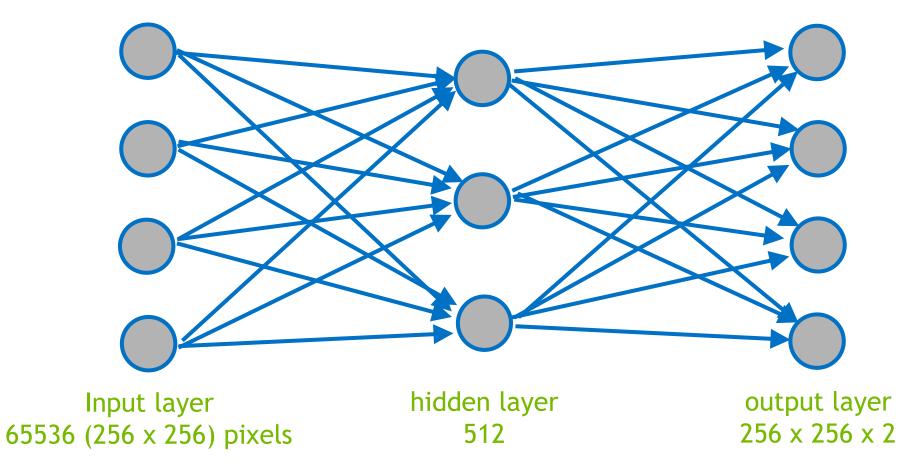
- Each box clicks to expand
 - Shows you the operations and the variables in each user-defined node

INFERENCE GRAPH EXAMPLE

```
with tf.name scope('Hidden1'):
    W fc = tf.Variable(tf.truncated normal( [256*256, 512],
                 stddev=0.1, dtype=tf.float32), name='W fc')
    flatten1 op = tf.reshape( images re, [-1, 256*256])
    h fc1 = tf.matmul( flatten1 op, W fc )
with tf.name scope('Final'):
    W fc2 = tf.Variable(tf.truncated normal( [512, 256*256*2],
                stddev=0.1, dtype=tf.float32), name='W fc2' )
   h fc2 = tf.matmul(h fc1, W fc2)
   hfc2 re = tf.reshape(hfc2, [-1, 256, 256, 2])
return h fc2 re
```


