
1

PRACE Workshop: Deep Learning
and GPU programming workshop
15 – 18 June 2020

Dr. Volker Weinberg | LRZ | 16.06.2020

MODULE FIVE:
DATA MANAGEMENT

MODULE OVERVIEW
OpenACC Data Management

 Explicit Data Management

 OpenACC Data Regions and Clauses

 Unstructured Data Lifetimes

 Data Synchronization

EXPLICIT MEMORY MANAGEMENT

EXPLICIT MEMORY MANAGEMENT

 Data must be visible on the device when
we run our parallel code

 Data must be visible on the host when we
run our sequential code

 When the host and device don’t share
memory, data movement must occur

 To maximize performance, the
programmer should avoid all unnecessary
data transfers

Requirements

Host
Device

Host
Memory Device

Memory

EXPLICIT MEMORY MANAGEMENT

 Many parallel accelerators (such as
devices) have a separate memory space
from the host

 These separate memories can become
out-of-sync and contain completely
different data

 Transferring between these two memories
can be a very time consuming process

Key problems

Host
Device

Host
Memory Device

Memory

OPENACC DATA DIRECTIVE

OPENACC DATA DIRECTIVE

 The data directive defines a lifetime
for data on the device

 During the region data should be
thought of as residing on the
accelerator

 Data clauses allow the programmer
to control the allocation and
movement of data

Definition

#pragma acc data clauses
{

< Sequential and/or Parallel code >

}

!$acc data clauses

< Sequential and/or Parallel code >

!$acc end data

copy(list) Allocates memory on device and copies data from host to device
when entering region and copies data to the host when exiting region.

Principal use: For many important data structures in your code, this is a
logical default to input, modify and return the data.

copyin(list) Allocates memory on device and copies data from host to device
when entering region.

Principal use: Think of this like an array that you would use as just an
input to a subroutine.

copyout(list) Allocates memory on device and copies data to the host when exiting
region.

Principal use: A result that isn’t overwriting the input data structure.

create(list) Allocates memory on device but does not copy.

Principal use: Temporary arrays.

DATA CLAUSES

IMPLIED DATA REGIONS

IMPLIED DATA REGIONS
Definition

#pragma acc kernels copyin(a[0:100])
{
for(int i = 0; i < 100; i++)
{
a[i] = 0;

}
}

 Every kernels and parallel region has
an implicit data region surrounding it

 This allows data to exist solely for the
duration of the region

 All data clauses usable on a data
directive can be used on a parallel and
kernels as well

IMPLIED DATA REGIONS
Explicit vs Implicit Data Regions

These two codes are functionally the same.

#pragma acc data copyin(a[0:100])
{

#pragma acc kernels
{

for(int i = 0; i < 100; i++)
{

a[i] = 0;
}

}
}

#pragma acc kernels copyin(a[0:100])
{

for(int i = 0; i < 100; i++)
{

a[i] = 0;
}

}

Explicit Implicit

EXPLICIT VS. IMPLICIT DATA REGIONS
Limitation

The code on the left will perform better than the code on the right.

#pragma acc data copyout(a[0:100])
{

#pragma acc kernels
{

a[i] = i;
}

#pragma acc kernels
{

a[i] = 2 * a[i];
}

}

#pragma acc kernels copyout(a[0:100])
{

a[i] = i;
}

#pragma acc kernels copy(a[0:100])
{

a[i] = 2 * a[i];
}

1 Data Copy 2 Data CopiesExplicit Implicit

UNSTRUCTURED DATA DIRECTIVES

UNSTRUCTURED DATA DIRECTIVES

 Data lifetimes aren’t always neatly
structured.

 The enter data directive handles device
memory allocation

 You may use either the create or the
copyin clause for memory allocation

 The enter data directive is not the start
of a data region, because you may
have multiple enter data directives

Enter Data Directive

#pragma acc enter data clauses

< Sequential and/or Parallel code >

#pragma acc exit data clauses

!$acc enter data clauses

< Sequential and/or Parallel code >

!$acc exit data clauses

UNSTRUCTURED DATA DIRECTIVES

 The exit data directive handles device
memory deallocation

 You may use either the delete or the
copyout clause for memory deallocation

 You should have as many exit data for a
given array as enter data

 These can exist in different functions

Exit Data Directive

#pragma acc enter data clauses

< Sequential and/or Parallel code >

#pragma acc exit data clauses

!$acc enter data clauses

< Sequential and/or Parallel code >

!$acc exit data clauses

UNSTRUCTURED DATA CLAUSES

copyin (list) Allocates memory on device and copies data from host to device
on enter data.

