
Introduction to the PGAS
(Partitioned Global Address Space)

Languages

Coarray Fortran (CAF) and

Unified Parallel C (UPC)

Dr. R. Bader (LRZ)

Dr. A. Block (LRZ)

March 2019

Part 1: Basic Concepts

Execution and Memory Model

Declaration and usage of shared entities

Simple synchronization

Applying PGAS to classical HPC languages

Design target for PGAS extensions:

add only a few new rules to the languages

provide mechanisms to allow

some additional "specialist" features may not be universally supported

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 3

smallest changes required to convert Fortran and C

into robust and efficient parallel languages

explicitly parallel execution: SPMD style programming model

data distribution: partitioned memory model

synchronization vs. race conditions

memory management for dynamic sharable entities

collectively executed procedures (data redistribution and reductions)

Standardization efforts

Baseline Coarrays

Fortran 2008 standard
(ISO/IEC 1539-1:2010, published in October 2010)

Additional parallel features in

Fortran

Fortran 2018 standard
(ISO/IEC 1539-1:2018, published in November 2018)

UPC separate specification

in three subdocuments

language specification

required library specification

optional library specification

See „References“ slide near the

end of the talk

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 4

current coarray compilers implement

a subset of the additional features

Execution model: UPC threads / CAF images

Going from single to multiple

execution contexts

CAF - images:

UPC uses zero-based

counting

UPC uses the term thread

where CAF has images

Replicate single program a

fixed number of times

set number of replicates at

compile time or at execution

time

asynchronous execution – loose

coupling unless program-control-

led synchronization occurs

Separate set of entities on

each image/thread

program-controlled exchange of

data (imposed by algorithm)

synchronization may be needed

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 5

1

2

3

4
time

Execution model: Resource mappings

One-to-one:

each image is executed by a single physical processor core

Many-to-one:

some (or all) images are executed by multiple cores each (e.g.,

implementation could support OpenMP multi-threading within an image)

One-to-many:

fewer cores are available to the program than images

scheduling issues

useful typically only for algorithms which do not require the bulk of CPU

resources on one image

Many-to-many

Note:

startup mechanism and resource assignment method are implementation-

dependent

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 6

Comparison with other parallelization methods

MPI OpenMP Coarrays UPC

Portability yes yes yes yes

Interoperability (C/C++) yes yes no yes

Scalability 4 2 1-4 1-4

Performance 4 2 2-4 2-4

Ease of Use 1 4 2.5 3

Data parallelism no partial partial partial

Distributed memory yes no yes yes

Data model fragmented global fragmented global

Type system integrated no yes yes yes

Hybrid parallelism yes partial (no) (no)

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 7

ratings: 1-low 2-moderate 3-good 4-excellent

PGAS languages' hardware needs:
good scalability for fine-grain parallelism in distributed memory systems will require

use of special interconnect hardware features

„Hello world“ with PGAS

CAF – integer-valued intrinsics for image management

UPC

uses integer expressions (macro functions) for the same purpose

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 8

program hello
implicit none
write(*, '(''Hello from image '',i0, '' of '',i0)') &

this_image(), num_images()
end program

between 1 and

num_images()

#include <upc.h>
#include <stdlib.h>
#include <stdio.h>

int main (void) {
printf(“Hello from thread %d of %d \n”, \

MYTHREAD, THREADS);
return 0;

} between 0 and

THREADS - 1

non-repeatably unsorted output

if multiple images/threads used

required for use of UPC
macros and functions

A more elaborate example:

Matrix-Vector Multiplication

Basic building block for many algorithms

independent collection of scalar products

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 9

i

n

j

jij bvM
1

Serial Matrix-Vector code

Fortran:

functions matval() and vecval()
calculate matrix elements and input

vectors

C:

C compared to Fortran: row-major

mapping of indices to storage, zero

based

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 10

integer, parameter :: N = …
real :: Mat(N, N), V(N)
real :: B(N) ! result

do icol=1,N
do irow=1,N
Mat(irow,icol) = &

matval(irow,icol)
end do
V(icol) = vecval(icol)

end do
call sgemv(‘n‘,N,N,1.0,

Mat,N,V,1,0.0,B,1)

float Mat[N][N], V[N];
float B[N]; // result

for (icol=0; icol<N; icol++) {
for (irow=0;irow<N;irow++) {
Mat[icol][irow] =

matval(irow+1,icol+1);
}
V[icol] = vecval(icol+1);

}
cblas_sgemv(CblasColMajor,

CblasNoTrans,N,N,1.0,
(float *) Mat,N,V,1,0.0,B,1);

BLAS routine

Nearly-trivial parallelism: Data decomposition

Block row distribution:

calculate only a block of B on

each image (but that completely)

the shading indicates the

assignment of data to images

blue: data are replicated on all

images

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 11

B
lo

ck
 s

iz
e

M
B

Further alternatives:

cyclic, block-cyclic

column, row and column

Memory requirement:

(n2 + n) / <no. of images> + n

words per image/thread

load balanced (same compu-

tational load on each task)

Assumption: MB == N / (no. of images)

dynamic allocation is more flexible

if mod(N, no. of images) > 0,

conditioning is required

on image 1

on image 2

on image 3

Memory model part 1: Image-local entities

Modified declarations

Semantics for PGAS replicated execution

each image has its local (or private) copy of any declared object

private objects are only accessible to the image which „owns“ them
(extrapolated from conventional “serial” language semantics, and consistent

with executing in serial mode i.e. only one image)

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 12

real :: Mat(MB, N), V(N)
real :: B(MB)

float Mat[N][MB], V[N];
float B[MB];

Mat Mat Mat Matlocal entities

per-image address

CAF Image 1 2 3 4

UPC Thread 0 1 2 3

„private“: as in OpenMP,

but here is the default

Work sharing the initialization and the M*v processing

"Fragmented data" model

need to calculate global row index from local iteration variable (or vice

versa)

degenerates into serial version of code for 1 image

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 13

do icol=1,N
do i=1,MB
irow = (this_image() - 1) * MB + i
Mat(i,icol) = matval(irow,icol)

end do
V(icol) = vecval(icol)
end do

call sgemv(‘n‘,MB,N,1.0,Mat,MB,V,1,0.0,B,1)

i is image-local index;

need to calculate global index irow

each image:

works on its own, private

instances of Mat, V, B

Work sharing the initialization and the M*v processing

Analogous procedure for UPC

need to calculate global row index from local iteration variable (or vice

versa)

degenerates into serial version of code for 1 image

Fragmenting can be avoided in UPC discussed later

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 14

for (icol=0,icol<N,icol++) {
for (i=0,i<MB,i++) {
irow = MYTHREAD * MB + i;
Mat[icol][i] = matval(irow+1,icol+1);

}
V[icol] = vecval(icol+1);

}
cblas_sgemv(CblasColMajor,

CblasNoTrans,MB,N,1.0,
(float *) Mat,MB,V,1,0.0,B,1);

i is image-local index;

need to calculate global index irow

each image:

works on its own, private

instances of Mat, V, B

Work sharing: General mapping of data to images

Index transformation for an array dimension

a one-to-one mapping between local and global indices

local problem size on image p: nlocal{p}

for a work-balanced problem: nlocal{p} typically the same on all

images, except the last one, which may have a smaller value

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 15

real :: a(ndim, …)
p = this_image()
do i=1, nlocal

j = … ! global index
a(i,…) = … ! expression involving j

end do

may vary

between images

jpi][)(

ndim large enough to hold

nlocal{p} elements

1

1

}{
p

q

iqnlocalj

local array

index image index global index

for a blocked distribution

conceptual notation only

Ilustrating the need for communication

Open issue from „trivial“ example

iterative solvers require repeated evaluation of matrix-vector

product

but the result we received is distributed across the images

Therefore, a method is needed

to transfer each B to the appropriate portion of V on all images

B on 1

B on 2

B on 3

V on 1 V on 2 V on 3

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 16

physical

memory on

core execu-

ting image 4

PGAS memory model

All entities belong to one of two classes:

local (private) entities: only accessible to the
image/thread which „owns“ them

global (shared) entities in partitioned global memory:
objects declared on and physically assigned to one
image/thread may be accessed by any other one

allows implementation for distributed memory systems

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 17

B1 B2 B3 B4

global memory

address (e.g. ,128 bit)

global entities

V V V V

per-image address

local entities

execute on any image

execute on image where

desired V is located impossible

The term „shared“:

 similar (but not exactly

the same) as

in OpenMP

not explicitly shown:

purely local accesses

(fastest)

Declaration of coarrays/shared entities
(simplest case)

CAF

coarray requires explicit or

implicit codimension attribute
(square brackets)

declare local number of

elements per image

star in square brackets:
program can be agnostic about

number of images to be used at

compile time

UPC

shared entity must be

declared with the shared
attribute

specify aggregate number of

elements across all threads

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 18

real, &
codimension[*] :: B(MB)

shared [1] float B[MB*NTMX];

support dynamic
configuration

MB = 3, NTMX = 3:
constants viz. macro constants

Data distribution of coarrays/shared entities
(simplest case)

CAF

same distribution as for

private objects

coarray notation with explicit

indication of location (coindex

in square brackets)

symmetry is enforced
(asymmetric data must use derived types)

more images additional

coindex value

UPC

round-robin distribution

implicit locality (various blocking

strategies)

potential asymmetry – threads in

general may have uneven share

of data

more threads e.g., B[4] located

on a different physical memory

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 19

B(1)[1]

B(2)[1]

B(3)[1]

