
Andrey Alekseenko

A 3rd Party oneAPI Case Study: GROMACS

KTH Royal Institute of Technology & SciLifeLab

Stockholm, Sweden



GROMACS

• Open source molecular dynamics engine
• One of the most used HPC codes worldwide
• High-performance for a wide range of modeled systems
• … and on a wide range of platforms:

• from supercomputers to laptops (Folding@Home)
• x86, x86-64, ARM, POWER, SPARC, RISC-V
• 11 SIMD backends
• AMD, Apple, Intel, and NVIDIA GPUs; Intel Xeon Phi
• Windows, MacOS, included in many Linux distros

2022-11-10 LRZ Intel oneAPI Workshop 2



GROMACS 2023 (upcoming)

• (Mostly) modern C++17 codebase
• 449k lines of C++ code
• With a bit of legacy (first release: 1991)

• MPI for inter-node parallelism
• OpenMP for multithreading
• SIMD for low-latency operations on CPU
• GPU offload for high-throughput operations

• CUDA: NVIDIA
• OpenCL: AMD, Apple, Intel, NVIDIA
• SYCL: AMD, Intel, NVIDIA

2022-11-10 LRZ Intel oneAPI Workshop 3



Molecular dynamics

• Iterative problem
• Like N-body, but with fancier physics

• One step ~1 fs, need to simulate µs to ms
• 109-1012 steps

2022-11-10 LRZ Intel oneAPI Workshop 4

Páll et al., J. Chem. Phys. 153, 134110 (2020)

https://aip.scitation.org/doi/abs/10.1063/5.0018516


Heterogeneous parallelization

• Minimize latency
• Minimize CPU and GPU stalls
• Minimize data exchange between host and device

• And between nodes

• Optimal offloading scheme depends on simulated system
• And on available hardware

• Must be maintainable

2022-11-10 LRZ Intel oneAPI Workshop 5



Molecular dynamics: real schedule

2022-11-10 LRZ Intel oneAPI Workshop 6

Páll et al., J. Chem. Phys. 153, 134110 (2020)

https://aip.scitation.org/doi/abs/10.1063/5.0018516


Molecular dynamics: real schedule

2022-11-10 LRZ Intel oneAPI Workshop 7

Páll et al., J. Chem. Phys. 153, 134110 (2020)

Send data ASAP
to remote ranks

Only if the list
has changed

Transfer local
coordinates
while waiting
for remote ones

PME and NB work
can be balanced
by tuning pair list

Should be scheduled before
the big local NB kernel

Frequency can be adjusted
by changing list buffer size

https://aip.scitation.org/doi/abs/10.1063/5.0018516


GPU feature support in GROMACS 2020

Non-bonded offload √ √

PME offload √ √

Update offload √ X

Bonded offload √ X

Direct GPU-GPU comm √ X

Hardware support NVIDIA NVIDIA, AMD, Intel

2022-11-10 LRZ Intel oneAPI Workshop 8



Why another GPU framework?

2022-11-10 LRZ Intel oneAPI Workshop 9

Intel Ponte Vecchio GPUAMD Instinct GPU

First exascale systems

 

Data Center GPU Max



Why not OpenCL?

• OpenCL kernels are C99, the rest of GROMACS is C++17
• C++ kernels are not widely supported

• Separate-source model

• Hard to maintain

• Supported by all vendors, preferred by none

2022-11-10 LRZ Intel oneAPI Workshop 10



Why SYCL?

• Open standard, free (libre) implementations
• Implemented on top of existing backend

• Intel® oneAPI DPC++: OpenCL and LevelZero; CUDA; HIP
• hipSYCL: CUDA, HIP; LevelZero (via DPC++)
• Leverage existing profiling and debugging tools
• And device compilers

• Standard C++ with a custom library
• No need for extra support in linters, IDEs, etc.