TASK 1 - NEURAL NETWORK

One hidden layer only



Back to Today's Lab 1

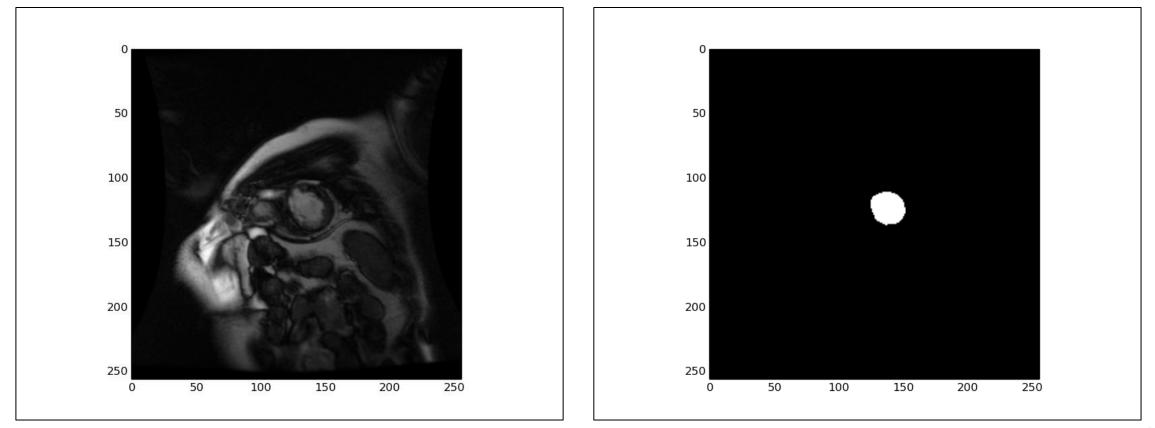
IMAGE SEGMENTATION

- "Segmentation" sometimes used to describe similar but slightly different tasks
- In this lab, semantic segmentation will be performed
 - i.e., in an image, each pixel will be placed into one of multiple classes
- In a sense it's a classification problem where each pixel has a class, vs image recognition where each image (collection of pixels) has a class
- Specifically we'll be looking at medical imaging data and attempting to determine where the left ventricle (LV) is
 - i.e., for each pixel is it part of LV or not?

DATASET

- Cardiac MRI short-axis (SAX) scans
 - Sunnybrook cardiac images from earlier competition <u>http://smial.sri.utoronto.ca/LV_Challenge/Data.html</u>
 - "Sunnybrook Cardiac MR Database" is made available under the CC0 1.0 Universal license described above, and with more detail here: http://creativecommons.org/publicdomain/zero/1.0/
 - Attribution:
 - Radau P, Lu Y, Connelly K, Paul G, Dick AJ, Wright GA. "Evaluation Framework for Algorithms Segmenting Short Axis Cardiac MRI." The MIDAS Journal -Cardiac MR Left Ventricle Segmentation Challenge, http://hdl.handle.net/10380/3070

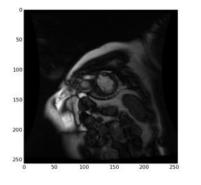
IMAGE EXAMPLE

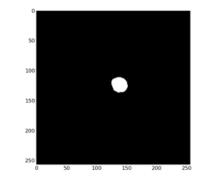


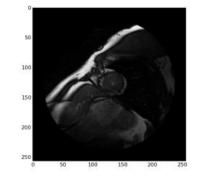
DEEP LEARNING INSTITUTE

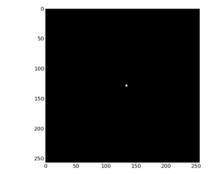
IMAGE EXAMPLES

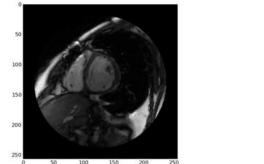
Complete images and expertly labeled contours of LV

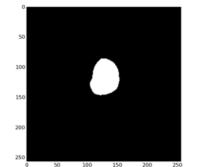


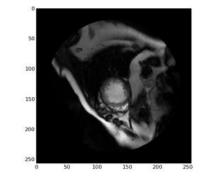


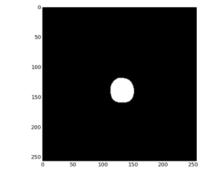












DATA DETAILS

- Original images are 256 x 256 grayscale DICOM format
- Output is a tensor of size 256 x 256 x 2
 - Each pixel belongs to one of two classes

• Training set consist of 234 images

• Validation set consist of 26 images

BACKGROUND DATA SETUP

- Lots of guidance and code for how to setup/extract data taken from here:
 - <u>https://www.kaggle.com/c/second-annual-data-science-bowl/details/deep-learning-tutorial</u>
- Images and contours have been extracted from the raw data and packaged up for ingest into TensorFlow
 - Data extraction code is included but won't be demo'd.

- TensorFlow data records provided but raw data is NOT provided for this lab
 - If interested you can download yourself

TASK 1

Ensure things are working properly!