B(1)[2]

B(2)[2]

B(3)[2]

B(1)[3]

B(2)[3]

B(3)[3]

B(1)[4]

B(2)[4]

B(3)[4]

Image 1 2 3 4

B[0]

B[4]

B[8]

B[1]

B[5]

B[2]

B[6]

B[3]

B[7]

Thread 0 1 2 3

Mapping between coindex

and image index is trivial in
the simplest case

local portion is always a
contiguous block of memory

Enforcing symmetry for UPC shared objects
(if you desire to make them as similar as possible to coarrays)

Two methods

extra dimension indexes threads

THREADS macro in declaration

Method 1

Method 2

use a non-default block size
(number of subsequent elements placed

on any thread)

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 20

shared int A[3][THREADS];

A[0][0]

A[1][0]

A[2][0]

A[0][1]

A[1][1]

A[2][1]

A[0][2]

A[1][2]

A[2][2]

A[0][3]

A[1][3]

A[2][3]

Thread 0 1 2 3

shared [3] int A[THREADS][3];

A[0][0]

A[0][1]

A[0][2]

A[1][0]

A[1][1]

A[1][2]

A[2][0]

A[2][1]

A[2][2]

A[3][0]

A[3][1]

A[3][2]

Thread 0 1 2 3

Notes:

THREADS macro may not be usable in certain declaration contexts (e.g., inside function

body) if number of threads is determined at run time

implementation dependent block size limit can make use of method 2 problematic

programmers may prefer implicit distribution for simplicity of use (but then: beware

unintentioned cross-thread accesses)

UPC shared data: variations on blocking

General syntax

for a one-dimensional array

scalars and multi-dimensional

arrays also possible

Values for block_size

omitted default value is 1

integer constant (maximum

value UPC_MAX_BLOCK_SIZE)

[*] one block on each

thread, as large as possible, size

depends on number of threads

[] or [0] all elements on

one thread

Some examples:

complete matrix rows on each

thread (≥1 per thread if at most N

threads are used)

in this example, storage

sequence matches with

method 2 from previous slide

static THREADS environment

may be required (compile-time

thread number determination)

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 21

shared [block_size] type \
var_name[total size];

shared [N] float C[N][N];

shared [*] float \
B[THREADS][MB];

CAF: Coarray declaration variants

is equivalent to

A scalar coarray:

An array coarray of rank 2 and corank 2

(details explained later)

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 22

integer :: a(3)[*]

integer, codimension[*] :: s

real :: c(ndim, ndim)[0:pdim,*]

integer, codimension[*] :: a(3)

implicit CODIMENSION
attribute

Inter-image communication: coindexed access

CAF Pull (Get)

one-sided communication between images p and q

CAF Push (Put)

if (this_image() == p) &
b = a(:)[q]

a coindexed

reference

A
q

p

execution sequence

B
ad

d
re

ss
sp

ace

statement

executed on p

if (this_image() == p) &
a(:)[q] = b

a coindexed

definition

A
q

p

execution sequence

B

ad
d

re
ss

sp
ace

statement

executed on p

assumption: p and q have the same value on all images

sectioning is

obligatory

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 23

Inter-thread communication with UPC

Using symmetric declaration of shared object

UPC Pull

Note:

lack of array support may cause this to be inefficient compared with

Fortran work around this with ...

UPC Push

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 24

int b[MB];
shared [MB] int a[THREADS][MB];

if (MYTHREAD == p) {
for (i=0; i<MB; i++) {
b[i] = a[q][i];

}
}

if (MYTHREAD == p) {
for (i=0; i<MB; i++) {
a[q][i] = b[i];

}
}a[q][] is located

on thread q

UPC: One-sided memory block transfers

Available for efficiency

operate in units of bytes

use restricted pointer arguments

more concise for structs, arrays

Restriction

contiguous blocks of memory

Berkeley UPC has extension for

strided transfers

src dst

src dst

thread p thread q upc_memcpy() (any thread)

upc_memget() (on q)
upc_memput() (on p)

(char) int

upc_memset() shared

private

void upc_memcpy(shared void *dst,
shared const void *src, size_t n);

void upc_memget(void *dst,
shared const void *src, size_t n);

void upc_memput(shared void *dst,
void *src, size_t n);

void upc_memset(shared void *dst,
int c, size_t n);

prototypes from upc.h

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 25

Rewriting as block transfers ...

UPC Pull

UPC Push

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 26

if (MYTHREAD == p) {
upc_memget(&b[0],&a[q][0],MB*sizeof(int));

}

if (MYTHREAD == p) {
upc_memput(&a[q][0],&b[0],MB*sizeof(int));

}

MB elements starting at a[q][]

are located on thread q

Synchronization requirements

Asynchronous execution

causes race condition violates
language rules

Image control statement

enforce segment ordering:

q1 before p2, p1 before q2

qj and pj are unordered

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 27

a = …
if (this_image() == p) &

b = a(:)[q]

a = …
sync all
if (this_image() == p) &

b = a(:)[q]

programmer‘s

responsibility

Aq

p

execution sequence

B

ad
d

re
ss

sp
ace

local variable

q1 q2

p1 p2

global barrier

A
q

p

execution sequence

B

ad
d

re
ss

sp
ace

local

variable

statement executed

on q … but when?

statement executed

on q … but when?

statement executed

on q … but when?

Semantics of global barrier

All images synchronize:

SYNC ALL provides a global barrier over all images

segments preceding the barrier on any image will be ordered

before segments after the barrier on any other image implies

ordering of statement execution

If SYNC ALL is not executed by all images,

the program will discontinue execution indefinitely (deadlock)

however, it is allowed to execute the synchronization via two

different SYNC ALL statements

(for example in two different subprograms)

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 28

In UPC, the spelling for the global barrier is upc_barrier;

General synchronization rules

Synchronization is required

between segments on any

two different images P, Q

which both access the same

entity (may be local to P or

Q or another image)

(1) P writes and Q writes, or

(2) P writes and Q reads, or

(3) P reads and Q writes.

Status of dynamic entities

replace „P writes“ by „P

allocates“ or „P associates“

will be discussed later
(additional constraints exist on

who is allowed to allocate)

Synchronization is not

required

for concurrent reads

if entities are modified via

atomic procedures (see

later)

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 29

A special case where no

synchronization is needed

Against compile-time initialized objects

Example:

a very inefficient method for calculating a sum

Coindexing is not permitted in constant expressions that

perform initialization (e.g. DATA statements)

integer :: count[*] = 1

if (this_image() == 1) then
do i=2, num_images()
count[i] = count[i] + count[i-1]

end do
sum = count[num_images()]

end if

no synchronization needed

because initialization

is done at compile time

no synchronization needed

because references and definitions

happen on the same image

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 30

Image control for Get and Put patterns

UPC Pull (Get) UPC Push (Put)

a[MYTHREAD][i] = …;
upc_barrier;
if (MYTHREAD == p) {
upc_memget(&b[0],&a[q][0],

MB*sizeof(int));

… = b[i];

}

b[i] = …;

if (MYTHREAD == p) {
upc_memput(&a[q][0],&b[0],

MB*sizeof(int));
: // further statements
upc_barrier;
if (MYTHREAD == q) {

… = a[MYTHREAD][i];
}

p and q are assumed to have the same value on all threads, respectively.

Otherwise, more than one thread pair communicates data.

consume b on

thread p

no sync required

(no communication)

no sync required

(no communication)

consume a on

image q

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 31

Image control for Get and Put patterns

CAF Pull (Get) CAF Push (Put)

might be asynchronously

executed

a = …
sync all
if (this_image() == p) then

b = a(:)[q]

… = b
end if

b = …

if (this_image() == p) &
a(:)[q] = b

: ! further statements
sync all
if (this_image() == q) &

… = a

p and q are assumed to have the same value on all images, respectively.

Otherwise, more than one image pair communicates data.

consume b on

image p

no sync required

(no communication)

no sync required

(no communication)

consume a on

image q

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 32

Local accesses to CAF coarrays

Design aim for non-coindexed accesses:

should be optimizable as if they were local entities

Explicit coindexing:

indicates to programmer that communication is happening

distinguish: coarray (a) coindexed entity (a[p])

cosubscripts must be scalars of type integer

integer :: a(MB)[*]
integer :: i
a(:) = (/ … /)
:
i = a(3) + …
:
call my_proc(a, …)

a(:)[this_image()] = (/ … /)

same meaning, but likely

slower execution speed

permitted: interface of my_proc declares

dummy argument corresponding to a as

real :: x(:) (not a coarray)

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 33

Performance!

