
1

PRACE Workshop: Deep Learning
and GPU programming workshop
15 – 18 June 2020

Dr. Volker Weinberg | LRZ | 16.06.2020

MODULE THREE:
OPENACC DIRECTIVES

MODULE OVERVIEW
OpenACC Directives

 The parallel directive

 The kernels directive

 The loop directive

 Fundamental differences between the kernels and parallel directive

 Expressing parallelism in OpenACC

OPENACC SYNTAX

OPENACC SYNTAX

 A pragma in C/C++ gives instructions to the compiler on how to compile the code.
Compilers that do not understand a particular pragma can freely ignore it.

 A directive in Fortran is a specially formatted comment that likewise instructions the
compiler in it compilation of the code and can be freely ignored.

 “acc” informs the compiler that what will come is an OpenACC directive

 Directives are commands in OpenACC for altering our code.

 Clauses are specifiers or additions to directives.

Syntax for using OpenACC directives in code
C/C++
#pragma acc directive clauses
<code>

Fortran
!$acc directive clauses
<code>

OPENACC PARALLEL DIRECTIVE

OPENACC PARALLEL DIRECTIVE

 The parallel directive instructs the compiler to
create parallel gangs on the accelerator

 Gangs are independent groups of worker
threads on the accelerator

 The code contained within a parallel directive
is executed redundantly by all parallel gangs

Explicit programming

<sequential code>

#pragma acc parallel
{
<sequential code>
}

Parallel Hardware

CPU

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}

When encountering the
parallel directive, the
compiler will generate

1 or more parallel
gangs, which execute

redundantly.
gang

gang gang

gang

gang

gang

#pragma acc parallel
{

}

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

This loop will be
executed redundantly

on each gang

gang

gang gang

gang

gang

gang

loop

lo
op

lo
op

lo
op

lo
op

lo
op

lo
op

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}
This means that each
gang will execute the

entire loop

gang

gang gang

gang

gang

gang

OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

 Use a parallel directive to mark a region of
code where you want parallel execution to occur

 This parallel region is marked by curly braces in
C/C++ or a start and end directive in Fortran

 The loop directive is used to instruct the
compiler to parallelize the iterations of the next
loop to run across the parallel gangs

C/C++
#pragma acc parallel
{
#pragma acc loop
for(int i = 0; i < N; i++)
a[i] = 0;

}

Fortran
!$acc parallel
!$acc loop
do i = 1, N
a(i) = 0

end do
!$acc end parallel

OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

 This pattern is so common that you can do all of
this in a single line of code

 In this example, the parallel loop directive
applies to the next loop

 This directive both marks the region for parallel
execution and distributes the iterations of the
loop.

 When applied to a loop with a data dependency,
parallel loop may produce incorrect results

C/C++
#pragma acc parallel loop
for(int i = 0; i < N; i++)
a[i] = 0;

Fortran
!$acc parallel loop
do i = 1, N
a(i) = 0

end do

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

#pragma acc loop
for(int i = 0; i < N; i++)
{

// Do Something
}

}

The loop directive
informs the compiler

which loops to
parallelize.

OPENACC PARALLEL DIRECTIVE
Parallelizing many loops

 To parallelize multiple loops, each loop should
be accompanied by a parallel directive

 Each parallel loop can have different loop
boundaries and loop optimizations

 Each parallel loop can be parallelized in a
different way

 This is the recommended way to parallelize
multiple loops. Attempting to parallelize multiple
loops within the same parallel region may give
performance issues or unexpected results

#pragma acc parallel loop
for(int i = 0; i < N; i++)
a[i] = 0;

#pragma acc parallel loop
for(int j = 0; j < M; j++)
b[j] = 0;

OPENACC LOOP DIRECTIVE

OPENACC LOOP DIRECTIVE

 Mark a single for loop for parallelization

 Allows the programmer to give additional
information and/or optimizations about the
loop

 Provides many different ways to describe the
type of parallelism to apply to the loop

 Must be contained within an OpenACC
compute region (either a kernels or a parallel
region) to parallelize loops

