
ERLANGEN REGIONAL
COMPUTING CENTER

J. Eitzinger

PATC LRZ 2018, 26.3.2018

Architecture Specific Optimization
Techniques

2

Monday Topic
9:00-10:30 Introduction to Computer architecture
10:30-10:45 Coffee Break
10:45-11:45 Node Topology and Performance Tools
11:45-12:30 Exercise 1: Stream Benchmark
12:30-13:30 Lunch Break
13:30-14:30 Basics of Performance Engineering
14:30-15:30 Exercise 2: In-cache triad
15:45-16:00 Coffee Break
16:00-17:00 Performance Modelling

Schedule

3

Stored Program Computer: Base setting

 Improvements for relevant software
 What are the technical opportunities?
 Economical concerns
 Marketing concerns

C
PU

Memory

Control
Unit

Arithmetic
Logical

Unit

Input Output Architect’s view:
Make the common case fast !

401d08: f3 0f 58 04 82 addss xmm0,[rdx + rax * 4]
401d0d: 48 83 c0 01 add rax,1
401d11: 39 c7 cmp edi,eax
401d13: 77 f3 ja 401d08

for (int j=0; j<size; j++){
sum = sum + V[j];

}

Strategies
 Increase clock speed
 Parallelism
 Specialization

Execution and
memory

4

Performance increase by clock increase

Throughput:
1 Unit per
second

Limit: Physical limitations for cooling!

Throughput:
4 Units per
second

5

Performance increase by parallelization

Throughput:
1 Unit per second

Problems
• Need enough parallel work
• No dependencies between work
• Usage mostly explicit

Throughput:
8 Unit per second

6

Common lore: Efficiency is the fraction of peak performance you
reach!

Excursion in memory bandwidth
Some thoughts on efficiency …

Example: STREAM triad (A(:)= B(:)+C(:)*d) with data not fitting into
cache.

Intel Xeon X5482 (Harpertown 3.2 GHz): 553 Mflops/s (8 cores)
Efficiency 0.54% of peak

Intel Xeon E5-2680 (SandyBridge EP 2.7 GHz) 4357 Mflops/s (16 cores)
Efficiency 1.2% of peak

What can we do about it? Nothing!

7

Reality: This code is bound by main memory bandwidth.

HPT 6.6 GB/s (8.8 GB/s with WA)

SNB 52.3 GB/s (69.6 GB/s with WA)

In both cases this is near 100% of achievable memory bandwidth.

Excursion in memory bandwidth
A better way to think about efficiency

Efficiency increase: None !
Architecture improvement:

8x

To think about efficiency you should focus on the
utilization of the relevant resource!

8

Notions of work:

• Application Work
• Flops
• LUPS
• VUPS

• Processor Work
• Instructions
• Data Volume

Hardware-Software Co-Design?
From algorithm to execution

Algorithm

Programming language

Machine code

Compiler

9

Consider the following code:

#pragma omp parallel private(j)
{
for (int j=0; j<niter; j++) {
#pragma omp for

for (int i=0; i<size; i++) {
a[i] = b[i] + c[i] * d[i];

}
}
}

Example: Threaded vector triad in C

Setup:
32 threads running on a dual
socket 8-core SandyBridge-EP
gcc 4.7.0

/* global synchronization */

Every single synchronization in this setup costs in the order
of 60000 cycles !

10

Abstraction concept

Pragmatic solution:
 Optimizing libraries: Proven working solution
 Application code consolidation: Just a few community codes in

every application class

 Stage 1: It just works! (aka: The compiler will fix it)
 Stage 2: We need new programming models!
 Stage 3: You need to modernize your code. (aka: It is your fault)

Why are we doing this?

Algorithm

Implementation

ISA

Hardware

HARDWARE OPTIMIZATIONS FOR
SINGLE-CORE EXECUTION

• ILP
• SIMD
• SMT
• Memory hierarchy

12

Common technologies

 Instruction Level Parallelism (ILP)
 Instruction pipelining
 Superscalar execution
 Out-of-order execution

 Memory Hierarchy

 Branch Prediction Unit, Hardware Prefetching

 Single Instruction Multiple Data (SIMD)

 Simultaneous Multithreading (SMT)

Cycle
Stages

Bubbles Wind-up
Wind-down

Scheduler

Pipeline latency

Caches

Temporal locality Cache-line
Write allocate

Speculative execution

Lanes Register width
Packed

Scalar

Hazard
CPI

13

Multicore architectures

Microarchitectural optimizations

© IntelCa. 8 Mrd.
transistors in 500

mm2

FPU FPU LSUALU

L1 Cache

L2 Cache
Core

core

core

core

core

core

core

core

core

core

core

core

core
…

Chip (up to 28 Cores)