Local accesses to UPC shared objects

Programmer is responsible for correct indexing

symmetric object setup can help:

non-symmetric shared objects require care to avoid unwanted

communication

performance for current implementations will still be bad, because

communication calls are still generated by the compiler

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 34

shared int A[MB][THREADS];
int B, i;

B = 0
for (i=0; i<MB; i++) {
B += A[i][MYTHREAD];

}

Tuning local accesses in UPC

Cast to a thread-local pointer to extract local portion of a shared

object

non-symmetric shared objects require care to avoid misaddressing

Casting is also needed when calling functions that assume local

memory

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 35

shared int A[MB][THREADS];
int B, i;
int *A_loc;

B = 0;
A_loc = (int *) A;
for (i=0; i<MB; i++) {
B += A_loc[i];

}

on thread p,

A_loc selects

A[0][p]
A[1][p]
A[2][p]

my_proc((int *) A, …);
first formal parameter of

my_proc is an int *

Integration of the type system
(„POD“ data: static type components)

CAF:

compare this with effort needed

to implement the same with MPI (dispense with all of MPI_TYPE_* API)

what about dynamic type components? later in this talk

UPC:

type :: body
real :: mass
real :: coor(3)
real :: velocity(3)

end type

type(body) :: asteroids(100)[*]
type(body) :: s
:
if (this_image() == p) &

s = asteroids(5)[q]

typedef struct {
float mass;
float coor[3];
float velocity[3];

} Body;

declare and use entities of this type (symmetric variant):

shared [1] \

Body asteroids[100][THREADS];
Body s;
:
if (MYTHREAD == p) {
s = asteroids[4][q];

}

enforced

storage

order

Components of

shared object

are shared

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 36

Part 2: Dynamic Entities

Pointer classification

Allocation and deallocation

Distributed structures

Pointers and Pointees

Remember pointer semantics

different between C and Fortran

Joint Fortran and C feature:

possibility to reference or define another entity via the pointer:

PGAS and pointers:

more variants of pointer association because of different kinds of memory

<type> [, dimension (:[,:,…])], pointer :: ptr

ptr => var ! ptr is an alias for target var

<type> *ptr;

ptr = &var; ! ptr holds address of var

no pointer arithmetic

type and rank matching

ALLOCATABLE vs. POINTER

pointer arithmetic

rank irrelevant

pointer-to-pointer

pointer-to-void / recast

F
o
rt

ra
n

C

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 38

ptr var
ptr = xy ! defines target var

*ptr = xy; // defines pointee var

UPCCAF

Case 1: private pointers to private memory

integer, pointer :: p1
integer, target :: a(0:n)
integer, target :: b[0:*]

if (this_image() == 1) then
p1 => a(0)

elseif (this_image() == 2) then
p1 => b

end if

int *p1;
int a[N];
shared int b[THREADS];

if (MYTHREAD == 0) {
p1 = &a[0];

} elseif (MYTHREAD == 1) {
p1 = (int *) b;

}

b[0]

p1 a[0] p1 p1 p1

b[1]

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 39

b[2] b[3]

cast to local
pointer to local

portion of scalar coarray

not permitted

a[0] a[0] a[0]

UPCCAF
concept is not defined – a

POINTER cannot be associated

with more than the local portion of

a coarray

Case 2: private pointers to shared memory

shared int *p2;
shared int b[THREADS];

if (MYTHREAD == 1) {
p2 = &b[1];

} elseif (MYTHREAD == 2) {
p2 = &b[3];

}
if (p2) {

// dereference local p2
}

b[0]

p2 a[0] p2 p2 p2

b[1]

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 40

b[2] b[3]

associated with

remote object

not permitted

UPC

avoid the use of this feature

CAF
concept is not defined – a coarray

cannot have the POINTER

attribute
(However, dynamic type components

provide more extended semantics that will

be discussed soon)

Case 3: shared pointers to private memory

int shared *p4;
int a[N];

if (MYTHREAD == 2) {
p4 = &a[0];

}
// dereference the shared pointer
// on thread 2 only

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 41

p4

only one instance exists

(here on thread 0)

a[0]

dereferences via p4 only permitted

on thread that hosts pointee

a[0] a[0] a[0]

UPCCAF
concept is not defined – a coarray

cannot have the POINTER

attribute

Case 4: shared pointers to shared memory

shared int shared *p4;
shared int b[THREADS];

if (MYTHREAD == 2) {
p4 = &b[2];

}
upc_barrier;
// dereference the shared pointer
// on any thread

b[0] b[1]

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 42

b[2] b[3]
p4

only one instance exists

(here on thread 0) likely expensive

UPC: Shared Pointer blocking and casting

Assume 4 threads:

Block size is a part of the variable‘s type

One may cast between pointers with different

block sizes

pointer arithmetic follows blocking („phase“) of pointer

(not pointee)!

cast changes the view but does not move any data

Consequences for libraries see later

shared [2] int A[10];
shared int *p2;
shared [2] int *q2;

A[0]

A[1]

A[8]
A[9]

A[2]

A[3]

A[4]

A[5]

A[6]

A[7]

Thread 0 1 2 3
if (MYTHREAD == 1) {
p2 = (shared int *) &A[0];
p2 += 4;
q2 = &A[0];
q2 += 4;
}

p2 q2

after pointer increment

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 43

block size

different from A

block size same

as for A

unintuitive sequence

natural sequence

Dynamic allocation and deallocation:
Remember serial semantics

Fortran:

one of two attributes usable:

POINTER or ALLOCATABLE

favour use of ALLOCATABLE for

„simple“ objects (reason: no

dangling pointers, no memory leaks)

ALLOCATE and DEALLOCATE

statements

C:

pointers can be used to point at a

dynamically allocated object

avoid dangling pointers and

memory leaks (programmer‘s

responsibility)

library functions: malloc() and

free()

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 44

real, allocatable :: V(:)
integer :: NV
NV = … ! determine size
allocate(V(NV))
: ! use V
deallocate(V)

float *v;
int nv;
nv = … // determine size
v = (float *) \

malloc(nv*sizeof(float));
: // use v
free(v);

Making the vector „v“ from the M*v example a dynamic entity:

Dynamic entities:

Shared memory area management

CAF:

symmetric allocation required:

same type, type parameters,

bounds and cobounds on every

image, in unordered segments

referencing and defining is

straightforward

deallocation: on all images,

synchronizes on entry

UPC:

layout equivalent to coarray on
the left (but MB is compile time constant)

arguments of type size_t
deallocation via

is not collective (must be
performed only on one thread)

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 45

collective allocation facility which synchronizes all images/threads

integer, &
allocatable :: b(:)[:]

mb = …
allocate(b(mb)[*])

deferred shape and coshape

deallocate(b)

shared [MB] int *b;
b = (shared [MB] int *) \

upc_all_alloc(\
THREADS,MB*sizeof(int));

number
of blocks

bytes

per block

upc_barrier;
if (MYTHREAD==0) upc_free(b);

UPC 1.3 provides upc_all_free()

Referencing or defining

the allocated UPC pointer

After invocation of upc_all_alloc(), on each thread

a private copy of the pointer „b“ exists (can use independently),

which points at the same start address of a set of blocks distributed in the

shared memory space

Assuming MB==4 and using 4 threads, we have

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 46

b b b b

b[0] (on each thread)

Thread: 0 1 2 3

int *b_loc = (int *) b;
if (MYTHREAD==1) {

b[9]=3.0;
b_loc[2] = 2.0;

}

cross-thread and local definitions

– see correspondingly color-

coded arrows above and note the

b_loc reindexing!

global index

of b

b_loc

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 shared

private

CAF: More on allocatable coarrays

Allocation and deallocation

collectively operate on local portions of object

Allocatable components

part of type declaration

objects of such a type must be scalars

and are not permitted to have the ALLOCATABLE or POINTER attribute,

or to themselves be coarrays

allocation:

type :: co_vector
real, allocatable :: v(:)[:]

end type

type(co_vector) :: a_co_vector

component is an

allocatable array

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 47

allocate (a_co_vector % v(m)[*])

m has same value on all

images

CAF: Reallocation and moving an allocation

Auto-(re)allocation is not permitted for coarrays: In

the LHS must already be allocated and the RHS must conform

this avoids potential asymmetry as well as implicit synchronization

(or even deadlock)

The MOVE_ALLOC intrinsic

if the FROM argument is a coarray, it must be executed on all

images, and will imply synchronization of all images

TO must have the same corank as FROM

integer, allocatable :: id(:)[:]

id = some_other_array(:)

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 48

Further Notes

Disallowed in Fortran:

coarrays with POINTER attribute

asymmetric allocation

coarray allocation on image

subset

UPC casting:

inconsistency of block sizes
in declaration and cast may
cause problems

Inflexibility of symmetric data

in CAF, may need to
overallocate

 load balance (one straggler)

in UPC, may need to use
block cyclic arrangements:

 specify more blocks than
threads (run time setting!)

 beware load balancing
(lose symmetry)

further support for non-sym-
metric data soon

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 49

integer, pointer :: p(:)[:]

! b declared earlier
allocate(b(this_image())[*])

allocate(b(mb) &
[this_image():*])

if (this_image() < 2) &
allocate(b(mb)[*])

Asymmetric (non-collective) allocation in UPC (1)

Per-thread pointer to a distributed set of shared blocks

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 50

shared void * upc_global_alloc(size_t nblocks, size_t nbytes)

b b b b

Thread: 0 1 2 3

s
h
a
re

d
p

ri
v
a

te
bs

shared [MB] int *b;
shared [MB] int *shared bs;

if (MYTHREAD==1 || MYTHREAD==2) {
b = (shared [MB] int *) \

upc_global_alloc(\
THREADS,MB*sizeof(int));

}

if (MYTHREAD==3) {
bs = (shared [MB] int *) \

upc_global_alloc(\
THREADS,MB*sizeof(int));

}
for a shared pointer to

shared, only one thread may

execute the allocation.

memory only accessible

from allocating thread in general, bs

could be

anywhere

Asymmetric (non-collective) allocation in UPC (2)

Per-thread pointer to a shared block with affinity to allocating

thread

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 51

shared [] void * upc_alloc(size_t nbytes)

b b b b

Thread: 0 1 2 3

s
h
a
re

d
p

ri
v
a

te
bs

shared [] int *b;
shared [] int *shared bs;

if (MYTHREAD==1 || MYTHREAD==2) {
b = (shared [] int *) \

upc_alloc(MB*sizeof(int));
}

if (MYTHREAD==3) {
bs = (shared [] int *) \

upc_alloc(MB*sizeof(int));
}

for a shared pointer to

shared, only one thread may

execute the allocation.

