
1

PRACE Workshop: Deep Learning
and GPU programming workshop
15 – 18 June 2020

Dr. Volker Weinberg | LRZ | 16.06.2020

MODULE TWO:
PROFILING

MODULE OVERVIEW
Topics to be covered

 Compiling and profiling sequential code

 Explanation of multicore programming

 Compiling and profiling multicore code

COMPILING SEQUENTIAL CODE

PGI COMPILER BASICS

 The command to compile C code is ‘pgcc’

 The command to compile C++ code is ‘pgc++’

 The command to compile Fortran code is ‘pgfortran’

 The -fast flag instructs the compiler to optimize the code to the best of its abilities

pgcc, pgc++ and pgfortran

$ pgcc –fast main.c
$ pgc++ -fast main.cpp
$ pgfortran –fast main.F90

PGI COMPILER BASICS

 The Minfo flag will instruct the compiler to print feedback about the compiled code

 -Minfo=accel will give us information about what parts of the code were accelerated
via OpenACC

 -Minfo=opt will give information about all code optimizations

 -Minfo=all will give all code feedback, whether positive or negative

-Minfo flag

$ pgcc –fast –Minfo=all main.c
$ pgc++ -fast -Minfo=all main.cpp
$ pgfortran –fast –Minfo=all main.f90

PROFILING SEQUENTIAL CODE

OPENACC DEVELOPMENT CYCLE
 Analyze your code to determine

most likely places needing
parallelization or optimization.

 Parallelize your code by starting
with the most time consuming parts,
check for correctness and then
analyze it again.

 Optimize your code to improve
observed speed-up from
parallelization.

Analyze

ParallelizeOptimize

Analyze

Record the time it takes for your
sequential program to run.

PROFILING SEQUENTIAL CODE
Step 1: Run Your Code

Note the final results to verify
correctness later.

Always run a problem that is
representative of your real jobs.

$ pgcc –fast jacobi.c laplace2d.c
$./a.out

0, 0.250000
100, 0.002397
200, 0.001204
300, 0.000804
400, 0.000603
500, 0.000483
600, 0.000403
700, 0.000345
800, 0.000302
900, 0.000269
total: 39.432648 s

Terminal Window

Obtain detailed information about how
the code ran.

PROFILING SEQUENTIAL CODE
Step 2: Profile Your Code

This can include information such as:
 Total runtime
 Runtime of individual routines
 Hardware counters

Identify the portions of code that took
the longest to run. We want to focus on

these “hotspots” when parallelizing.

Sample Code: Conjugate Gradient

Total Runtime: 22.38 seconds

Matvec
83%

Waxpby
11%

Dot
6%

The “matvec”
function is our

dominate hotspot

PROFILING SEQUENTIAL CODE

 Gives visual feedback of how the
code ran

 Gives numbers and statistics, such
as program runtime

 Also gives runtime information for
individual functions/loops within the
code

 Includes many extra features for
profiling parallel code

Introduction to PGProf

PROFILING SEQUENTIAL CODE
First sight when using PGPROF

 Profiling a simple, sequential code

 Our sequential program will run on
the CPU

 To view information about how our
code ran, we should select the
“CPU Details” tab

PROFILING SEQUENTIAL CODE
CPU Details

 Within the “CPU Details” tab, we
can see the various parts of our
code, and how long they took to run

 We can reorganize this info using
the three options in the top-right
portion of the tab

 We will expand this information, and
see more details about our code

PROFILING SEQUENTIAL CODE
CPU Details
 We can see that there are two

places that our code is spending
most of its time

 21.49 seconds in the “calcNext”
function

 19.04 seconds in a memcpy
function

 The c_mcopy8 that we see is
actually a compiler optimization that
is being applied to our “swap”
function

PROFILING SEQUENTIAL CODE
PGPROF

 We are also able to select the
different elements in the CPU
Details by double-clicking to open
the associated source code

 Here we have selected the
“calcNext:37” element, which
opened up our code to show the
exact line (line 37) that is
associated with that element

Obtain detailed information about how
the code ran.