S
ockel

S
peicher

S
peicher

S
ockel

Node (2 Chips)

14

General-purpose cache based microprocessor
core

 Implements “Stored
Program Computer”
concept (Turing 1936)

 Similar designs on all
modern systems

Stored-program computer

Modern CPU core

15

Instruction level parallelism

Node-level Performance Engineering

Pipelining

Instructions

Stages

Superscalar execution

4-fach superskalar

I5 I4 I3 I2 I1

1 2 3 4 5Takt
12345

Throughput:
1 instruction per cycle
Speedup by factor 5

Single instruction takes 5 cycles

Throughput:
4 instructions per cycle

16

Pipelining of arithmetic/functional units
 Idea:
 Split complex instruction into several simple / fast steps (stages)
 Each step takes the same amount of time, e.g. a single cycle
 Execute different steps on different instructions at the same time (in

parallel)

 Allows for shorter cycle times (simpler logic circuits), e.g.:
 floating point multiplication takes 5 cycles, but
 processor can work on 5 different multiplications simultaneously
 one result at each cycle after the pipeline is full

 Drawback:
 Pipeline must be filled - startup times (#Instructions >> pipeline steps)
 Efficient use of pipelines requires large number of independent

instructions instruction level parallelism
 Requires complex instruction scheduling by compiler/hardware –

software-pipelining / out-of-order

 Pipelining is widely used in modern computer architectures

17

Technologies Driving Performance

ILP Obstacle: Not more parallelism available

Clock Obstacle: Power/Heat dissipation

Multi- Manycore Obstacle: Getting data to/from cores

SIMD Obstacle: Power

Node-level Performance Engineering

18

Moores Law: Single chip transistor count

tra
ns

is
to

rs

19

History of Intel chip performance

Trade cores for
frequency96W

135W

145W
173W

Node-level Performance Engineering

20

The real picture

SSE2

AVX

AVX512

FMA

Node-level Performance Engineering

21

Finding the right compromise

cores SIMD

Core
complexity

Frequency

Nvidia
GP100

Intel
Skylake-EP

Intel KNL

Area is total power budget!

Turbo: Change weights within
the same architecture!

Node-level Performance Engineering

22

NVidia Pascal GP100 block diagram

Architecture
 15.3 B Transistors
 ~ 1.4 GHz clock speed
 Up to 60 “SM” units

 64 SP “cores” each
 32 DP “cores” each
 2:1 SP:DP

performance

 5.7 TFlop/s DP peak
 4 MB L2 Cache
 4096-bit HBM2
 MemBW ~ 732 GB/s

(theoretical)
 MemBW ~ 510 GB/s

(measured)

© NVIDIA Corp.

23

Intel Xeon Phi “Knights Landing” block diagram

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

36 tiles
(72 cores)

max.

P P
32 KiB L1 32 KiB L1

1 MiB L2

VPU

VPU

VPU

VPU

TTTT TTTT

Architecture
 8 B Transistors
 Up to 1.5 GHz clock speed
 Up to 36x2 cores (2D mesh)

 2x 512-bit SIMD units (VPU) each
 4-way SMT

 3.5 TFlop/s DP peak (SP 2x)
 36 MiB L2 Cache
 16 GiB MCDRAM

 MemBW ~ 470 GB/s (measured)
 Large DDR4 main memory

 MemBW ~ 90 GB/s (measured)

24

Trading single thread performance for parallelism:
GPGPUs vs. CPUs

Intel Xeon Platinum
8170 “Skylake”

Intel Xeon Phi 7250
“Knights Landing”

NVidia Tesla P100
“Pascal”

Cores@Clock 26 @ ≥2.1 GHz 68 @ 1.4 GHz 56 SMs @ ~1.3 GHz

SP Performance/core 147.2 GFlop/s 89.6 GFlop/s ~166 GFlop/s
Threads@STREAM ~8 ~40 > 10000

SP peak 3.83 TFlop/s 6.1 TFlop/s ~9.3 TFlop/s
Stream BW (meas.) 115.8 GB/s 450 GB/s (MCDRAM) 510 GB/s
Transistors / TDP 8 Billion / 173 W 8 Billion / 215W 14 Billion/300W

25

Attainable memory bandwidth: Comparing architectures

Intel Broadwell (22 cores)
CoD enabled

AMD Naples (24 cores)

ECC=on

Single core
does not

saturate BW

BW saturation
in NUMA
domain

Intel Xeon Phi 7210 / KNL

NVIDIA P100 (Pascal)

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

36 tiles (72
cores)
max.

26

SIMD and Turbo mode

Haswell 2.3 GHz Broadwell 2.3 GHz

Turn off Turbo is not an option because base
AVX clock is low!