memory only accessible

from allocating thread

 must avoid non-zero blocking factor

in general, bs

could be

anywhere

Distributed structures

Fortran „container types“

with either POINTER or

ALLOCATABLE components

don‘t care which for this

purpose

UPC shared component

structure

requires a pointer-to-shared

component to enable cross-

thread access to .data

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 52

type :: container
real, pointer :: data(:) => null()
: ! possibly further components

end type

type(container) :: a[*]

scalar coarray of

container type

typedef struct {
shared [] float *data;
: // etc

} Container;

shared [1] Container a[THREADS];

shared object

CAF: unsymmetric objects

Illustrating the data layout
sy

m
m

et
ri

c
(s

h
ar

e
d

)
m

em
o

ry
ad

d
re

ss

a[1] a[2] a[3] a[4]

u
n

sy
m

m
et

ri
c

(p
ri

va
te

)
m

em
o

ry
ad

d
re

ss

components must be locally allocated or associated

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 53

%data

1. access remote object a[q]
from image p

2. obtain location of data
component

3. transfer data component (or
a subobject of it) to the
executing image

Performance impact:

 additional latency due to lookup
step

 for pointers, non-contiguous
access is supported, but likely to
reduce performance

field

CAF: Accessing remote component data

sy
m

m
et

ri
c

(s
h

ar
ed

)
m

em
o

ry
ad

d
re

ss

Image q Image p

u
n

sy
m

m
et

ri
c

(p
ri

va
te

)
m

em
o

ry
ad

d
re

ss

subfield[*]a[*]

reference to a[q] % data executed on image p

local_data

data
component

updates

1.

2.

3.

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 54

UPC: unsymmetric objects

Variant 1 for data layout – locality consistent with parent object

programmer establishes the locality convention

sy
m

m
et

ri
c

(s
h

ar
e

d
)

m
em

o
ry

ad
d

re
ss

a[0] a[1] a[2] a[3]

u
n

sy
m

m
et

ri
c

(s
h

ar
e

d
)

m
em

o
ry

ad
d

re
ss

components are locally pointer-associated

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 55

.data

might use symmetric heap,

but no guarantee for

individual start addresses

UPC: unsymmetric objects

Variant 2 for data layout – arbitrary locality

for example, execute the following on thread 2

sy
m

m
et

ri
c

(s
h

ar
e

d
)

m
em

o
ry

ad
d

re
ss

a[0] a[1] a[2] a[3]

u
n

sy
m

m
et

ri
c

(s
h

ar
e

d
)

m
em

o
ry

ad
d

re
ss

components can be non-locally pointer-associated

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 56

.data

a[1].data = upc_alloc(n*sizeof(float));

Setup – Local processing – Data exchange

CAF UPC (using variant 1)

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 57

real, allocatable, &
target :: field(:,:)

allocate(field(NR, NC))
: ! determine column
a % data => field(:, column)

sync all
q = … ! some other image
n = size(a[q] % data, 1)
call process(field, …)

sync all
localdata(:n) = … + a[q] % data

shared [] float *field;
field = upc_alloc(

NR*NC*sizeof(float));
: ! determine column
a[MYTHREAD].data =

&field[NR*column];

upc_barrier;
q = … ! some other thread
n = … ! size of remote column
process((float *) field, …);

upc_barrier;
upc_memget(aux, a[q].data,

n * sizeof(float));

assure pointer association on q is ordered against

references to q from another image

assure that updates to field on q are ordered against

references to q from another image

then, update localdata using local buffer aux

Note that NR and NC might vary between images

CAF: Some limitations on intrinsic assignment

POINTER components

shallow copy semantics may conflict with locality requirement

Allocatable components

copying of data is allowed, but no (implied) remote allocation

a[q] = container(field(:,1))
on image q, a % data may

become undefined

type :: polynomial
real, allocatable :: f(:)

end type

type(polynomial) :: ps[*]

ps[q] = polynomial([2.0, 5.0])

ps[q] % f = [2.0, 5.0]
if executed on an image other

than q, ps % f must be

allocated there with size 2

This is not permitted

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 58

Coarray subobjects

A subobject of a coarray is also a coarray if

it is not coindexed,

no vector subscript is involved in establishing it, and

no POINTER or allocatable component selection is involved in

establishing it.

Otherwise, it is not a coarray.

Relevance:

when passing as an argument to a procedure with a

corresponding coarray dummy

in an association block context

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 59

Part 3a: Data layout

and processing

CAF corank-image mapping

UPC locality intrinsics

UPC global view and upc_forall

Non-trivial coindex-to-image mappings

Corank of a coarray may be larger than one

sum of rank and corank can be up to 15

Lower cobound for each codimension can be different from 1

Example: corank 2

Mapping to image index for 10 executing images

z(:,:)[2,4]
(100 elements)1

2

3

4

5

6

7

8

9

10

0

1

2

3

3 4 5

 ragged rectangular pattern

z(:,:)[3,5]
invalidc

o
s
h
a
p
e

=
 [
4
,
3
]

real z(10,10)[0:3,3:*]

lower cobound

of codimension 1

upper cobound

of last codimension

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 61

Supporting intrinsics

Programmer's responsibility to specify valid coindices

Examples for "z" declared previously

this_image(coarray [,dim]) compute (local) coindices from object on an
image, optionally only that for a specified
codimension.

image_index(coarray, sub) compute (remote) image index from object
and (local) coindex; zero for invalid coindex. e.g., for later use

in synchronization

statements

1

2

3

4

5

6

7

8

9

10

0

1

2

3

3 4 510 images

cindx = this_image(z)

m1 = this_image(z, 1)

img = image_index(z, [2,4])

img = image_index(z, [2,5])

on image 7, returns [2,4]

on image 7, returns 2

on all images, returns 7

on all images, returns 0

real :: z(10,10) [0:3,3:*]
integer :: cindx(2), m1, img

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 62

UPC: Locality and phase

May require assurance about

where a subobject is located

e.g., to avoid cross-thread

accesses

Further intrinsics:

upc_elemsizeof(object)

returns size of an element of

the shared object in bytes

upc_localsizeof(object)

returns size of the local part

of the shared object in bytes

upc_blocksizeof(object)

returns blocking factor of the

shared object

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 63

A[4*B]

A[4*B+1]

A[4*B+2]

…

A[5*B-1]

shared [B] int A[N];
size_t thr, pos;

thr = \
upc_threadof(&A[4*B+2]);

pos = \
upc_phaseof(&A[4*B+2]);

on any thread, returns 4

on any thread, returns 2

0

1

2

…

B-1

p
h

a
s
e

A[5*B]

a block of A

on thread 4

assuming B > 2

Next block on

thread 5

UPC: Processing global data

Fragmented data

requires code restructuring

(e.g. for loop processing)

UPC supports global data

locality to a thread is implicit

Global loop processing:

upc_forall integrates data

affinity to threads with loop

construct

must be collectively executed

by all threads

fourth argument is an affinity

expression that controls

which subset is executed

Example: matrix initialization

MYTHREAD only executes

that subset of iterations with
icol%THREADS == MYTHREAD

effect: all assignments are

thread-local

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 64

shared [N] float Mat[N][N];

upc_forall (icol=0; icol<N;
icol++; icol) {

for (irow=0;irow<N;irow++) {
Mat[icol][irow] =

matval(irow+1,icol+1);
}

}

distribute columns

round-robin

global indexing

retained

Affinity expressions in upc_forall

Type of affinity expression Iterations of loop executed on MYTHREAD

integer i with i%THREADS == MYTHREAD

shared pointer *x with upc_threadof(x) == MYTHREAD

"continue" or empty all iterations. In this case, collective execution is not
required

In the example, using

would have the equivalent effect

Note:

multiple shared entities with incommensurate block sizes inside code

block might perforce lead to non-local accesses / communication

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 65

shared [N] float Mat[N][N];
upc_forall (icol=0; icol<N; icol++; &Mat[icol][0]) { … }

Part 3b:

Collective Procedures

Note:

In Fortran, collectives were added by TS18508

Currently, they are not yet generally supported

Motivation

Common pattern in serial code:

use of reduction intrinsics, for example:
SUM for evaluation of global system properties

Coarray / UPC code:

on each image, an image-dependent partial sum is evaluated

i. e. the intrinsic is not image-aware

Variables that need to have the same value across all images

e.g. global problem sizes

values are initially often only known on one image

real :: mass(ndim,ndim), velocity(ndim,ndim)
real :: e_kin
:
e_kin = 0.5 * sum(mass * velocity**2)

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 67

In C, you don’t

even have those ... so

need to roll your own.

Classification

Collectives that perform a computation

Collectives that re-localize data

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 68

+su
m

execution sequence

1

2

3

4

+su
m

execution sequence

1

2

3

4

must execute on

all images

reduction with result on one image reduction with result on all images

b
ro

ad
ca

st

execution sequence

1

2

3

4

broadcast data from one image
to all others

must execute on

all images

General properties

CAF

Data arguments need not be

coarrays – however if a coarray is

supplied, it must be the same

(ultimate) coarray on all images

No segment ordering is implied by

execution of a collective – valid result

data on exit

All collectives are "in-place" –

programmer needs to copy data

argument if original value is still

needed

UPC

Data arguments are always shared

entities

Programmer must specify whether

synchronization is performed

Separate „source“ and „destination“

arguments, which are not allowed to

be aliased (undefined behaviour)

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 69

Both CAF and UPC

Collectives must be invoked by all images, and from unordered

segments, to avoid deadlocks

Collectives could of course be implemented by the programmer. However it is expected that the

supplied ones will perform better, apart from being more generic in semantics.

