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GROMACS

• Open source molecular dynamics engine
• One of the most used HPC codes worldwide
• High-performance for a wide range of modeled systems
• … and on a wide range of platforms:

• from supercomputers to laptops (Folding@Home)
• x86, x86-64, ARM, POWER, SPARC, RISC-V
• 11 SIMD backends
• AMD, Apple, Intel, and NVIDIA GPUs; Intel Xeon Phi
• Windows, MacOS, included in many Linux distros
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GROMACS 2023 (upcoming)

• (Mostly) modern C++17 codebase
• 449k lines of C++ code
• With a bit of legacy (first release: 1991)

• MPI for inter-node parallelism
• OpenMP for multithreading
• SIMD for low-latency operations on CPU
• GPU offload for high-throughput operations

• CUDA: NVIDIA
• OpenCL: AMD, Apple, Intel, NVIDIA
• SYCL: AMD, Intel, NVIDIA
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Molecular dynamics

• Iterative problem
• Like N-body, but with fancier physics

• One step ~1 fs, need to simulate µs to ms
• 109-1012 steps
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Páll et al., J. Chem. Phys. 153, 134110 (2020)

https://aip.scitation.org/doi/abs/10.1063/5.0018516


Heterogeneous parallelization

• Minimize latency
• Minimize CPU and GPU stalls
• Minimize data exchange between host and device

• And between nodes

• Optimal offloading scheme depends on simulated system
• And on available hardware

• Must be maintainable
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Molecular dynamics: real schedule
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Molecular dynamics: real schedule
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Send data ASAP
to remote ranks

Only if the list
has changed

Transfer local
coordinates
while waiting
for remote ones

PME and NB work
can be balanced
by tuning pair list

Should be scheduled before
the big local NB kernel

Frequency can be adjusted
by changing list buffer size

https://aip.scitation.org/doi/abs/10.1063/5.0018516


GPU feature support in GROMACS 2020

Non-bonded offload √ √

PME offload √ √

Update offload √ X

Bonded offload √ X

Direct GPU-GPU comm √ X

Hardware support NVIDIA NVIDIA, AMD, Intel
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Why another GPU framework?
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Intel Ponte Vecchio GPUAMD Instinct GPU

First exascale systems

 

Data Center GPU Max



Why not OpenCL?

• OpenCL kernels are C99, the rest of GROMACS is C++17
• C++ kernels are not widely supported

• Separate-source model

• Hard to maintain

• Supported by all vendors, preferred by none
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Why SYCL?

• Open standard, free (libre) implementations
• Implemented on top of existing backend

• Intel® oneAPI DPC++: OpenCL and LevelZero; CUDA; HIP
• hipSYCL: CUDA, HIP; LevelZero (via DPC++)
• Leverage existing profiling and debugging tools
• And device compilers

• Standard C++ with a custom library
• No need for extra support in linters, IDEs, etc.

• Logically similar to OpenCL
• (Almost) no need to deeply modify existing code
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SYCL enablement plan (late 2020)

• Step 1:
• Target oneAPI DPC++ / Intel GPUs, but stay standard-compliant
• Device detection and initialization
• Remove code specific to CUDA/OpenCL

• Step 2:
• Port kernels accounting for majority of run time

• Step 3:
• Expand support to AMD GPUs
• Port the rest of the kernels
• Add support for GPU-aware MPI
• Optimize kernels and runtime
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SYCL enablement plan

• Step 1:
• Target oneAPI DPC++ / Intel GPUs, but stay mostly standard-compliant
• Device detection and initialization
• Remove code specific to CUDA/OpenCL: still ongoing…

• Step 2:
• Port kernels accounting for majority of run time

• Step 3:
• Expand support to hipSYCL; AMD and NVIDIA GPUs
• Port the rest of the kernels
• Add support for GPU-aware MPI
• Optimize kernels and runtime: we’re here
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Automatic conversion?

• We want to have both CUDA and SYCL in the same codebase
• Already have abstraction layer for Device, Queue, etc

• Supports CUDA and OpenCL
• CUDA kernels heavily optimized for NVIDIA
• OpenCL kernels have Intel-optimized code paths
• Rewriting kernels is ~trivial

• Conclusion: manual porting
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GPU framework comparison
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Scheduling
in-order queue
or explicit DAG

in-order and 
out-of-order queues

implicit DAG and
in-order queues

Synchronization event separate pseudo-task
associated with a task
or a pseudo-task associated with a task

Timing measurement regions of a single event of a single event

Timing enablement at event creation at queue creation at queue creation

Device selection stateful per-thread explicit in each call explicit in each call

Native float3 size 12 bytes 16 bytes 16 bytes
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We already had an abstraction layer



GPU framework comparison
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DAG-based scheduling

• Good: Prevent bugs and improve performance
• Bad: GROMACS is built around for in-order queues, with explicit barrier 

synchronizations:
• Performance: synchronizing twice
• Correctness: device-to-host copies