copyout (list) Allocates memory on device and copies data back to the host on
exit data.

create (list) Allocates memory on device without data transfer on enter data.

delete (list) Deallocates memory on device without data transfer on exit data

UNSTRUCTURED DATA DIRECTIVES
Basic Example

#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];

}

UNSTRUCTURED DATA DIRECTIVES
Basic Example

#pragma acc enter data copyin(a[0:N],b[0:N]) create(c[0:N])

#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];

}

#pragma acc exit data copyout(c[0:N])

UNSTRUCTURED DATA DIRECTIVES
Basic Example

#pragma acc enter data copyin(a[0:N],b[0:N]) create(c[0:N])

#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];

}

#pragma acc exit data copyout(c[0:N])

Action

CPU MEMORY device MEMORY

A B C

Allocate A
on

device

Copy A
from

CPU to
device

A

Allocate B
on

device

Copy B
from

CPU to
device

B

Allocate C
on

device

Execute loop
on

device

C’

Copy C
from

device to
CPU

C’

Deallocate C
from

device

UNSTRUCTURED DATA DIRECTIVES
Basic Example – proper memory deallocation

#pragma acc enter data copyin(a[0:N],b[0:N]) create(c[0:N])

#pragma acc parallel loop
for(int i = 0; i < N; i++){
c[i] = a[i] + b[i];

}

#pragma acc exit data copyout(c[0:N]) delete(a,b)

Action

CPU MEMORY

A B C A BC’
device MEMORY

Deallocate A
from

device

Deallocate B
from

device

UNSTRUCTURED VS STRUCTURED
With a simple code

#pragma acc enter data copyin(a[0:N],b[0:N]) \
create(c[0:N])

#pragma acc parallel loop
for(int i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

#pragma acc exit data copyout(c[0:N]) \
delete(a,b)

#pragma acc data copyin(a[0:N],b[0:N]) \
copyout(c[0:N])

{
#pragma acc parallel loop
for(int i = 0; i < N; i++){

c[i] = a[i] + b[i];
}

}

Unstructured Structured

 Can have multiple starting/ending points

 Can branch across multiple functions

 Memory exists until explicitly deallocated

 Must have explicit start/end points

 Must be within a single function

 Memory only exists within the data region

UNSTRUCTURED DATA DIRECTIVES
Branching across multiple functions
int* allocate_array(int N){

int* ptr = (int *) malloc(N * sizeof(int));
#pragma acc enter data create(ptr[0:N])
return ptr;

}

void deallocate_array(int* ptr){
#pragma acc exit data delete(ptr)
free(ptr);

}

int main(){
int* a = allocate_array(100);
#pragma acc kernels
{

a[0] = 0;
}
deallocate_array(a);

}

 In this example enter data and exit data are
in different functions

 This allows the programmer to put device
allocation/deallocation with the matching
host versions

 This pattern is particularly useful in C++,
where structured scopes may not be
possible.

PLEASE START LAB NOW!

DATA SYNCHRONIZATION

update: Explicitly transfers data between the host and the device

Useful when you want to synchronize data in the middle of a data region

Clauses:

self: makes host data agree with device data

device: makes device data agree with host data

#pragma acc update self(x[0:count])
#pragma acc update device(x[0:count])

!$acc update self(x(1:end_index))
!$acc update device(x(1:end_index))

Fortran

C/C++

OPENACC UPDATE DIRECTIVE

BB*

A*A

OPENACC UPDATE DIRECTIVE

A
CPU Memory device Memory

#pragma acc update device(A[0:N])

B*
#pragma acc update self(A[0:N])

The data must exist on
both the CPU and device
for the update directive

to work.

SYNCHRONIZE DATA WITH UPDATE
int* allocate_array(int N){

int* A=(int*) malloc(N*sizeof(int));
#pragma acc enter data create(A[0:N])
return A;

}

void deallocate_array(int* A){
#pragma acc exit data delete(A)
free(A);

}

void initialize_array(int* A, int N){
for(int i = 0; i < N; i++){

A[i] = i;
}
#pragma acc update device(A[0:N])

}

 Inside the initialize function we alter the
host copy of ‘A’

 This means that after calling initialize the
host and device copy of ‘A’ are out-of-sync

 We use the update directive with the
device clause to update the device copy of
‘A’

 Without the update directive later compute
regions will use incorrect data.