#include <upc_collective.h>

CAF Reductions: CO_SUM, CO_MAX, CO_MIN

Arguments:

a may be a scalar or array of

numeric type

result_image is an optional

integer with value between 1

and num_images()

without result_image, the

result is broadcast to a on all

images, otherwise only to a on

the specified image

+su
m

execution sequence

1

2

3

4

real :: a(2)
:
call co_sum(a, result_image=2)

a becomes undefined

on images ≠ 2
real :: a(2)
:
call co_sum(a)

a becomes defined

on all images

+su
m

execution sequence

1

2

3

4

must execute on

all images

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 70

CAF Reductions with user-defined operations

Example: derived type

might already have a specific
used to overload addition

PURE function with scalar,
nonpolymorphic, nonalloca-
table, nonpointer, nonoptional
arguments

CO_REDUCE:

assignment to result is done as

if it were intrinsic
(finalizers might be invoked!)

operator must be the same

function on all images

type :: matrix
: ! implementation detail

end type

pure function matrix_plus(x, y) &
result(r)

type(matrix), intent(in) :: x, y
type(matrix) :: r
: ! implementation detail

end function

type(matrix) :: xm
:
call co_reduce(a=xm, &

operator=matrix_plus, &
RESULT_IMAGE=2)

must be mathematically

associative

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 71

UPC Reduction prototype

void upc_all_reduce<<T>>(

shared void *restrict dst,

shared const void *restrict src,

upc_op_t op,

size_t nelems,

size_t blk_size,

<<TYPE>>(*func)(<<TYPE>>, <<TYPE>>),

upc_flag_t flags);

destination and source, respectively

number of elements of

specified type

source pointer block size.

Permits to respect phase:

shared [blk_size] TYPE *src[nelems]

replace <<T>> by type specifier (C, UC, etc., see next slide)

function argument will be NULL unless user-defined

reduction function is specified through op

synchronization is specified through flags

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 72

UPC Reductions:
Supported types and operations

Reduction types
encoded as part of the function name 11 variants per function

note that only intrinsic types are supported

Operations:

are constants of type upc_op_t

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 73

T TYPE T TYPE

C/UC signed char/ unsigned char L/UL signed long/ unsigned long

S/US signed short/ unsigned short F/D/LD float/double/long double

I/UI signed int/unsigned int

Numeric Logical User-defined function

UPC_ADD UPC_AND UPC_FUNC

UPC_MULT UPC_OR UPC_NONCOMM_FUNC

UPC_MAX UPC_XOR

UPC_MIN UPC_LOGAND

UPC_LOGOR

UPC collectives: specifying synchronization

Synchronization mode

constants of type upc_flag_t in

upc_collectives.h

IN/OUT

refers to whether the specified

synchronization applies at the entry

to or exit from the call

Relaxing synchronization

programmer‘s responsibility to assure

that no race conditions occur

typically used for multiple reductions

on disjoint variables

Synchronization semantics

NOSYNC – threads do not

synchronize at entry or exit

MYSYNC – start processing of data

only if owning threads have entered

the call / exit function call only if all

local read/writes are complete

ALLSYNC – synchronize all threads

at entry / exit

Combining modes
UPC_IN_NOSYNC | UPC_OUT_MYSYNC

UPC_IN_NOSYNC same as

UPC_IN_NOSYNC | UPC_OUT_ALLSYNC

0 same as

UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 74

NOSYNC
UPC_ _ MYSYNC

ALLSYNC

IN
OUT

UPC Example use

Array reductions are not supported

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 75

shared double cc[THREADS];
shared double res[THREADS];
shared [0] double cc_0[THREADS];
shared [0] double res_0;

int main () { // initializations omitted

upc_all_reduceD(&res,cc,UPC_ADD,THREADS,1,NULL,UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);
printf("Reduce variant 1 - Thread %i: %12.4f\n", MYTHREAD, (double) *res);

upc_all_reduceD(&res_0,cc,UPC_ADD,THREADS,1,NULL,UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);
// broadcast to a local scalar

rl = *res;
printf("Reduce variant 2 - Thread %i: %12.4f\n", MYTHREAD, rl);

upc_all_reduceD(&res,cc_0,UPC_ADD,THREADS,0,NULL,UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);
printf("Reduce variant 3 - Thread %i: %12.4f\n", MYTHREAD, (double) *res);

}

reduction that includes a broadcast to
multiple result variables res

reduction to a localized result variable res_0

reduction from a localized source variable cc_0

CAF: Data redistribution with CO_BROADCAST

Arguments:

a may be a scalar or array of any type. it must have the same type

and shape on all images. It is overwritten with its value on

source_image on all other images

source_image is an integer with value between 1 and

num_images()

type(matrix) :: xm
:
call co_broadcast(a=xm, source_image=2)

b
ro

ad
ca

st

execution sequence

1

2

3

4

a
s

if b
y
 in

trin
s
ic

a
s
s
ig

n
m

e
n
t

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 76

UPC: Example for redistribution

UPC Allscatter

i-th block of src with size nbytes is copied to dst with affinity to thread i

each block in src must have affinity to a single thread

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 77

void upc_all_scatter (
shared void *dst,
shared const void *src,
size_t nbytes,
upc_flag_t sync_mode);

a
lls

c
a
tt

e
r

execution sequence

0

1

2

3

Prefix reductions

upc_all_prefix_reduceT()

semantics:

for UPC_ADD,

object dst[i] hosted

on thread i gets
(thread-dependent result)

Further UPC collectives

Redistribution functions

upc_all_broadcast()

upc_all_gather_all()

upc_all_gather()

upc_all_exchange()

upc_all_permute()

 consult the UPC language

specification for details

+

a
ll_

p
re

fi
x
_

re
d

u
c
e

execution sequence

0

1

2

3

+

i

k

kd
0

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 78

Part 4a: Advanced

Synchronization Concepts

Partial synchronization

One-sided synchronization

Mutual exclusion (locks)
UPC: split phase barrier and memory consistency

Partial synchronization

Image subsets

sometimes, it is sufficient to
synchronize only a few
images

synchronization statement:

executing image is implicitly
included in image set

More than 2 images:

need not have same image
set on each image

but: eventually all image pairs
must be resolved, else
deadlock occurs

ordering can be relevant:

if (this_image() < 3) then

sync images ([1, 2])
end if

execution sequence (/ 2 /) (/ 3 /)

(/ 3 /) (/ 1 /)

(/ 1 /) (/ 2 /)

1
2
3

1
2
3
4

Each grey box:

represents one
sync images

statement

© 2010-19 LRZ 80PGAS Languages: Coarray Fortran/Unified Parallel C

(/ 1 /)

deadlock

OK

Example: Simple Master-Worker

Scenario:

one image sets up data for

computations

others do computations

difference between

SYNC IMAGES (*) and

SYNC ALL: no need to

execute from all images

Performance notes:

sending of data by image 1

„Push" / "Put" mode

an optimizing implementation

might perform non-blocking

transfers, and processing of

data by other images might start

up in a staggered sequence.

if (this_image() == 1) then
: ! send data
sync images (*)

else
sync images (1)
: ! use data

end if
images 2 etc.

don‘t mind

stragglers

do i=2, num_images()
a(:)[i] = …

end do

„all images“

© 2010-19 LRZ 81PGAS Languages: Coarray Fortran/Unified Parallel C

Partial synchronization: Best Practices

Localize complete set of partial synchronization
statements

avoid interleaved subroutine calls which do synchronization of their
own

a very bad idea if subprogram does the following

likely to produce wrong results even if no deadlock occurs

if (this_image() == 1) sync images (2)
call mysub(…)
:
if (this_image() == 2) sync images (1)

subroutine mysub(…)
:
if (this_image() == 2) sync images (1)
:

end subroutine

© 2010-19 LRZ 82PGAS Languages: Coarray Fortran/Unified Parallel C

sync images is

not context-safe

Weaknesses of previously treated

synchronization constructs

Symmetric synchronization

is overkill

the ordering of p1 before q2 is

often not needed

image q therefore might

continue without waiting

Therapy:

introduces a lightweight,

one-sided synchronization

mechanism – Events

Recall semantics of

SYNC ALL

enforces segment ordering:

q1 before p2, p1 before q2

qj and pj are unordered

applies for SYNC IMAGES as

well

Aq

p

execution sequence

B

ad
d

re
ss

sp
ace

local variable

q1 q2

p1 p2

global barrier

use, intrinsic :: iso_fortran_env

type(event_type) :: ev[*]

special opaque derived type;

all its objects must be coarrays

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 83

concept applies

for UPC also!

One-sided synchronization with Events

Image q executes

and continues without blocking

Image p executes

the WAIT statement blocks until

the POST has been received.

Both are image control

statements.

One sided segment ordering

q1 ordered before p2

no other ordering implied

no other images involved

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 84

a = …

event post (ev[p])

event wait (ev)
b = a(:)[q]

no coindex permitted

on event argument here

Aq

p

execution sequence

B

ad
d

re
ss

sp
ace

local variable

q1 q2

p1 p2

POST (+1)

WAIT (-1)

an event variable has an internal counter

with default value zero; its updates are

exempt from the segment ordering rules

(„atomic updates“)

The dangers of over-posting

Scenario:
Image p executes

Image q executes

Image r executes

Question:
what synchronization effect

results?