- Train and test a fully-connected neural network with one hidden layer
 - Visual representation of this network appears on next slide
- For the loss computation we'll use TF built-in sparse_softmax_cross_entropy_with_logits
 - Computes softmax of the inference output then cross entropy against the correct labels

TASK 1 - TRAINING OUTPUT

!python exercises/simple/runTraining.py --data_dir /data
Output:
OUTPUT: Step 0: loss = 2.621 (0.169 sec)

```
OUTPUT: Step 100: loss = 4.958 (0.047 sec)
```

```
OUTPUT: Step 200: loss = 4.234 (0.047 sec)
```

```
OUTPUT: Done training for 1 epochs, 231 steps.
```

Lots of messages printed to the screen - look for "OUTPUT"

TASK 1 - EVALUATION

!python exercises/simple/runEval.py --data_dir /data
Output:

```
OUTPUT: 2016-08-23 15:37:26.752794: accuracy = 0.504
```

OUTPUT: 26 images evaluated from file /tmp/sunny_data/val_images.tfrecords

- Output shows the accuracy of the predictions and which data was utilized
 - 1.0 means the NN classified all the data the same as the label, ie 100% correct

TASK 2 - ADDITIONAL LAYERS

- Convolution layers
 - Previous example focused on each input pixel
 - What if features encompass multiple input pixels
 - Can use convolutions to capture larger receptive fields
- Pooling layers
 - Essentially a down-sampling method retaining information while eliminating some computational complexity

TASK 2 - FULLY CONVOLUTIONAL NETWORK (FCN)

- Image classification layers—Convolutions, pooling, activations, fully connected
 - Output is an N-dimensional vector where N == Number_of_classes
- Can we leverage this network to do segmentation? YES!
- Reconsider the problem as pixel classification
 - i.e., each pixel has a class
- Reuse most of the image classification network
- Replace fully connected layer(s) with deconvolution (transpose convolution)
 - Output is a 256 x 256 x N tensor where N == Number_of_classes
 - In this lab N == 2

TASK 2 - ADDITIONAL LAYER

- Deconvolution (transpose convolution) layer
 - Up-sampling method to bring a smaller image data set back up to it's original size for final pixel classification
- Long et al (CVPR2015) has nice paper re: FCN for segmentation
 - Created FCNs from AlexNet and other canonical networks
- Zeiler et al (CVPR2010) describes deconvolution
- Network we will use is very similar to Vu Tran's kaggle example here: <u>https://www.kaggle.com/c/second-annual-data-science-bowl/details/deep-learning-tutorial</u>

TASK 2

exercises/tf/segmentation/cnn/neuralnetwork.py

- Finish the CNN, replace "FIXME"
 - vi / vim the file and type /FIXME to identify where to make changes
 - You need to figure out the dimensions
- Convolution1, 5x5 kernel, stride 2;
- Convolution2, 5x5 kernel, stride 2;
- Convolution3, 3x3 kernel, stride 1;
- Score_classes, 1x1 kernel, stride 1;

Maxpooling1, 2x2 window, stride 2

Maxpooling2, 2x2 window, stride 2

Convolution4, 3x3 kernel, stride 1

- Upscore (DeConv), 31x31 kernel, stride 16
- Optional / Time Permitting: Experiment with num_epochs

TASK 2 - EVALUATION RESULTS

• 1 epoch of training

OUTPUT: 2016-08-26 20:44:55.012370: precision = 0.571

• 30 epochs of training

OUTPUT: 2016-08-26 20:48:16.593103: precision = 0.985

• 98.5% accurate!

• Very good accuracy, are we done?

TASK 2 - ACCURACY

- How are we determining accuracy
 - We are comparing the pixel value in the label with the value computed by the CNN
 - So 98.5% of the time we are predicting the pixel correctly
- However, the size of the contour is relatively small compared to the entire image Class imbalance problem
- If we simply output the notLV class for every pixel we'd have over 95% accuracy
 - Clearly this isn't what we want

TASK 3 - DICE METRIC

• Metric to compare the similarity of two samples:

$$\frac{2A_{nl}}{A_n + A_l}$$

- Where:
 - A_n is the area of the contour predicted by the network
 - A_l is the area of the contour from the label
 - A_{nl} is the intersection of the two
 - The area of the contour that is predicted correctly by the network
 - 1.0 means perfect score.
- More accurately compute how well we're predicting the contour against the label
- We can just count pixels to give us the respective areas