• Logically similar to OpenCL
• (Almost) no need to deeply modify existing code

2022-11-10 LRZ Intel oneAPI Workshop 11



SYCL enablement plan (late 2020)

• Step 1:
• Target oneAPI DPC++ / Intel GPUs, but stay standard-compliant
• Device detection and initialization
• Remove code specific to CUDA/OpenCL

• Step 2:
• Port kernels accounting for majority of run time

• Step 3:
• Expand support to AMD GPUs
• Port the rest of the kernels
• Add support for GPU-aware MPI
• Optimize kernels and runtime

2022-11-10 LRZ Intel oneAPI Workshop 12



SYCL enablement plan

• Step 1:
• Target oneAPI DPC++ / Intel GPUs, but stay mostly standard-compliant
• Device detection and initialization
• Remove code specific to CUDA/OpenCL: still ongoing…

• Step 2:
• Port kernels accounting for majority of run time

• Step 3:
• Expand support to hipSYCL; AMD and NVIDIA GPUs
• Port the rest of the kernels
• Add support for GPU-aware MPI
• Optimize kernels and runtime: we’re here

2022-11-10 LRZ Intel oneAPI Workshop 13



Automatic conversion?

• We want to have both CUDA and SYCL in the same codebase
• Already have abstraction layer for Device, Queue, etc

• Supports CUDA and OpenCL
• CUDA kernels heavily optimized for NVIDIA
• OpenCL kernels have Intel-optimized code paths
• Rewriting kernels is ~trivial

• Conclusion: manual porting

2022-11-10 LRZ Intel oneAPI Workshop 14



GPU framework comparison

2022-11-10 LRZ Intel oneAPI Workshop 15

Scheduling
in-order queue
or explicit DAG

in-order and 
out-of-order queues

implicit DAG and
in-order queues

Synchronization event separate pseudo-task
associated with a task
or a pseudo-task associated with a task

Timing measurement regions of a single event of a single event

Timing enablement at event creation at queue creation at queue creation

Device selection stateful per-thread explicit in each call explicit in each call

Native float3 size 12 bytes 16 bytes 16 bytes



GPU framework comparison

2022-11-10 LRZ Intel oneAPI Workshop 16

Scheduling
in-order queue
or explicit DAG

in-order and 
out-of-order queues

implicit DAG and
in-order queues

Synchronization event separate pseudo-task
associated with a task
or a pseudo-task associated with a task

Timing measurement regions of a single event of a single event

Timing enablement at event creation at queue creation at queue creation

Device selection stateful per-thread explicit in each call explicit in each call

Native float3 size 12 bytes 16 bytes 16 bytes

We already had an abstraction layer



GPU framework comparison

2022-11-10 LRZ Intel oneAPI Workshop 17

Scheduling
in-order queue
or explicit DAG

in-order and 
out-of-order queues

implicit DAG and
in-order queues

Synchronization event separate pseudo-task
associated with a task
or a pseudo-task associated with a task

Timing measurement regions of a single event of a single event

Timing enablement at event creation at queue creation at queue creation

Device selection stateful per-thread explicit in each call explicit in each call

Native float3 size 12 bytes 16 bytes 16 bytes



DAG-based scheduling

• Good: Prevent bugs and improve performance
• Bad: GROMACS is built around for in-order queues, with explicit barrier 

synchronizations:
• Performance: synchronizing twice
• Correctness: device-to-host copies

• Bad: Runtime must be smart
• Ugly: Additional divergence between backends

2022-11-10 LRZ Intel oneAPI Workshop 18



DAG-based scheduling

• Good: Prevent bugs and improve performance
• Bad: GROMACS is built around for in-order queues, with explicit barrier 

synchronizations:
• Performance: synchronizing twice
• Correctness: device-to-host copies

• Bad: Runtime must be smart
• Ugly: Additional divergence between backends

2022-11-10 LRZ Intel oneAPI Workshop 19



DAG-based scheduling

• Good: Prevent bugs and improve performance
• Bad: GROMACS is built around for in-order queues, with explicit barrier 

synchronizations:
• Performance: synchronizing twice
• Correctness: device-to-host copies