Answer: 3 possible

outcomes
which one happens is

indeterminate

Case 1: p1 ordered before q2

Case 2: r1 ordered before q2

Case 3: ordering as given on

next slide

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 85

event post (ev[q])

event wait (ev)

event post (ev[q])

POST (+1)

p
p1 p2

WAIT (-1)

q
q1 q2

POST (+1)

r
r1

r2

POST (+1)
p

p1 p2

WAIT (-1)

q
q1 q2

POST (+1)

r
r1 r2

Avoid over-posting from multiple images!

Multiple posting done correctly

Why multiple posting?

Example: halo update

Correct execution:

Image p executes

Image r executes

Image q executes

p1 and r1 ordered before q2

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 86

qp = q-1 r = q+1

FM

fm(:,1)[q] = …
event post (ev[q])

fm(:,n)[q] = …
event post (ev[q])

event wait (ev, UNTIL_COUNT = 2)
… = fm(:,:)

POST (+1)

p
p1 p2

WAIT (-2)

q
q1 q2

POST (+1)

r
r1 r2

This case is enforced by using

an UNTIL_COUNT

number of posts needed

The EVENT_QUERY intrinsic

Permits to inquire the state of an event variable

the event argument cannot be coindexed

the current count of the event variable is returned
(note that the actual count may change before you can inspect the result!)

the facility can be used to implement non-blocking execution on

the WAIT side of event processing

invocation has no synchronizing effect

call event_query(event = ev, count = my_count)

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 87

Berkeley UPC extension: Semaphores

Setting up a semaphore Possible flag values

entries along rows can be

combined

for example,

supplies semantics equivalent to

Fortran‘s events

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 88

#include <upc_sem.h>
upc_sem_t *shared ev[THREADS];
int flags;

flags = …;
ev[MYTHREAD] = upc_sem_alloc(flags);

: // use ev for synchronization

upc_barrier;
upc_sem_free(&ev[MYTHREAD]);

non-collective

Value Semantics

UPC_SEM_[BOOLEAN,INTEGER] binary vs. counted
semaphore

UPC_SEM_[S,M]PRODUCER increment by only
one thread or by all
threads

UPC_SEM_[S,M]CONSUMER decrement by hosting
thread or by all
threads

flags = UPC_SEM_INTEGER | UPC_SEM_MPRODUCER | UPC_SEM_SCONSUMER;
ev[MYTHREAD] = upc_sem_alloc(flags);

Using the semaphore for

one-sided synchronization

Single-post

Non-blocking wait

Multiple-post

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 89

// thread q executes
p = …;
a[p] = …;
upc_sem_post(ev[p]);

// thread p executes
upc_sem_wait(ev[MYTHREAD]);
… = a[MYTHREAD];

// thread q executes
p = …;
a[p] = …;
upc_sem_post(ev[p]);

// thread r executes
p = …;
b[p] = …;
upc_sem_post(ev[p]);

// thread p executes
upc_sem_waitN(ev[MYTHREAD], 2);
… = a[MYTHREAD] + b[MYTHREAD];// thread q does the same as above

…
// thread p executes
for (;;) {

if (upc_sem_try(ev[MYTHREAD]))
break;

: // do something unrelated to ꞌaꞌ
}
… = a[MYTHREAD];

For details, read upc_sem.pdf

Mutual Exclusion (simplest case)

Critical region

block of code only executed

by one image at a time

order is indeterminate

can have a name, but this

has no parallel semantics

associated with it

Subsequently

executing images:

segments corresponding to

execution of the code block

are ordered against one

another

this does not apply to

preceding or subsequent

code blocks

may need additional

synchronization to protect

against race conditions

critical
: ! statements in region

end critical

© 2010-19 LRZ 90PGAS Languages: Coarray Fortran/Unified Parallel C

Example for mutual exclusion

via a critical region

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 91

e
x
e

c
u

ti
o

n
s
e

q
u

e
n

c
e

real :: s, stot[*]

real :: a(:)

integer :: i

stot = 0.0

sync all

s = 0.0

do i = 1, size(a)

s = s + a(i)

end do

critical

stot[1] = stot[1] + s

end critical

sync all

… = stot[1]

Image:

1 2 3 4

s0 s1 s2 s3

s0 s1 s2 s3

Only one image at a time can execute the critical region
others must wait code in region is effectively serialized

stot[1]

stot[1]

synchronization
point

coarray private

stot[1]

stot[1]

stot[1]

stot[1]

inefficient sum reduction

give all images
the final value

avoid race of above
assignment against

first update

Locks – a more flexible mechanism

for mutual exclusion

Coordinate access to shared (= sensitive) data

Use a coarray/shared lock variable

modifications are guaranteed to be atomic

consistency across images/threads

Problems with CAF critical region:

objects may require protection in multiple blocks

different objects protected by different locks

 improved scalability

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 92

„red balls“

Declaration and initial state

CAF

Lock variable:

must be a coarray (here, this

implies one lock per image!)

two states - unlocked or locked

locked means: acquired by a

specific image (until that image

releases the lock again)

UPC

Lock variable:

typically, one or more pointers to

a single shared object (included

in type)

explicit setup and teardown

required

otherwise, like CAF

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 93

use, intrinsic :: iso_fortran_env

type(lock_type) :: my_lock[*]

default initialized to the
"unlocked" state

#include <upc.h>

upc_lock_t *lock;

lock = upc_all_lock_alloc();
: // do stuff with lock
if (MYTHREAD == 0)

upc_lock_free(lock);

collective call
same result on each thread

Simplest example for blocking locks

CAF

lock/unlock: no memory fence,

only one-way segment ordering

UPC

lock/unlock imply memory fence

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 94

use, intrinsic :: iso_fortran_env
type(lock_type) :: my_lock[*]
:
rb = …
sync all

lock(lock[1])
i = …
rb[i] = rb[i] + …

unlock(lock[1])

sync all
: ! access rb

#include <upc.h>
upc_lock_t *lock;
:
lock = upc_all_lock_alloc();
rb = …;
upc_barrier;

upc_lock(lock);
i = …;
rb[i] = rb[i] + …;

upc_unlock(lock);

upc_barrier;
: ! access rb
if (MYTHREAD == 0)

upc_lock_free(lock);

blocks until the variable has

the state "unlocked", then

acquires the lock

blocks until the variable has

the state "unlocked", then

acquires the lock

must be invoked by the

image that previously

acquired the lock.

Immediately continues

after releasing the lock.

must be invoked by the

image that previously

acquired the lock.

Immediately continues

after releasing the lock.

Example works analogous

to a CRITICAL region

might also be needed to

prevent race against teardown

Quiz: why image 1 in the example?

Non-blocking lock semantics

CAF: UPC:

use, intrinsic :: iso_fortran_env

type(lock_type) :: nb_lock[*]
logical :: got_it

activity : do
lock(nb_lock[1], &

acquired_lock=got_it)
if (got_it) exit activity
: ! go climb that mountain

end do activity
: ! play with red balls
unlock(nb_lock[1])

#include <upc.h>
upc_lock_t *nb_lock;

nb_lock = upc_all_lock_alloc();

for (;;) {

if (upc_lock_attempt(nb_lock))
break;

: // go climb that mountain
}
: // play with red balls
upc_unlock(nb_lock);

upc_all_lock_free(nb_lock);

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 95

potentially needed explicit barriers are omitted here

collective teardown (UPC 1.3)

includes barrier

Always continues.

result is true if

lock was acquired

Always continues.

Result is true if

lock was acquired.

Locks – an expensive synchronization mechanism

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 96

Best case timing for lock acquisition

𝑻𝒍𝒐𝒄𝒌 = 𝑻𝒍𝒂𝒕 ∗ log2𝑵

where

Tlat is the maximum latency in the system

(a couple of µs 10,000 cycles)

N is the number of image groups for which Tlat applies.

Typical value for large programs: 100,000 cycles (excludes outstanding data

transfers)

Advice:

prefer use of events for synchronization (where possible)

CAF: Event and lock subobjects

Declare type components as events or locks

but then objects of that type are obliged to be coarrays:

type :: queue
type(lock_type) :: lock
type(work_item) :: work
type(queue), pointer :: &

next => null()
end type

type :: pipeline
type(event_type) :: start
type(work_item) :: work

end type

type(queue) :: my_queue[*]
type(pipeline), allocatable :: my_pipeline(:)[:]

type(queue) :: incorrect_queue ! Not permitted

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 97

UPC: lock components

Establish a component inside a struct definition

Constructor for a Queue object (called on a per-thread basis)

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 98

typedef struct queue {
upc_lock_t *lock;
shared work_item *work;
shared queue *next;

}

typedef shared struct queue Queue;

Queue *Queue_add (Queue *in, work *w) {
Queue *this;
: // establish "this"
this->lk = upc_global_lock_alloc();
: // upc_memput w to this->work (after locking)

}

non-collective lock allocation

lock is needed for modifying the queue

all objects are shared

UPC: split-phase barrier

Separate barrier completion point from waiting point

this allows threads to continue computations once all others have reached the

completion point may reduce impact of load imbalance

completion of upc_wait implies synchronization

collective – all threads must execute sequence

CAF:

presently does not have this facility in statement form

(one can implement this concept using events)

execution sequence

completion point waiting point

for (…) a[n][i]= …;
upc_notify;
// do work (on b?) or comm.
// not involving a
upc_wait;
for (…) b[i]= b[i]+a[q][i];