PROFILING SEQUENTIAL CODE
Step 2: Profile Your Code

This can include information such as:
 Total runtime
 Runtime of individual routines
 Hardware counters

Identify the portions of code that took
the longest to run. We want to focus on

these “hotspots” when parallelizing.

Lab Code: Laplace Heat Transfer

Total Runtime: 39.43 seconds

calcNext
21.49s

swap
19.04s

Observe the loops contained within the
identified hotspots

PROFILING SEQUENTIAL CODE
Step 3: Identify Parallelism

Are these loops parallelizable?
Can the loop iterations execute
independently of each other?

Are the loops multi-dimensional, and
does that make them very large?

Loops that are good to parallelize tend
to have a lot of iterations to map to

parallel hardware.

void pairing(int *input, int *output, int N){

for(int i = 0; i < N; i++)
output[i] = input[i*2] + input[i*2+1];

}

6 3 10 7 2 4
input

output
9 17 6

PLEASE START LAB NOW!

TRAINING SETUP

 To get started, follow these steps:

 Create an NVIDIA Developer account at http://courses.nvidia.com/join Select "Log in
with my NVIDIA Account" and then '"Create Account“ (done yesterday)

 Visit http://courses.nvidia.com/dli-event and enter the event code

PRACE_OACC_AMBASSADOR_JU20

http://courses.nvidia.com/join
http://courses.nvidia.com/dli-event

TRAINING SETUP

PROFILING MULTICORE CODE

PROFILING MULTICORE CODE

 Multicore refers to using a CPU with multiple
computational cores as our parallel device

 These cores can run independently of each
other, but have shared access to memory

 Loop iterations can be spread across CPU
threads and can utilize SIMD/vector instructions
(SSE, AVX, etc.)

 Parallelizing on a multicore CPU is a good
starting place, since data management is
unnecessary

What is multicore?

CPU

PROFILING MULTICORE CODE

 OpenACC’s generic model involves a
combination of a host and a device

 Host generally means a CPU, and the device
is some parallel hardware

 When running with a multicore CPU as our
device, typically this means that our
host/device will be the same

 This also means that their memories will be
the same

Using a multicore CPU with OpenACC

Host
Device

Host
Memory Device

Memory

=

=

PROFILING MULTICORE CODE

 The ‘-ta’ flag will allow us to compile our code for a specific, target parallel hardware

 ‘ta’ stands for “Target Accelerator,” an accelerator being another way to refer to a
parallel hardware

 Our OpenACC code can be compiled for many different kinds of parallel hardware
without having to change the code

Compiling code for a specific parallel hardware

$ pgcc –fast –Minfo=accel –ta=multicore laplace2d.c
calcNext:

35, Generating Multicore code
36, #pragma acc loop gang

PROFILING MULTICORE CODE
PGPROF

 The first difference we see in this
multicore profile is that there is now
a “timeline”

 This timeline will show when our
parallel hardware is being used,
and how it is being used

 Each of the blue bars represent a
portion of our program that was run
on the multicore CPU

PROFILING MULTICORE CODE
CPU Details

 Looking at our CPU Details, we can
see that there is a lot more
happening compared to our
sequential program

 For the most part, these extra
details revolve around the need for
the CPU cores to communicate with
each other _mp_barrier !!

PROFILING MULTICORE CODE
PGPROF

 Just like earlier, we see our
“calcNext” function

 We also see that PGPROF is
reporting this function to take 61.72
seconds to run

 Looking at the program now, it
looks like it performs much worse
than the sequential version

PROFILING MULTICORE CODE
PGPROF

PROFILING MULTICORE CODE
View of all computational threads

 The program is actually performing
better than the sequential version

 We are only looking at the “TOTAL”
view, which means that PGPROF is
combining information from all of
our CPU cores

 The new PGPROF 18.4 installed on VNC changed the dropdown box labeled TOTAL
into “All threads” and displays min, max and mean values graphically.