• Bad: Runtime must be smart
• Ugly: Additional divergence between backends
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DAG-based scheduling
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Páll et al., J. Chem. Phys. 153, 134110 (2020)

https://aip.scitation.org/doi/abs/10.1063/5.0018516


DAG-based scheduling

• Good: Prevent bugs and improve performance
• Bad: GROMACS is built around for in-order queues, with explicit barrier 

synchronizations:
• Performance: synchronizing twice
• Correctness: device-to-host copies

• Bad: Runtime must be smart
• Ugly: Additional divergence between backends
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DAG-based scheduling

• No, just use in-order queues and USM

• Bonus:
• Accessors hard to optimize for compiler
• Easier interop with GPU-aware MPI
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GPU framework comparison
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in-order and 
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implicit DAG and
in-order queues

Synchronization event separate pseudo-task
associated with a task
or a pseudo-task associated with a task

Timing measurement regions of a single event of a single event

Timing enablement at event creation at queue creation at queue creation

Device selection by special function explicit in each call explicit in each call

Native float3 size 12 bytes 16 bytes 16 bytes



Synchronization Events

• Event can be recorded far from the last submission
• Not easy to tell which operation should be used for synchronization

• Custom extensions to mark events:
• oneAPI DPC++: SYCL_EXT_ONEAPI_ENQUEUE_BARRIER
• hipSYCL: hipSYCL_enqueue_custom_operation to submit empty jobs 

acting as barriers

• hipSYCL’s coarse-grained events
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GPU framework comparison
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Other differences to keep in mind

• Exceptions vs return codes
• Different and variable (for Intel) sub-group sizes
• Thread indexing order:

• CUDA and OpenCL: thread (x, y, z) is adjacent to (x+1, y, z)
• SYCL: thread (x, y, z) is adjacent to (x, y, z+1)

• No SYCL implementation is fully standard-compliant yet
• Some standardized features still implemented as extensions
• It’s getting better

• No SYCL implementation is fully optimized
• Less of an issue for compilers, more of an issue for the runtime
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SYCL beyond oneAPI
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https://www.khronos.org/sycl/

https://www.khronos.org/sycl/


Portability in practice: FFT

• 3D real-to-complex, forward and backward FFT

• Intel GPUs: oneMKL
• AMD GPUs: rocFFT/vkFFT via HIPSYCL_EXT_ENQUEUE_CUSTOM_OPERATION
• NVIDIA GPUs: vkFFT via HIPSYCL_EXT_ENQUEUE_CUSTOM_OPERATION

• Future: HeFFTe to decompose FFT over multiple nodes
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Portability in practice: hipSYCL

• At start, only Intel oneAPI DPC++ and Intel GPUs supported
• hipSYCL added later to target AMD devices

• Effort:
• Workarounds due to backend / compiler issues

• Different parts of SYCL 2020 implemented

• Fix a few bugs not triggered with oneAPI
• CMake scripting
• Kernel optimizations mostly ported from OpenCL

• Still, some time with profiler was required
• Runtime profiling/tuning

• When the GPU FLOPS are not the bottleneck
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Portability in practice: results

• GROMACS can use SYCL to run on:
• Intel GPUs via oneAPI,
• AMD and NVIDIA GPUs via oneAPI and hipSYCL

• Performance, compared to native CUDA/HIP/OpenCL:
• Complex kernels are somewhat slower, require attention
• Less complex kernels on par, sometimes faster
• Extra runtime overhead

• Vendor-specific code
• Sub-group-size-dependent algorithms
• Workarounds for compiler issues
• FFT invocation, a lot of related CMake scripting
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Performance: NVIDIA
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V100, CUDA 11.5, hipSYCL develop and IntelLLVM vs CUDA



Performance: NVIDIA
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V100, CUDA 11.5, hipSYCL develop and IntelLLVM vs CUDA

HIPSYCL_RT_MAX_CACHED_NODES=1



Performance: AMD
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MI100, ROCm 4.5.2, hipSYCL 0.9.2 vs experimental HIP port by AMD/StreamHPC

older GROMACS version



Performance: Intel
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Xe MAX (DG1), oneAPI 2022.1, oneAPI (LevelZero, OpenCL) vs OpenCL

older GROMACS version, low-end GPU



Missing features / Wishlist

• Queue/task priorities
• Fine control of host scheduling
• Hardware topology information
• Inter-node communication: Celerity?
• Libraries: oneMKL?
• Robustness: installation, error messages, …
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GPU feature support in GROMACS 2023

Non-bonded offload √ √ √

PME offload √ √ √

Update offload √ X √

Bonded offload √ X √

Direct GPU-GPU comm √ X √*

Hardware support NVIDIA AMD, Intel, NVIDIA AMD, Intel, NVIDIA
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Conclusions

• “Write once, run anywhere” mostly works
• Trivial changes to support all three major vendors with oneAPI

and hipSYCL

• But running fast is not easy
• Still need vendor-specific code branches to get high performance
• Runtime might behave sub-optimally by default

• API is similar to OpenCL in spirit, but usually nicer
• The whole ecosystem is rapidly evolving
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Learn more

• https://www.gromacs.org/
• https://gromacs.bioexcel.eu/
• https://manual.gromacs.org/documentation/2022.3/index.html

• Páll et al., J. Chem. Phys. 153, 134110 (2020)

• If you have questions: andrey.alekseenko@scilifelab.se
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