TASK 3 - TRAINING PARAMETERS

Important to search the space of parameters

- learning_rate: initial learning rate
- decay_rate: the rate that the initial learning rate decays
 - e.g., 1.0 is no decay, 0.5 means cut the decay rate in half each number of (decay) steps
- decay_steps: number of steps to execute before changing learning rate
- num_epochs: number of times to cycle through the input data
- batch_size: keep at 1 for now
- Experiment with learning_rate, decay_rate, decay_steps, num_epoch
- Record the parameters that give you the best Dice score

TASK 3 - EVALUTION RESULTS

- Recall result from prior example:
 - 1 epoch: precision = 0.501
 - 30 epochs: precision = 0.985
- Now with Dice metric (recall 1.0 is perfect accuracy)
 - 1 epoch: Dice metric = 0.033
 - 30 epochs: Dice metric = 0.579
- Not as good as we originally thought

TASK 3 - RESULT

One possible result

- --learning_rate=0.03
- --decay_rate=0.75
- --num_epochs=100
- --decay_steps=10000

OUTPUT: 2016-08-26 21:22:15.590642: Dice metric = 0.861

Accuracy now looking much better!

LAB REVIEW

LAB SUMMARY

- Intro to image segmentation
 - Classifying pixels vs images
- Converted image recognition network into FCN for segmentation.
- Used TensorFlow as framework to explore various optimizations to FCN
- Explored new accuracy metric (Dice metric) to better capture true accuracy

WHAT ELSE?

- Run training longer
 - For demo purposes we ran really short training runs
 - Need more epochs
- More training data
 - We only had 236 images in our training set
 - Gather more data
 - Augment images that we have with rotations, inversions, etc.
 - TF has functions to flip/rotate/transpose automatically
- Larger more complicated networks

WORD GENERATION WITH TENSORFLOW

PD Dr. Juan J. Durillo

DEEP

LEARNING

INSTITUTE

Certified Instructor, NVIDIA Deep Learning Institute NVIDIA Corporation

TOPICS

- Overview
- Recurrent Neural Networks
- One-Hot Encoding
- Lab
 - Discussion / Overview
 - Launching the Lab Environment
 - Lab Review

NON-IMAGE DATA

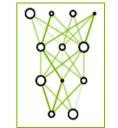
- Convert to images
 - Sound waves
 - Stock prices
- New workflows
 - Different input and output types
 - Handle new components like time
 - Still learned input->output mappings

NON-IMAGE DATA

IMAGES - INPUT AND OUTPUT

Classifier data flow

100	37	59	87	55	29	13	44
62	79	54	62	23	93	93	26
50	57	93	17	67	53	60	75
3	54	70	37	17	20	<mark>6</mark> 9	7
86	42	2	55	90	45	74	77
59	39	100	52	10	8	20	37
61	2	62	92	83	18	12	82
11	7	87	20	5	13	4	34



Deep Neural Network

0.04	0	0.02	0.01	0.92	0.01
Kites	Harrier	Vulture	Hawk	Eagle	Buzzards

One-Hot: Turning words into Numbers

- Numerical vector representation for each word
- Dictionary of N words
- Each word is a vector with N-1 zeros and one 1, at the position of the word in the dictionary
- A document can be represented as a sequence of these one-hot vectors
- One interesting property of this representation is that no information gets lost

ONE-HOT ENCODING

small_dict=['EOS','a','my','sleeps','on','dog','cat','the','bed','floor'] #'EOS' means end of sentence.