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 99

UPC: Memory consistency modes

How are shared entities accessed?

relaxed mode program assumes no concurrent accesses from different threads

strict mode program ensures that accesses from different threads are separated,

and prevents code movement across these synchronization points

relaxed is default; strict may have large performance penalty

Options for synchronization mode selection

variable level:

(at declaration)

code section level:

strict shared int flag = 0;
relaxed shared [*] int c[THREADS][3];

c[q][i] = …;
flag = 1;

while (!flag) {…};
… = c[q][j];

T
h

re
a

d
 q

T
h

re
a

d
 p

{ // start of block
#pragma upc strict
… // block statements

}
// return to default mode

 program level

#include <upc_strict.h>
// or upc_relaxed.h

consistency mode on variable declaration overrides

code section or program level specification

q has same

value on

thread p as

on thread q

example for

a spin lock

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 100

What strict memory consistency

does and doesn‘t do for you

„strict“ cannot prevent all race conditions

example: „ABA“ race

„strict“ does not make a[i]+=j atomic (read/modify/write)

„strict“ does assure that changes on (complex) objects appear in the

same order on other threads

strict shared int flag;
int val, val1, val2;

flag = 0;
upc_barrier;
flag = 1;
flag = 0;

thread 0

upc_barrier;
val = flag;

thread 1

may end up
with 0 or 1

flag = 0;
upc_barrier;
flag = 1;
flag = 2;

upc_barrier;
val1 = flag;
val2 = flag;

may obtain (val1 <= val2)
but not (val1 > val2)

e.g., (2, 1) or (2,0) are not possible

thread 0 thread 1

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 101

Part 4b: PGAS

programming scenarios

Interaction with OO semantics

Library Design:
Subprogram interfaces

Factory procedures

PGAS and MPI programming

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 102

Optional

Using coarrays together with

object-oriented features

 Shaky ground due to

implementation issues

 Limited semantics

Combining coarrays with object orientation

A coarray may be polymorphic

example shows typed allocation

coindexing is not permitted for a polymorphic left hand side:

LHS coarray in intrinsic assignment cannot be polymorphic

class(body), allocatable :: particles(:)[:]

allocate(charged_body :: particles(n)[*])

body

charged_body

select type (particles)
type is (charged_body)
particles(:)[p] = …

end select

Collective allocation and synchronization.

It must be guaranteed that the dynamic type is the

same on each image.

OK - particles are non-polymorphic here

particles(:)[p] = … Not permitted for intrinsic assignment

POD types

note that it would need to be allocatable

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 104

Restrictions on association

Coindexing is not permitted:

But appearance of a coarray is OK

we've already seen it for SELECT TYPE

here an example for coarray subobject association:

select type(particles[2])
:

end select

associate(p => asteroids[2])
p = …

end associate

Not permittedNot permitted

appears as

local

type(body) :: asteroids(ndim)[*]

associate(p => asteroids%mass)
p(:)[q] = …

end associate
p is a discontiguous real array coarray,

because asteroids%mass is a coarray subobject.

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 105

Limitation on type extension

Applies for types with coarray components:

is only permitted if the parent type already has a coarray component:

otherwise, existing code for co_m would stop working for the extension

 violation of inheritance mechanism

type, extends(co_m) :: co_mv
real, allocatable :: v(:)[:]

end type

type :: co_m
real, allocatable :: m(:,:)[:]

end type

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 106

Execution of type- and object-bound procedures

Discussed:

local vs. coindexed execution

procedure pointer: remote alias

is not locally known, no remote

execution supported

type-bound procedure is the

same on all images

polymorphism removed via

SELECT TYPE (RTTI)

type :: body
: ! data components
procedure(p), pointer :: print

contains
procedure :: dp

end type

subroutine dp(this, kick)
class(body), intent(inout) :: this
real, intent(in) :: kick(3)
: ! give body a kick

end subroutine

object-bound

procedure (pointer)

type-bound

procedure (TBP)

call particles(7) % dp(kick)
call particles(8) % print()

if (this_image() == 1) then
select type(particles)
type is (charged_body)
call particles(7)[2] % print()
call particles(8)[2] % dp(kick)

end select
end if

coindexed actual

arguments to be discussed

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 107

Restrictions for container types

with polymorphic components

For explicit references to such components,

coindexing is not permitted.

A cooperative circumlocution is required, for example:

type :: trajectory
class(body), allocatable :: &

particle(:)
integer :: nsize

end type

type(trajectory) :: mytr[*]
class(body), allocatable :: &

auxiliary(:)[:]

allocate(charged_body :: &
mytr%particle(n))

mytr%nsize = n
: ! supply data

allocate(charged_body :: &
auxiliary(nmax)[*])

p = … ! target image
select type (auxiliary)
type is (charged_body)
auxiliary(1:mytr[p]%nsize)[p] = &

mytr % particle
: ! further code elided

end select

sync images ([p,q])

: ! consume local portion
: ! of auxiliary(:) assuming the same dynamic

type on all images

assuming one-to-one

mapping between source

and target images

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 108

Comments on parallel library design

Shared objects as dummy arguments

Library codes may need

to communicate and synchronize argument data

 declare dummy arguments as coarrays / pointers to shared

Preserve ability for exchanging data between images

implies that data must not be copied when calling a procedure

Restrictions that prevent copy-in/out of coarray data:

 if dummy is not assumed-shape, actual must be simply contiguous or have

the CONTIGUOUS attribute

 the VALUE attribute is prohibited

 a coarray descriptor might be copied

UPC shared data:

 private pointers to shared might be copied, but not shared-to-shared

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 110

Shared dummy interface

CAF

an explicit interface is required for

using coarray dummy arguments

updating a coarray dummy through

coindexing is permitted (exception to

aliasing rules)

UPC

assumes local size is n

cast to local pointer for safety of use

and performance if only local

accesses are required

declarations with fixed block size

> 1 also possible (default is 1, as

usual)

subroutine subr(n,w,x,y)
integer :: n
real :: w(n)[n,*]
real :: x(n,*)[*]
real :: y(:,:)[*]

: ! local computations
sync all
: ! exchange data
sync all
: ! etc

end subroutine

explicit shape

assumed shape

assumed size

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 111

void subr(int n,
shared float *w) {

int i;
float *wloc;
wloc = (float *) &w[MYTHREAD];
for (i=0; i<n; i++){

… = wloc[i] + …
}
upc_barrier;
// exchange data
upc_barrier;
// etc.

}

Calling the procedure

CAF

actual argument must be a

coarray if the dummy is

argument a: corank mismatch is

permitted. Inside the procedure,

coindices are remapped.

argument c: for an assumed

shape dummy, the actual may

be discontiguous

UPC

cast to cyclic to match the prototype

this approach of passing cyclic pointer and

block size as arguments is a common

solution to UPC library design.

cyclic is “good enough” in most cases

because function can recover actual layout

via pointer arithmetic

in this example w[i] aliases x[i][0]

shared [*] float x[THREADS][NDIM]
int main(void) {

: // initialize x
upc_barrier;
subr(NDIM, (shared float *) x);

}

real :: a(ndim)[*], b(ndim,2)[*]
real, allocatable :: c(:,:,:)[:]
allocate(c(10,20,30)[*])
: ! initialize a, b, c
call subr(ndim, a, b, c(1,:,:))

x[0][0]

x[0][1]

⁞

Thread 0 Thread 1 Thread 2 Thread 3

x[1][0]

x[1][1]

⁞

x[2][0]

x[2][1]

⁞

x[3][0]

x[3][1]

⁞

w[0] w[1] w[2] w[3]

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 112

recommendation: avoid image-

dependent cobounds

Image-dependent coarray arguments

Example CAF procedure:

Invocation:

with a different coarray

(subobject) on each image

Illustrating the communication

pattern

all references and definitions are

done „in-place“, on elements of the

original array coarray

not all images need to call the

procedure

subroutine add_pivot(x, img, y, n)
integer, intent(in) :: img, n
real, intent(in) :: x[*]
real, intent(inout) :: y(:)

y(n) = y(n) + x[img]
end subroutine

real :: x(ndim)[*]
integer :: p, n
p = …; n = …
x(:) = …
sync all
call add_pivot(x(n), p, x, n)

p /= this_image(),
n and p are different

on each image

here, dummy is a

scalar coarray

actual is a scalar

coarray subobject

image qimage p image r

original array

coarray

original array

coarray

original array

coarray

scalar coarray used

for invocation on q

scalar coarray used

for invocation on p

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 113

Image-dependent shared object passing

UPC version

with invocation

Beware:

if synchronization is done

within a procedure, all images

must execute a consistent

sequence of synchronizations

else, deadlocks or data races

will result

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 114

void add_pivot(shared float *x,
float y[], int n) {

y[n] = y[n] + *x;
}

shared float x[NDIM][THREADS];
int main() {

int p = …; int n = …;
: // initialize x
upc_barrier;
add_pivot(&x[n][p], (float *) x, n);

}

p /= MYTHREAD, n
and p are different on

each thread

CAF: Limitations for execution inside PURE procedures

Coindexed definitions („Put“) are not permitted

because this constitutes a side effect

coindexed references („Get“) are OK though

Image control statements are not permitted

ELEMENTAL procedures:

are not permitted to have coarray dummy arguments

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 115

Procedure-local shared objects

CAF Requirements:

must have the SAVE or the ALLOCATABLE attribute or both

a function result cannot be declared a coarray

Consequence:

automatic coarrays or coarray function results are not permitted

Rationale:

not prohibiting this would imply a need for implicit synchronization of

(and hence also invocation from) all images

Note that for an allocatable procedure-local coarray this is the case

anyway, but the synchronization point is explicitly visible!

