
PGAS Course Exercises
Exercise Archive
Please unpack the exercise archive by issuing the following commands

This will generate subdirectories exercise_1, exercise_3 etc. in your home directory, containing
skeleton code you can start with, as well as an examples subfolder. Solutions to the problems will
become available successively within /lrz/sys/courses/pgas. Furthermore, PDF format versions
of the UPC standard and extensions are available in the
/lrz/sys/courses/pgas/upc_standard folder.

Preparation
Please choose the environment you want to use. You can use the symmetric_data_* program
from the examples folder to check whether your setup works correctly.

To set up a SLURM batch job on the IvyMUC system used for the exercises (from a shell on
lxlogin10.lrz.de with your course account), issue the following commands:

module load salloc_conf/ivymuc
salloc --reservation=hppa1w18_course –N 1

Please only reserve a single node since other participants also will need a resource. The above
commands should be run after setting up the PGAS environments as detailed below.

Setting up the UPC environment
For UPC programming, please load the following environment:

module unload mkl
module load gcc/6 bupc/2.26 mkl/2018_s_gcc

The compilation for a static threading with 4 threads is done with

upcc –T4 my_upc_prog.c

and subsequent execution in a salloc shell (see section “Preparation” above) with

upcrun ./a.out

For the dynamic execution environment omit the –T compilation option and instead use the –n
switch of upcrun to specify the number of execution threads.

Setting up the Gfortran-based CAF environment
Please load the following environment:

module unload mkl mpi.intel intel
module load gcc/8 mpi.intel/2018_gcc caf/gfortran mkl/2018_s_gcc

$ cd $HOME

$ tar –xf /lrz/sys/courses/pgas/exercises.tar

Compilation is done via the caf wrapper:

caf my_caf_prog.f90

and execution in a salloc shell via

cafrun –n 4 ./a.out

Setting up the Intel Fortran CAF environment
Please load the following environment:

module unload mpi.intel intel
module load intel/17.0 mpi.intel/2017 caf/intel

Compilation is done via the MPI wrapper:

mpif90 -coarray my_caf_prog.f90

and execution via

export FOR_COARRAY_NUM_IMAGES=4
./a.out

Exercise 1: The communication step of Matrix-Vector (45 min)
The directory exercise_1 contains incomplete versions of the matrix-vector multiplication program
discussed in the slide talk. These versions can compiled by issuing

make matrix_vector_upc.exe
upcrun ./matrix_vector_upc.exe
(the static threads execution setting is used here) or
make matrix_vector_caf.exe
cafrun –n 4 ./matrix_vector_caf.exe

but the execution will produce a run time error issued from the program because the partial result
stored in array B on each task has not been propagated back to V (this is typically necessary for iterative
solvers):

Implement the changes needed to do this. Which object is best selected to become a coarray/shared
entity?
Note: you can modify the NEXP value supplied in the source files, but you then need to adjust the
number of tasks such that (#tasks) == 4NEXP . This changes the problem size such that the per-task
problem size is constant (“weak scaling”).

Exercise 2: Matrix-Vector with dynamic allocation (45 min)
In order to make the program more flexible (e.g. by not requiring the problem size to be fixed at
compile time), the required objects should be dynamically allocated. Perform the necessary changes
to accomplish this. If you have not solved exercise 1, you can also start from the provided solution to
it. Compile the resulting UPC program with the dynamic execution environment (i. e. without
specifying the –T option).
Note: For UPC there is the additional complication that a compile-time block size MB cannot be used
any more. Why is it sufficient to use a block size of 1? What do you need to take care of if this change
is made?

Exercise 3: Parallelize a Jacobi solver
The serial example programs in the exercise_3 subdirectory solve the heat conduction equation in
two dimensions via an iterative Jacobi procedure.

a. Introduce a one-dimensional domain decomposition along the y direction. One method to
deal with the boundary cell problem consists in assigning each image an additional column
(“halo” or “ghost” cells, colored grey in the figure below) at its boundaries to another
domain which receives data from the task that hosts that domain:

Only the halo cells need to be involved in communication; in this example, these form
contiguous arrays. At first, please only run a fixed (sufficiently large) number of iterations,
omitting the termination criterion.

b. Start with a small problem size to check whether correct results; the printout can be done
from one (arbitrarily selected) task.

c. Implement the termination criterion.
d. When running with a problem size of 200 x 200, up to how many images does your code

scale?

Exercise 4: Parallelizing a Ray Tracer
The subdirectory exercise_4 contains a serial ray-tracer code (in a Fortran and a C version), which
computes a pretty picture. It writes the picture to a file called ‘result.pnm’. Look at the file using e.g.,
the ‘display’ program available on the front-end node. The central function is calc_tile(), which
computes one tile of the picture. The size of one tile and of the whole picture is hardcoded at the start
of the main program. Note that the code assumes that the picture size is a multiple of the tile size. In
the version given, the picture size is 4000 x 4000 and the tile size is 200 x 200.

Parallelize the code with CAF or UPC. You can
deactivate the output for testing, but make
sure that your parallel code computes the
correct result (this is easy since you can always
display the picture). What speedup does your
code obtain going from 1 to 16 tasks? Also,
compare with the baseline performance from
the serial code.

	Exercise Archive
	Preparation
	Setting up the UPC environment
	Setting up the Gfortran-based CAF environment
	Setting up the Intel Fortran CAF environment

	Exercise 1: The communication step of Matrix-Vector (45 min)
	Exercise 2: Matrix-Vector with dynamic allocation (45 min)
	Exercise 3: Parallelize a Jacobi solver
	Exercise 4: Parallelizing a Ray Tracer

