
FUNDAMENTALS OF DEEP
LEARNING FOR MULTI-GPUS
LAB 2, PART 1: INTRODUCTION TO HOROVOD

TRAINING A NEURAL NETWORK
Multiple GPUs

CPU/GPU

ℒ(ො𝑦, 𝑦) GPU ℒ(ො𝑦, 𝑦)

CPU/GPU

CPU/GPU

𝑊[2]

= 𝑊[2] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[2]

𝑊[1]

= 𝑊[1] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[1]

𝑊[2]

= 𝑊[2] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[2]

𝑊[1]

= 𝑊[1] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[1]

𝑊[3]

= 𝑊[3] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[3]

𝑊[3]

= 𝑊[3] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[3]

W[1]

ො𝑦

W[2]

W[3]

GPU

W[1]

ො𝑦

W[2]

W[3]

MEET HOROVOD

Library for distributed DL

Works with stock TensorFlow, Keras,

PyTorch, and MXNet

Installs with pip

Uses advanced algorithms; leverages high-

performance networks (RDMA, GPUDirect).
3

horovod.ai

http://horovod.ai/

MEET HOROVOD

Infrastructure team provides container

and MPI environment

ML engineers use DL frameworks that

they love

Both have consistent expectations for

distributed training across frameworks

4

horovod.ai

http://horovod.ai/

USING HOROVOD

INITIALIZE THE LIBRARY

import horovod.tensorflow as hvd

hvd.init()

6

PIN GPU TO BE USED

config = tf.ConfigProto()

config.gpu_options.visible_device_list = str(hvd.local_rank())

7

ADD DISTRIBUTED OPTIMIZER

opt = hvd.DistributedOptimizer(opt)

8

SYNCHRONIZE INITIAL STATE

hooks = [hvd.BroadcastGlobalVariablesHook(0)]

with tf.train.MonitoredTrainingSession(hooks=hooks, …) as sess:

...

Or

bcast_op = hvd.broadcast_global_variables(0)

sess.run(bcast_op)

9

CHECKPOINT ONLY ON ONE WORKER

ckpt_dir = "/tmp/train_logs" if hvd.rank() == 0 else None

with tf.train.MonitoredTrainingSession(checkpoint_dir=ckpt_dir, …)

as sess:

...

10

DATA PARTITIONING: OPTION 1

Shuffle the dataset

Partition records among

workers

Train by sequentially reading

the partition

After epoch is done, reshuffle

and partition again
11

NOTE: make sure that all
partitions contain the
same number of batches,
otherwise the training will
deadlock

DATA PARTITIONING: OPTION 2

Shuffle the dataset

Train by randomly

reading data from

whole dataset

After epoch is done,

reshuffle

12

FULL EXAMPLE IN TENSORFLOW

13

import tensorflow as tf
import horovod.tensorflow as hvd

Initialize Horovod

hvd.init()

Pin GPU to be used

config = tf.ConfigProto()

config.gpu_options.visible_device_list =

str(hvd.local_rank())

Build model...

loss = ...

opt = tf.train.MomentumOptimizer(
lr=0.01 * hvd.size())

Add Horovod Distributed Optimizer

opt = hvd.DistributedOptimizer(opt)

Add hook to synchronize initial state
hooks =[hvd.BroadcastGlobalVariablesHook(0)]

Only checkpoint on rank 0

ckpt_dir = "/tmp/train_logs" \

if hvd.rank() == 0 else None

Make training operation

train_op = opt.minimize(loss)

The MonitoredTrainingSession takes care of

session initialization, restoring from a

checkpoint, saving to a checkpoint, and

closing when done or an error occurs.

with

tf.train.MonitoredTrainingSession(checkpoint_dir=ckpt_

dir, config=config, hooks=hooks) as mon_sess:

while not mon_sess.should_stop():

Perform synchronous training.

mon_sess.run(train_op)

HOROVOD FOR ALL

import horovod.tensorflow as hvd

import horovod.keras as hvd

import horovod.tensorflow.keras as hvd

import horovod.torch as hvd

import horovod.mxnet as hvd

more frameworks coming

14

RUNNING HOROVOD

Single-node:

$ horovodrun -np 4 python train.py

Multi-node:

$ horovodrun -np 16 -H server1:4,server2:4,server3:4,server4:4

python train.py

15

HOROVOD: UNDER THE HOOD

Run on 4 machines with 4 GPUs:

$ mpirun -np 16 \

-H server1:4,server2:4,server3:4,server4:4 \

-bind-to none -map-by slot \

-mca pml ob1 -mca btl ^openib -mca btl_tcp_if_include eth0 \

-x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=eth0 -x

LD_LIBRARY_PATH -x ... \

python train.py

16

www.nvidia.com/dli