COPYING DATA IN DATA REGIONS

#pragma acc enter data copyin(A[:m*n],Anew[:m*n])
#pragma acc parallel loop copy(A,Anew)
for(int j = 1; j < n-1; j++)

 But wouldn't this code now result in my arrays being copied twice, once by the `data`
region and then again by the `parallel loop`? In fact, the OpenACC runtime is smart
enough to handle exactly this case. Data will be copied _in_ only the first time its
encountered in a data clause and _out_ only the last time its encountered in a data
clause. This allows you to create fully-working directives within your functions and
then later _"hoist"_ the data movement to a higher level without changing your code
at all. This is part of incrementally accelerating your code to avoid incorrect results.

C/C++ STRUCTS/CLASSES

C STRUCTS
Without dynamic data members typedef struct {

float x, y, z;
} float3;

int main(int argc, char* argv[]){
int N = 10;
float3* f3 = malloc(N * sizeof(float3));

#pragma acc enter data create(f3[0:N])

#pragma acc kernels
for(int i = 0; i < N; i++){
f3[i].x = 0.0f;
f3[i].y = 0.0f;
f3[i].z = 0.0f;

}

#pragma acc exit data delete(f3)
free(f3);

}

 Dynamic data members are anything
contained within a struct that can have a
variable size, such as dynamically
allocated arrays

 OpenACC is easily able to copy our
struct to device memory because
everything in our float3 struct has a
fixed size

 But what if the struct had dynamically
allocated members?

C STRUCTS
With dynamic data members typedef struct {

float *arr;
int n;

} vector;

int main(int argc, char* argv[]){

vector v;
v.n = 10;
v.arr = (float*) malloc(v.n*sizeof(float));

#pragma acc enter data copyin(v)
#pragma acc enter data create(v.arr[0:v.n])

...

#pragma acc exit data delete(v.arr)
#pragma acc exit data delete(v)
free(v.arr);

}

 OpenACC does not have enough
information to copy the struct and its
dynamic members

 You must first copy the struct into
device memory, then allocate/copy the
dynamic members into device memory

 To deallocate, first deal with the
dynamic members, then the struct

 OpenACC will automatically attach
your dynamic members to the struct

C++ STRUCTS/CLASSES
With dynamic data members

class vector {
private:
float *arr;
int n;

public:
vector(int size){
n = size;
arr = new float[n];
#pragma acc enter data copyin(this)
#pragma acc enter data create(arr[0:n])

}
~vector(){
#pragma acc exit data delete(arr)
#pragma acc exit data delete(this)
delete(arr);

}
};

 C++ Structs/Classes work the same
exact way as they do in C

 The main difference is that now we
have to account for the implicit “this”
pointer

MODULE REVIEW

KEY CONCEPTS
In this module we discussed…

 Why explicit data management is necessary for best performance

 Structured and Unstructured Data Lifetimes

 Explicit and Implicit Data Regions

 The data, enter data, exit data, and update directives

 Data Clauses

LAB ASSIGNMENT
In this module’s lab you will…

 Update the code from the previous module to use explicit data
directives

 Analyze the different between using CUDA Managed Memory and
explicit data management in the lab code.

	Foliennummer 1
	MODULE five:�data management
	MODULE OVERVIEW
	Explicit Memory management
	Explicit memory management
	Explicit memory management
	Openacc Data directive
	Openacc Data directive
	Data Clauses
	Implied data regions
	Implied data regions
	Implied data regions
	Explicit vs. Implicit data regions
	unstructured data Directives
	unStructured data Directives
	unStructured data Directives
	Unstructured Data Clauses
	unStructured data Directives
	unStructured data Directives
	unStructured data Directives
	unStructured data Directives
	unstructured vs structured
	unStructured data Directives
	�Please start LAB now!
	Data synchronization
	OpenACC UPDATE Directive
	OpenACC UPDATE Directive
	Synchronize data with update
	Copying DATA in DATA regions
	C/C++ structs/classes
	C structs
	C structs
	C++ structs/classes
	Module Review
	KEY concepts
	Lab Assignment