If that coarray does not also have the SAVE attribute, it will be auto-

deallocated at exit from the procedure if no explicit DEALLOCATE was

previously issued.

UPC: has similar restrictions

statically declared shared objects cannot be automatic

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 116

CAF: Coindexed actual arguments

Assumptions:

actual argument is a coindexed object (therefore not a coarray)

it is modified inside the subprogram

therefore, typically copy-in/out will

be required

 an additional

synchronization rule

is needed

Usually not a good idea

performance issues

problematic or impermissible for container types (effective

assignment!)

execution sequence

p

a
q

r

a[q] = … a[q] = …

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 117

Note: this has no UPC equivalent

CAF: Factory procedures for coarrays

Allocatable dummy argument is a coarray:

intent(out) is not permitted (would imply synchronization)

actual argument: must be allocatable, with matching type, rank and

corank

procedure must be executed on all images, and with the same effective

argument

subroutine read_coarray_data(simulation_field, file_name)
real, allocatable, intent(inout) :: simulation_field(:,:,:)[:]
character(len=*), intent(in) :: file_name
: ! determine size
if (allocated(simulation_field)) deallocate(simulation_field)
allocate(simulation_field(n1, n2, n3)[0:*])
: ! read data into simulation_field

end subroutine read_coarray_data

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 118

deferred coshape

UPC Factory – shared pointer function result

Analogous functionality as for CAF is illustrated

i.e., requires collective execution

Remember:

other allocation functions upc_global_alloc (single thread distributed

entity), upc_alloc (single thread shared entity) do not synchronize

this permits to implement factory functions that do not require collective

execution

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 119

shared *float factory(char *file_name) {
shared float *wk;
: // determine size n to allocate
wk = (shared float *) upc_all_alloc(THREADS, sizeof(float)*n);
: // fill wk with data
return wk;

}

typically, a multiple

of THREADS

CAF: Overloading the assignment

Use this as circumlocution in cases where intrinsic assignment

is prohibited

Example: polymorphic coarray

Generic resolution of coarray vs. noncoarray specific is not possible
(syntax identical for calls with / without coarray)

module mod_body
: ! type definition etc
interface assignment (=)
module procedure assign_body

end interface
contains
subroutine assign_body(out, in)
class(body), intent(inout), allocatable :: out(:)[:]
class(body), intent(in) :: in(:)
: ! assert that size of in is the same on all images
allocate(out(size(in,1))[*], source = in)

end subroutine
:

end module

use mod_body
type(charged_body) :: nuclei(ndim)
class(charged_body), &

allocatable :: conuc(:)[:]

conuc = nuclei

could also be

a coarray

RHS might also

be a function call

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 120

CAF: Using type-bound procedures

to implement communication

Example:

handle data transfer for the

container type

here we only look at put

Execution

of put on image p

of consuming code on image q

type :: polynomial
real, allocatable :: f(:)

contains
procedure :: get, put

end type

type(polynomial) :: s[*]
integer :: status[*]

s = …
sync all
:
status[q] = s%put(q)
event post (ev[q])

s = …
sync all
:
event wait (ev)
if (status == put_success) then
: ! reference local part of s

end if

put_success and put_fail
are distinct integer constants

remember that
s[p] = …

is not permitted for an

s of type polynomial

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 121

Implementation sketch

For support of type extensions writing an overriding TBP is
most appropriate

integer function put(this, img)
class(polynomial), intent(inout) :: this[*]
integer, intent(in) :: img
integer :: rem_size
if (.not. allocated(this[img]%f)) then

put = put_fail
return

end if
rem_size = size(this[img]%f, 1)
if (rem_size >= size(this%f)) then

put = put_success
this[img]%f(:this%f) = this%f
this[img]%f(this%f+1:) = 0.0

else
put = put_fail

end if
end function

failure is determined to occur

if component on target image

• is not allocated

• is allocated, but too small

to hold data

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 122

Documenting the synchronization behaviour

Synchronization performed by library code

is part of its semantics and should be documented

In particular,

whether (and which) additional synchronization is required by the

user of a library,

and whether a procedure needs to be called from all images

(„collectively“) or can be called from image subsets

It may be a good idea

to supply optional arguments that permit to change the default

synchronization behaviour

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 123

Interoperation with MPI

Basic execution model

Nothing is formally standardized

Existing practice:

each MPI task is identical with a coarray image

0 1 2 3
1 2 3 4

this_image()

exe
cu

tio
n

se
q

u
e

n
ce

result of calling

MPI_Comm_rank()

program with_mpi
use mpi_f08
: ! further declarations, including coarrays
if (.not. initialized) call MPI_Init()
: ! code with both MPI calls and
: ! coarray communication / synchronization
call MPI_Finalize()

end program

obtained from call to

MPI_Initialized()

implementation may

either want this or

not like this

no guarantee on

ordering, though

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 125

Program design ideas

Do not rewrite an existing MPI code base

Instead, extend it with coarray functionality

to avoid deadlocks, keep MPI synchronizations separate from coarray

synchronizations

avoid coindexed actual arguments in MPI calls

coarrays can be used in MPI calls (always considering segment ordering

rules), but be careful with non-blocking MPI calls

it is probably a good idea to avoid using the same object in both MPI and

coarray atomics

Knowledge of communication structure is required

analysis with tracing tool may be needed

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 126

Technical details

Compilation

use mpifort/mpif90 wrapper

together with switch for

coarray activation

not every MPI

implementation might be

usable:

if the compiler uses MPI as

implementation layer for

coarrays, it is likely that you'll

need to use at least a binary

compatible MPI together with it

Execution

at least for distributed-

memory, it is likely that you

will need to use mpiexec to

start up

consult your vendor's or

computing centre's

documentation

facilities for pinning of MPI

tasks are likely to be useful

for coarray performance as

well

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 127

Appendix

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 128

Implementations

CAF

Cray Fortran compiler on

Cray systems

Intel 12.0 and higher (current

release: 19.0)

gfortran (since 4.6: single image)

 partial implementation in 5.0

 more features in 8.0

Rice coarray Fortran (research

vehicle, deviates from the

standard, development stalled)

g95 (development stalled)

UPC

Cray UPC

Berkeley UPC

GCC UPC

Note:

performance problems still exist

(tuning one-sided communication

is a challenge)

 do not expect MPI-like

performance and scalability, except

for the Cray compiler on appropriate

networks

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 129

References

UPC references

https://upc-lang.org/upc-documentation (language specification, release level 1.3)

UPC Manual, by Sébastien Chauvin, Proshanta Saha, François Cantonnet, Smita

Annareddy, Tarek El-Ghazawi, May 2005

http://upc.gwu.edu/downloads/Manual-1.2.pdf

UPC Distributed Memory Programming, by Tarek El-Ghazawi, Bill Carlson, Thomas

Sterling, and Katherine Yelick, Wiley & Sons, June 2005

Coarray references

Coarrays in the next Fortran Standard, by John Reid, N1824 from https://wg5-

fortran.org

Fortran 2018 international standard

Modern Fortran explained, by Michael Metcalf, John Reid and Malcolm Cohen (OUP,

September 2018)

Coarray compendium, by Andy Vaught, http://www.g95.org/compendium.pdf

TS18508 „Additional parallel features in Fortran“, draft specification available as

document N2074 from https://wg5-fortran.org

The New Features of Fortran 2018, by John Reid, N2161 from https://wg5-fortran.org

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 130

https://upc-lang.org/upc-documentation
http://upc.gwu.edu/downloads/Manual-1.2.pdf
https://wg5-fortran.org/
http://www.g95.org/compendium.pdf
https://wg5-fortran.org/
https://wg5-fortran.org/

Omitted topics

Omitted:
rules for program termination

parallel I/O (mostly UPC)

asynchronous block transfers

(UPC only)

Further CAF TS18508 features
teams
 composable splitting of execution

contexts

 allow data transfer and sync across

team boundary

 recursive / hybrid / MPMD-like

atomic functions (similar to those

added in UPC 1.3)

limited fail-safe execution

Possible futures

process topologies in CAF
 more general abstraction than

multiple coindices

global variables and shared

pointers in CAF
 increase programming flexibility

parallel I/O in CAF

asynchronous transfers in CAF

CAF+UPC interoperation

UPC++
 https://bitbucket.org/berkeleylab/upc

xx/wiki/Home

Recent development

Coarray C++
 presently available on Cray systems

 uses template mechanism and

leverages existing Fortran run time

to map coarrays to C++

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 131

https://bitbucket.org/berkeleylab/upcxx/wiki/Home

Acknowledgements

Significant parts of this slide set are based on the SC12 tutorial notes:

„Introduction to PGAS (UPC and CAF) and

Hybrid for Multicore Programming”

by

© 2010-19 LRZ PGAS Languages: Coarray Fortran/Unified Parallel C 132

Alice E. Koniges – NERSC, Lawrence Berkeley National Laboratory (LBNL)

Katherine Yelick – University of California, Berkeley and LBNL

Rolf Rabenseifner – High Performance Computing Center Stuttgart (HLRS), Germany

Reinhold Bader – Leibniz Supercomputing Centre (LRZ), Munich/Garching, Germany

David Eder – Lawrence Livermore National Laboratory

Filip Blagojevic and Robert Preissl – Lawrence Berkeley National Laboratory