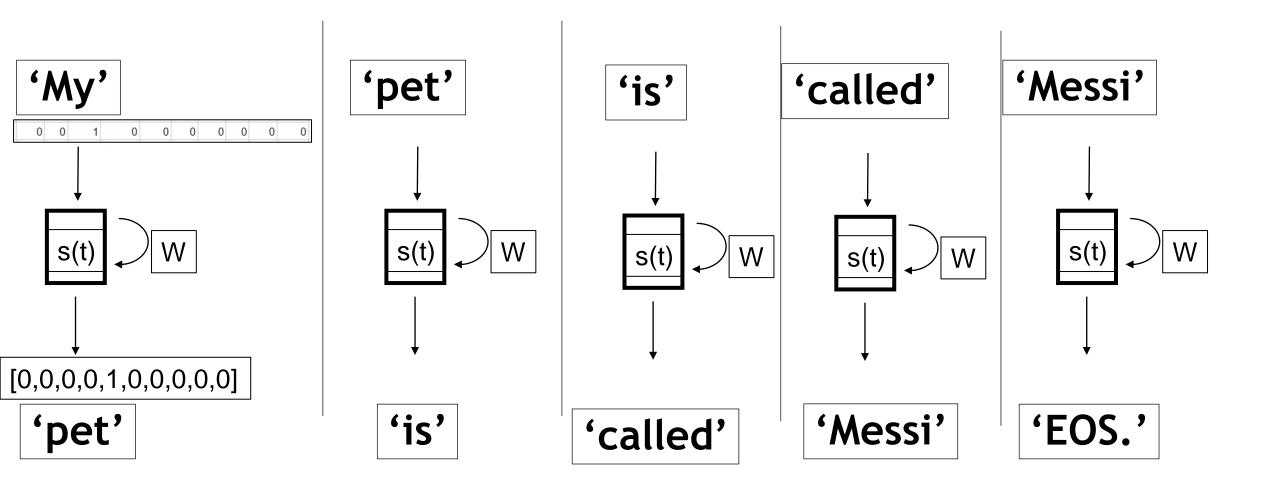
import numpy as np #numpy is "numerical python" and is used in deep learning mostly for its n-dimensional array
X=np.array([[2,6,3,4,2,8,0],[1,5,3,4,7,9,0]],dtype=np.int32)
print([small_dict[ind] for ind in X[1,:]]) #Feel free to change 1 to 0 to see the other sentence.

['a', 'dog', 'sleeps', 'on', 'the', 'floor', 'EOS']

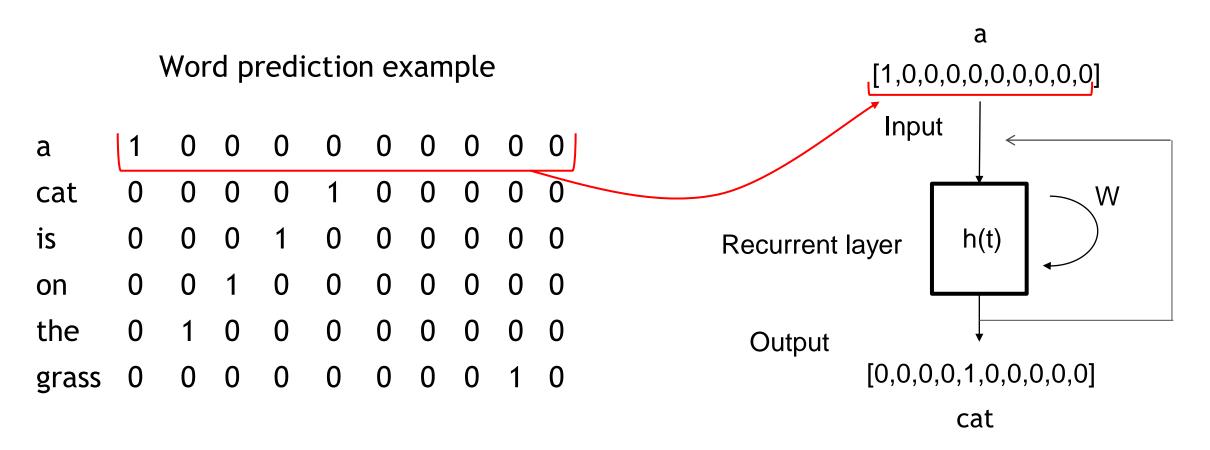
one-hot encoded inputs [[[0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0.] 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. [0.0.0.0.1.0.0.0.0.0.] [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.] [0.0.0.0.0.0.0.0.1.0.] [[0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.][0.0.0.0.0.1.0.0.0.0.] 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.] [0.0.0.0.0.0.0.1.0.0.] [0. 0. 0. 0. 0. 0. 0. 0. 1.] [1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]] shape of the input (2, 7, 10)