Expressing parallelism

C/C++
#pragma acc loop
for(int i = 0; i < N; i++)
// Do something

Fortran
!$acc loop
do i = 1, N
! Do something

OPENACC LOOP DIRECTIVE
Inside of a parallel compute region

 In this example, the first loop is not marked with
the loop directive

 This means that the loop will be “redundantly
parallelized”

 Redundant parallelization, in this case, means
that the loop will be run in its entirety, multiple
times, by the parallel hardware

 The second loop is marked with the loop
directive, meaning that the loop iterations will be
properly split across the parallel hardware

#pragma acc parallel
{
for(int i = 0; i < N; i++)
a[i] = 0;

#pragma acc loop
for(int j = 0; j < N; j++)
a[j]++;

}

OPENACC LOOP DIRECTIVE
Inside of a kernels compute region

 With the kernels directive, the loop directive is
implied

 The programmer can still explicitly define loops
with the loop directive, however this could affect
the optimizations the compiler makes

 The loop directive is not needed, but does allow
the programmer to optimize the loops
themselves

#pragma acc kernels
{
#pragma acc loop
for(int i = 0; i < N; i++)
a[i] = 0;

#pragma acc loop
for(int j = 0; j < M; j++)
b[j] = 0;

}

OPENACC LOOP DIRECTIVE
Parallelizing loop nests

 You are able to include multiple loop directives
to parallelize multi-dimensional loop nests

 On some parallel hardware, this will allow you to
express more levels of parallelism, and increase
performance further

 Other parallel hardware has difficulties
expressing enough parallelism for multi-
dimensional loops

 In this case, inner loop directives may be
ignored

!$acc parallel loop
do i = 1, N

!$acc loop
do j = 1, M

a(i,j) = 0
end do

end do

Fo
rtr

an

#pragma acc parallel loop
for(int i = 0; i < N; i++){

#pragma acc loop
for(int j = 0; j < M; j++){

a[i][j] = 0;
}

}

C
/C

++

PLEASE START LAB NOW!

OPENACC KERNELS DIRECTIVE

OPENACC KERNELS DIRECTIVE

 The kernels directive instructs the compiler to
search for parallel loops in the code

 The compiler will analyze the loops and parallelize
those it finds safe and profitable to do so

 The kernels directive can be applied to regions
containing multiple loop nests

Compiler directed parallelization

<sequential code>

#pragma acc kernels
{
<for loop>

<for loop>
}

Parallel HardwareCPU

OPENACC KERNELS DIRECTIVE
Parallelizing a single loop

 In this example, the kernels directive applies to
the next for loop

 The compiler will take the loop, and attempt to
parallelize it on the parallel hardware

 The compiler will also attempt to optimize the
loop

 If the compiler decides that the loop is not
parallelizable, it will not parallelize the loop

C/C++
#pragma acc kernels
for(int i = 0; j < N; i++)
a[i] = 0;

Fortran
!$acc kernels
do i = 1, N
a(i) = 0

end do
!$acc end kernels

OPENACC KERNELS DIRECTIVE
Parallelizing many loops

 In this example, we mark a region of code with
the kernels directive

 The kernels region is defined by the curly
braces in C/C++, and the !$acc kernels and
!$acc end kernels in Fortran

 The compiler will attempt to parallelize all loops
within the kernels region

 Each loop can be parallelized/optimized in a
different way

!$acc kernels
do i = 1, N

a(i) = 0
end do

do j = 1, M
b(j) = 0

end do
!$acc end kernels

Fo
rtr

an

#pragma acc kernels
{

for(int i = 0; i < N; i++)
a[i] = 0;

for(int j = 0; j < M; j++)
b[j] = 0;

}

C
/C

++

#pragma acc kernels
{

for(int i = 0; i < N; i++)
{

// Do Something
}

for(int i = 0; i < M; i++)
{

// Do Something Else
}

}

EXPRESSING PARALLELISM
Compiler generated parallelism

With the kernels
directive, the loop
directive is implied.

#pragma acc kernels
{

for(int i = 0; i < N; i++)
{

// Do Something
}

for(int i = 0; i < M; i++)
{

// Do Something Else
}

}

EXPRESSING PARALLELISM
Compiler generated parallelism

This process can happen
multiple times within the

kernels region.