 When moving the mouse on the % value, one can see

 Mean across all threads
 Total across all threads
 Total as a percentage of all the time spent on all threads.

PROFILING MULTICORE CODE
View of all computational threads

PROFILING MULTICORE CODE
View of all computational threads

PROFILING MULTICORE CODE
Observing a single thread

 Now we have selected to view a
specific thread (for us, a thread
would be a single CPU core)

 We can see that this single thread
only spent 9.8 seconds running
calcNext

 Each thread will take a similar
amount of time and execute
simultaneously, resulting in a faster
run

LAPLACE HEAT TRANSFER
Introduction to lab code - visual Very Hot Room Temp

We will observe a simple simulation
of heat distributing across a metal

plate.

We will apply a consistent heat to
the top of the plate.

Then, we will simulate the heat
distributing across the plate.

LAPLACE HEAT TRANSFER
Introduction to lab code - technical

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

A Anew
The lab simulates a very basic

2-dimensional heat transfer problem.
We have two 2-dimensional arrays,

A and Anew.

The arrays represent a 2-
dimensional, metal plate. Each

element in the array is a double
value that represents temperature.

We will simulate the distribution of
heat until a minimum change value

is achieved, or until we exceed a
maximum number of iterations.

We will take the average of the
neighboring cells, and record it in

Anew.

LAPLACE HEAT TRANSFER
Introduction to lab code - technical

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

A Anew

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.25 0.25

We initialize the top row to be a
temperature of 1.0

The calcNext function will iterate
through all of the inner elements of

array A, and update the
corresponding elements in Anew 0.0 0.0

0.0 0.0

The swap function will copy the
contents of Anew to A

0.25

1.0 1.0

LAPLACE HEAT TRANSFER
Introduction to lab code

1.0 1.0

0.0 0.25 0.25 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0

1.0 1.0 1.0 1.0

0.0 0.25 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

A Anew

0.0
The swap function will copy the

contents of Anew to A

KEY CONCEPTS
In this module we discussed…

 Compiling sequential and parallel code

 CPU profiling for sequential and parallel execution

 Specifics of our Laplace Heat Transfer lab code

LAB GOALS

 Build and run the example code using the PGI compiler

 Use PGProf to understand where the program spends its time

In this lab you will do the following…

THANK YOU

TRAINING SETUP

 To get started, follow these steps:

 Create an NVIDIA Developer account at http://courses.nvidia.com/join Select "Log in
with my NVIDIA Account" and then '"Create Account“ (done yesterday)

 Visit http://courses.nvidia.com/dli-event and enter the event code

PRACE_OACC_AMBASSADOR_JU20

http://courses.nvidia.com/join
http://courses.nvidia.com/dli-event

TRAINING SETUP

TRAINING SETUP

TRAINING SETUP

TRAINING SETUP

VNC USAGE

Remove :8000 and
use /vnc

HOW TO EDIT FILES IN MOD2 (METHOD 1)

HOW TO EDIT FILES IN MOD2 (METHOD 1)

HOW TO EDIT FILES IN MOD2 (METHOD 2)

Replace /files/ with
/edit/ !!!!

	Foliennummer 1
	MODULE two:�profiling
	Module OVERVIEW
	Compiling sequential code
	PGI Compiler Basics
	PGI Compiler Basics
	Profiling sequential code
	Openacc development CYCLE
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	Profiling sequential code
	�Please start LAB now!
	TRAINING SETUP
	TRAINING SETUP
	profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Profiling multicore code
	Laplace heat transfer
	Laplace heat transfer
	Laplace heat transfer
	Laplace heat transfer
	KEY concepts
	Lab Goals
	THANK YOU�
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	TRAINING SETUP
	VNC Usage
	HOW TO EDIT FILES in mod2 (Method 1)
	HOW TO EDIT FILES in MOD2 (Method 1)
	HOW TO EDIT FILES IN MOD2 (Method 2)