RECURRENT NEURAL NETWORKS

Generating Language

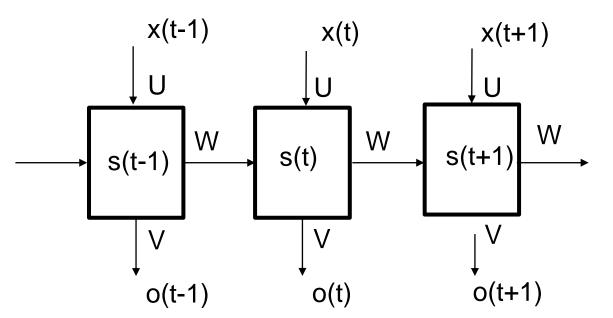


RECURRENT NETWORK EXAMPLE



RECURRENT NETWORK EXAMPLE

a	the	on	is	cat	park	play	swin g	grass	sitting
0	1	2	3	4	5	6	7	8	9



Unrolled Recurrent Layer

[0, 4, 3, 2, 1, 8]

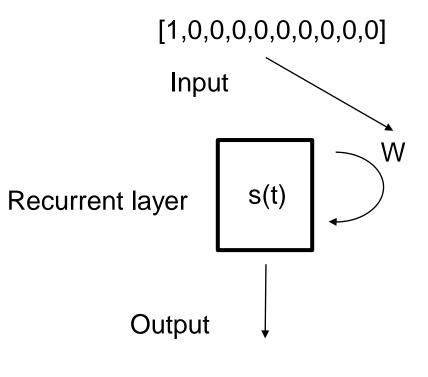
A cat is on the grass.

RNNs learn by reducing the error between their predicted next word and the actual next word in a corpus. RNNs are structured to "remember" the words that led to their prediction.

TIME SERIES INFORMATION

Recurrent neural networks are a popular approach

Demonstrated effectiveness with sentence and code creation as well as language translation.



[0,0,0,0,1,0,0,0,0,0]

LAB TASK 1

- Task 1:
 - How does an RNN learn?
 - Why use a deeper network?
 - What does dropout do?

LAB TASK 1

- Task 1:
 - How does an RNN learn?
 - Why use a deeper network?
 - What does dropout do?

LAB TASK 2

• What could we do to improve performance?

• How many steps are you using?

• How many layers do you have?

PART 2 RECURRENT NEURAL NETWORK

- What could we do to improve performance?
 - Answer: Increase the number of hidden units, change dropout, change learning rate and add a learning policy
- How many steps are you using?
 - Answer: 20
- How many layers do you have?
 - Answer: 2

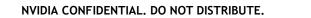


IMAGE CAPTIONING

PD Dr. Juan J. Durillo

DEEP

LEARNING

INSTITUTE

Senior Deep Learning Certified Instructor, NVIDIA Deep Learning Institute NVIDIA Corporation

TOPICS

- Lab Structure
- Image Captioning
- Video Captioning

LAB STRUCTURE

JUPYTER NOTEBOOKS

- Landing notebook contain links to:
 - Image Captioning notebook
 - Video Captioning notebook
 - Reference notebook from Lab 2