• Bad: Runtime must be smart
• Ugly: Additional divergence between backends

2022-11-10 LRZ Intel oneAPI Workshop 20



DAG-based scheduling

2022-11-10 LRZ Intel oneAPI Workshop 21

Páll et al., J. Chem. Phys. 153, 134110 (2020)

https://aip.scitation.org/doi/abs/10.1063/5.0018516


DAG-based scheduling

• Good: Prevent bugs and improve performance
• Bad: GROMACS is built around for in-order queues, with explicit barrier 

synchronizations:
• Performance: synchronizing twice
• Correctness: device-to-host copies

• Bad: Runtime must be smart
• Ugly: Additional divergence between backends

2022-11-10 LRZ Intel oneAPI Workshop 22



DAG-based scheduling

• No, just use in-order queues and USM

• Bonus:
• Accessors hard to optimize for compiler
• Easier interop with GPU-aware MPI

2022-11-10 LRZ Intel oneAPI Workshop 23



GPU framework comparison

2022-11-10 LRZ Intel oneAPI Workshop 24

Scheduling
in-order queue
or explicit DAG

in-order and 
out-of-order queues

implicit DAG and
in-order queues

Synchronization event separate pseudo-task
associated with a task
or a pseudo-task associated with a task

Timing measurement regions of a single event of a single event

Timing enablement at event creation at queue creation at queue creation

Device selection by special function explicit in each call explicit in each call

Native float3 size 12 bytes 16 bytes 16 bytes



Synchronization Events

• Event can be recorded far from the last submission
• Not easy to tell which operation should be used for synchronization

• Custom extensions to mark events:
• oneAPI DPC++: SYCL_EXT_ONEAPI_ENQUEUE_BARRIER
• hipSYCL: hipSYCL_enqueue_custom_operation to submit empty jobs 

acting as barriers

• hipSYCL’s coarse-grained events

2022-11-10 LRZ Intel oneAPI Workshop 25



GPU framework comparison

2022-11-10 LRZ Intel oneAPI Workshop 26

Scheduling
in-order queue
or explicit DAG

in-order and 
out-of-order queues

implicit DAG and
in-order queues

Synchronization event separate pseudo-task
associated with a task
or a pseudo-task associated with a task

Timing measurement regions of a single event of a single event

Timing enablement at event creation at queue creation at queue creation

Device selection stateful per-thread explicit in each call explicit in each call

Native float3 size 12 bytes 16 bytes 16 bytes



Other differences to keep in mind

• Exceptions vs return codes
• Different and variable (for Intel) sub-group sizes
• Thread indexing order:

• CUDA and OpenCL: thread (x, y, z) is adjacent to (x+1, y, z)
• SYCL: thread (x, y, z) is adjacent to (x, y, z+1)

• No SYCL implementation is fully standard-compliant yet
• Some standardized features still implemented as extensions
• It’s getting better

• No SYCL implementation is fully optimized
• Less of an issue for compilers, more of an issue for the runtime

2022-11-10 LRZ Intel oneAPI Workshop 27



SYCL beyond oneAPI

2022-11-10 LRZ Intel oneAPI Workshop 28

https://www.khronos.org/sycl/

https://www.khronos.org/sycl/


Portability in practice: FFT

• 3D real-to-complex, forward and backward FFT

• Intel GPUs: oneMKL
• AMD GPUs: rocFFT/vkFFT via HIPSYCL_EXT_ENQUEUE_CUSTOM_OPERATION
• NVIDIA GPUs: vkFFT via HIPSYCL_EXT_ENQUEUE_CUSTOM_OPERATION

• Future: HeFFTe to decompose FFT over multiple nodes

2022-11-10 LRZ Intel oneAPI Workshop 29



Portability in practice: hipSYCL

• At start, only Intel oneAPI DPC++ and Intel GPUs supported
• hipSYCL added later to target AMD devices