Each loop can have a different number of
gangs, and those gangs can be

organized/optimized completely differently.

!$acc parallel loop
c(:) = a(:) + b(:)

OPENACC KERNELS DIRECTIVE
Fortran array syntax

 One advantage that the kernels directive has
over the parallel directive is Fortran array syntax

 The parallel directive must be paired with the
loop directive, and the loop directive does not
recognize the array syntax as a loop

 The kernels directive can correctly parallelize
the array syntax

!$acc kernels
a(:) = 1
b(:) = 2
c(:) = a(:) + b(:)
!$acc end kernels

When fully optimized, both will give similar performance.

Programmer based parallelization
Programmer based optimizations
Programmer based restrictions

Kernels Parallel

KERNELS VS PARALLEL

 Compiler decides what to parallelize
with direction from user

 Compiler guarantees correctness

 Can cover multiple loop nests

 Programmer decides what to parallelize
and communicates that to the compiler

 Programmer guarantees correctness

 Must decorate each loop nest

COMPILING PARALLEL CODE

CODE
7: #pragma acc parallel loop
8: for(int i = 0; i < N; i++)
9: a[i] = 0;

COMPILING PARALLEL CODE (PGI)

COMPILING
$ pgcc –fast –acc –ta=multicore –Minfo=accel main.c

FEEDBACK
main:

7, Generating Multicore code
8, #pragma acc loop gang

CODE
7: #pragma acc kernels
8: for(int i = 0; i < N; i++)
9: a[i] = 0;

COMPILING PARALLEL CODE (PGI)

COMPILING
$ pgcc –fast –acc –ta=multicore –Minfo=accel main.c

FEEDBACK
main:

8, Loop is parallelizable
Generating Multicore code
8, #pragma acc loop gang

CODE
7: #pragma acc kernels
8: for(int i = 1; i < N; i++)
9: a[i] = a[i-1] + a[i];

COMPILING PARALLEL CODE (PGI)

COMPILING
$ pgcc –fast –acc –ta=multicore –Minfo=accel main.c

FEEDBACK
main:

8, Loop carried dependence of a-> prevents parallelization
Loop carried backward dependence of a-> prevents vectorization

Non-parallel loop

CODE
7: #pragma acc parallel loop
8: for(int i = 1; i < N; i++)
9: a[i] = a[i-1] + a[i];

COMPILING PARALLEL CODE (PGI)

COMPILING
$ pgcc –fast –acc –ta=multicore –Minfo=accel main.c

FEEDBACK
main:

7, Generating Multicore code
8, #pragma acc loop gang

Non-parallel loop

KEY CONCEPTS
By end of this module, you should now understand

 The parallel, kernels, and loop directives

 The key differences in functionality and use between the kernels and parallel
directives

 When and where to include loop directives

 How the parallel and kernel directives conceptually generate parallelism

THANK YOU

Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

OPENACC RESOURCES
Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools
https://www.openacc.org/tools

FREE
Compilers

https://www.openacc.org/community#slack

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.pgroup.com/products/community.htm
https://www.openacc.org/community#slack

	Foliennummer 1
	MODULE three:�openacc directives
	MODULE OVERVIEW
	Openacc syntax
	Openacc syntax
	Openacc parallel directive
	Openacc parallel directive
	Openacc parallel directive
	Openacc parallel directive
	Openacc parallel directive
	Openacc parallel directive
	Openacc parallel directive
	Openacc parallel directive
	Openacc parallel directive
	Openacc loop directive
	Openacc loop directive
	Openacc loop directive
	Openacc loop directive
	Openacc loop directive
	Please start LAB now!
	Openacc kernels directive
	Openacc kernels directive
	Openacc kernels directive
	Openacc kernels directive
	Expressing parallelism
	Expressing parallelism
	Openacc kernels directive
	Kernels vs parallel
	Compiling parallel code
	Compiling parallel code (PGI)
	Compiling parallel code (PGI)
	Compiling parallel code (PGI)
	Compiling parallel code (PGI)
	KEY concepts
	THANK YOU�
	OPENACC Resources