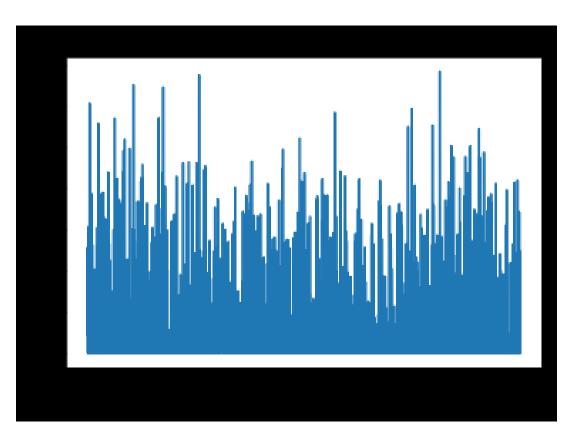
TRAINING DATA / NETWORK IMAGE CAPTIONING

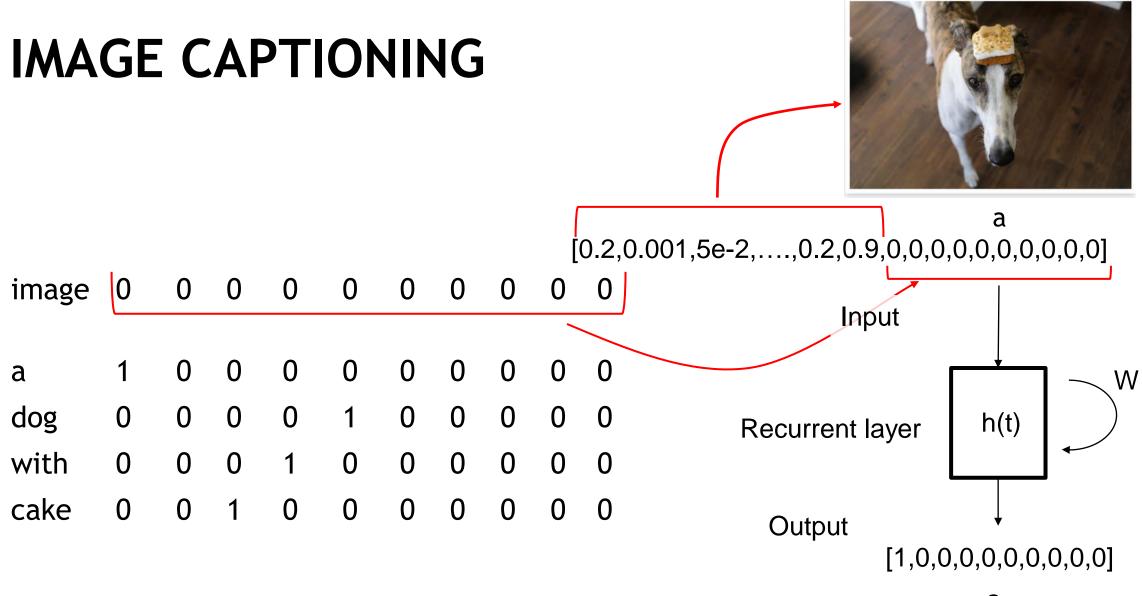
- Microsoft Common Object in Common (MSCOCO)
 - Images
 - Five captions for each image

- VGG 16 network
 - Visual Geometry Group

THE PROCESS - IMAGE CAPTIONING

- 1. Import libraries
- 2. Evaluate data / Pixel to Content
 - a. Feature vector FC7
- 3. Align captions with images
 - a. Will work with a subset of the data
- 4. Predict next word
 - a. Similar to Lab 2
 - b. Parse, tokenize, etc.