• Effort:
• Workarounds due to backend / compiler issues

• Different parts of SYCL 2020 implemented

• Fix a few bugs not triggered with oneAPI
• CMake scripting
• Kernel optimizations mostly ported from OpenCL

• Still, some time with profiler was required
• Runtime profiling/tuning

• When the GPU FLOPS are not the bottleneck

2022-11-10 LRZ Intel oneAPI Workshop 30



Portability in practice: results

• GROMACS can use SYCL to run on:
• Intel GPUs via oneAPI,
• AMD and NVIDIA GPUs via oneAPI and hipSYCL

• Performance, compared to native CUDA/HIP/OpenCL:
• Complex kernels are somewhat slower, require attention
• Less complex kernels on par, sometimes faster
• Extra runtime overhead

• Vendor-specific code
• Sub-group-size-dependent algorithms
• Workarounds for compiler issues
• FFT invocation, a lot of related CMake scripting

2022-11-10 LRZ Intel oneAPI Workshop 31



Performance: NVIDIA

2022-11-10 LRZ Intel oneAPI Workshop 32

V100, CUDA 11.5, hipSYCL develop and IntelLLVM vs CUDA



Performance: NVIDIA

2022-11-10 LRZ Intel oneAPI Workshop 33

V100, CUDA 11.5, hipSYCL develop and IntelLLVM vs CUDA

HIPSYCL_RT_MAX_CACHED_NODES=1



Performance: AMD

2022-11-10 LRZ Intel oneAPI Workshop 34

MI100, ROCm 4.5.2, hipSYCL 0.9.2 vs experimental HIP port by AMD/StreamHPC

older GROMACS version



Performance: Intel

2022-11-10 LRZ Intel oneAPI Workshop 35

Xe MAX (DG1), oneAPI 2022.1, oneAPI (LevelZero, OpenCL) vs OpenCL

older GROMACS version, low-end GPU



Missing features / Wishlist

• Queue/task priorities
• Fine control of host scheduling
• Hardware topology information
• Inter-node communication: Celerity?
• Libraries: oneMKL?
• Robustness: installation, error messages, …

2022-11-10 LRZ Intel oneAPI Workshop 36



GPU feature support in GROMACS 2023

Non-bonded offload √ √ √

PME offload √ √ √

Update offload √ X √

Bonded offload √ X √

Direct GPU-GPU comm √ X √*

Hardware support NVIDIA AMD, Intel, NVIDIA AMD, Intel, NVIDIA

2022-11-10 LRZ Intel oneAPI Workshop 37



Conclusions

• “Write once, run anywhere” mostly works
• Trivial changes to support all three major vendors with oneAPI

and hipSYCL

• But running fast is not easy
• Still need vendor-specific code branches to get high performance
• Runtime might behave sub-optimally by default

• API is similar to OpenCL in spirit, but usually nicer
• The whole ecosystem is rapidly evolving

2022-11-10 LRZ Intel oneAPI Workshop 38



Acknowledgements

• Intel Corporation
• Heinrich Bockhorst and Roland Schulz (Intel)
• Aksel Alpay (Heidelberg University Computing Centre)
• GROMACS dev team, in particular Mark Abraham, Paul Bauer, 

Szilárd Páll, and Artem Zhmurov

2022-11-10 LRZ Intel oneAPI Workshop 39



Learn more

• https://www.gromacs.org/
• https://gromacs.bioexcel.eu/
• https://manual.gromacs.org/documentation/2022.3/index.html

• Páll et al., J. Chem. Phys. 153, 134110 (2020)

• If you have questions: andrey.alekseenko@scilifelab.se

2022-11-10 LRZ Intel oneAPI Workshop 40

https://www.gromacs.org/
https://gromacs.bioexcel.eu/
https://manual.gromacs.org/documentation/2022.3/index.html
https://aip.scitation.org/doi/abs/10.1063/5.0018516