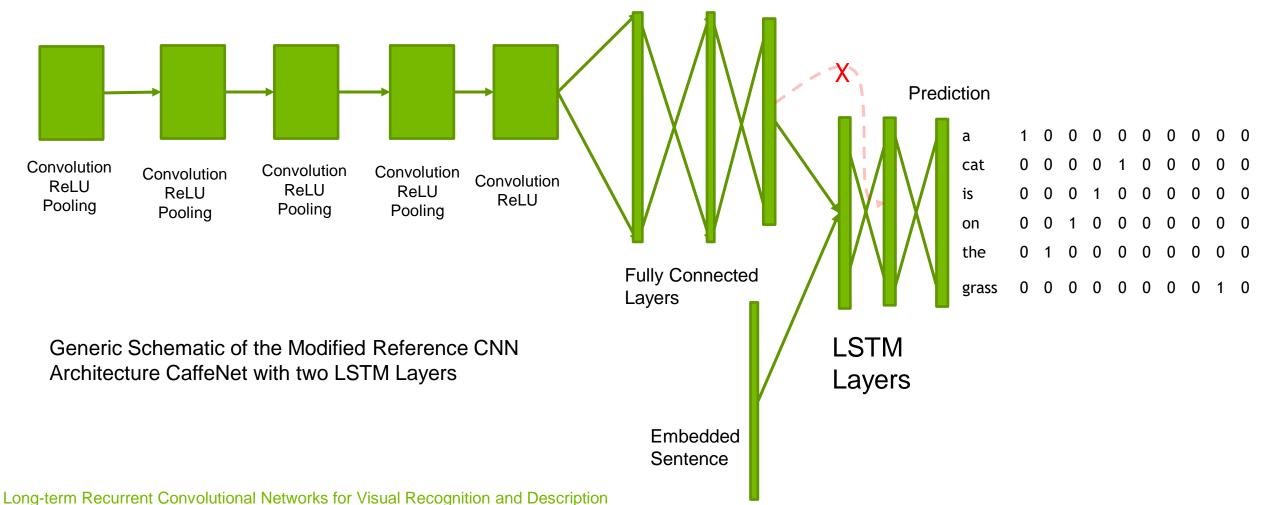




THE PROCESS - IMAGE CAPTIONING

- 5. Architect the network (RNN)
- 6. Train / build model
- 7. Evaluate a training image & captions
- 8. Generate a caption for a validation image
- 9. RUN LAST CODE BLOCK TO FREE GPU MEMORY

LAB 3 - IMAGE CAPTIONING



Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, Trevor Darrell

EXAMPLE CAPTION RESULTS

VGG

- CaffeNet A white bird standing on top of a sandy beach.
- VGG A small bird standing on the ground.

- CaffeNet A white
 - A white cat sitting on a chair.

VGG

A white and white cat laying on a white chair.

*Results shown here were generated using work from this paper. Long-term Recurrent Convolutional Networks for Visual Recognition and Description Jeff Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, Trevor Darrell

- CaffeNet A white horse standing in a lush field of grass.
 - A white horse standing in a field next to a fence.

CaffeNet	A bunch of bananas that are on a table.
VGG	A close up of a bunch of white flowers.

CONCLUSION

- Image and video captioning based on two papers
 - Translating Videos to Natural Language Using Deep Recurrent Neural Networks
 - Long-term Recurrent Convolutional Networks for Visual Recognition and Description
- Multiple approaches for image and video captioning only one was used here

WHAT'S NEXT

- Use / practice what you learned
- Discuss with peers practical applications of DNN
- Reach out to NVIDIA and the Deep Learning Institute
- Attend local meetup groups
- Follow people like Andrej Karpathy and Andrew Ng

WHAT'S NEXT

TAKE SURVEY

...for the chance to win an NVIDIA SHIELD TV.

Check your email for a link.

ACCESS ONLINE LABS

Check your email for details to access more DLI training online.

ATTEND WORKSHOP

Visit www.nvidia.com/dli for workshops in your area.

JOIN DEVELOPER PROGRAM

Visit https://developer.nvidia.com/join for more.

DEEP LEARNING

GPU TECHNOLOGY CONFERENCE

www.gputechconf.com

ADVANCE YOUR DEEP LEARNING TRAINING AT GTC

Don't miss the world's most important event for GPU developers