27

And there is no guarantee

1456 Xeon E5-2630v4
10 cores 2.2 GHz

28

Maximum DP floating point (FP) performance
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹 � 𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹 � 𝑛𝑛𝑆𝑆𝑆𝑆𝐹𝐹𝑆𝑆 � 𝑓𝑓

Super-
scalarity

FMA
factor

SIMD
factor

Clock
Speed

uArch 𝒏𝒏𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝑭𝑭𝑭𝑭 𝒏𝒏𝑭𝑭𝑭𝑭𝑭𝑭 𝒏𝒏𝑺𝑺𝑺𝑺𝑭𝑭𝑺𝑺 ncores Release 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝑭𝑭𝒄𝒄𝒄𝒄𝒔𝒔𝒔𝒔
[GF/s]

𝑭𝑭𝒄𝒄𝒉𝒉𝒉𝒉𝒔𝒔
[GF/s]

𝑭𝑭𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔𝒔𝒔
[GF/s] TDP GF/

Watt

Sandy Bridge 2 1 4 8 Q1/2012 E5-2680 11.7 173 7 130 1,33
Ivy Bridge 2 1 4 10 Q3/2013 E5-2690-v2 24 240 7,2 130 1,85

KNC 1 2 8 61 Q2/2014 7120A 10.6 1210 1,3 300 4,03
Haswell 2 2 4 14 Q3/2014 E5-2695-v3 21.6 425 6,6 120 3,54

Broadwell 2 2 4 22 Q1/2016 E5-2699-v4 17.6 704 7,2 145 4,85
Pascal 1 2 32 56 Q2/2016 GP100 36.8 4700 1,5 300 15,67

KNL 2 2 8 72 Q4/2016 7290F 35.2 2995 3,4 260 11,52

Skylake 2 2 8 26 Q3/2017 8170 23.4 1581 7,6 165 9,58

29

Intel IvyBridge-EP
Number of cores ncore 12
FP instructions per cycle F 2
FP ops per instructions S 4 (DP) / 8 (SP)
Clock speed [GHz] n 2.7
Performance [GF/s] P 259 (DP) / 518 (SP)

The driving forces behind performance 2012

P = ncore * F * S * ν

But: P=5.4 GF/s for serial, non-SIMD code

TOP500 rank 1 (1996)

Intel IvyBridge-EP

Node-level Performance Engineering

30

Intel IvyBridge-EP
Number of cores ncore 28
FP instructions per cycle F 2
FMA factor M 2
FP ops per instructions S 8 (DP) / 16 (SP)
Clock speed [GHz] n 2.3 (scalar 2.8)
Performance [GF/s] P 2060 (DP) / 4122 (SP)

The driving forces behind performance 2018

P = ncore * F * M * S * ν

But: P=5.6 GF/s for serial, non-SIMD code

Intel Skylake-SP

Node-level Performance Engineering

31

Core details: Simultaneous multi-threading (SMT)
S

ta
nd

ar
d

co
re

2-
w

ay
 S

M
T

32

Data parallel execution units (SIMD)

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

Scalar execution

Register widths
• 1 operand

• 2 operands (SSE)

• 4 operands (AVX)

• 8 operands (AVX512)

= +

33

Data parallel execution units (SIMD)

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

Register widths
• 1 operand

• 2 operands (SSE)

• 4 operands (AVX)

• 8 operands (AVX512)

SIMD execution

= +

34

SIMD processing – Basics
Steps (done by the compiler) for “SIMD processing”
for(int i=0; i<n;i++)

C[i]=A[i]+B[i];

for(int i=0; i<n;i+=4){
C[i] =A[i] +B[i];
C[i+1]=A[i+1]+B[i+1];
C[i+2]=A[i+2]+B[i+2];
C[i+3]=A[i+3]+B[i+3];}

//remainder loop handling

LABEL1:
VLOAD R0 A[i]
VLOAD R1 B[i]
V64ADD[R0,R1] R2
VSTORE R2 C[i]
ii+4
i<(n-4)? JMP LABEL1

//remainder loop handling

“Loop unrolling”

Load 256 Bits starting from address of A[i] to
register R0

Add the corresponding 64 Bit entries in R0 and
R1 and store the 4 results to R2

Store R2 (256 Bit) to address
starting at C[i]

35

SIMD processing – Basics
No SIMD vectorization for loops with data dependencies:

“Pointer aliasing” may prevent SIMDfication

C/C++ allows that A &C[-1] and B &C[-2]
 C[i] = C[i-1] + C[i-2]: dependency No SIMD
If “pointer aliasing” is not used, tell it to the compiler:
–fno-alias (Intel), -Msafeptr (PGI), -fargument-noalias (gcc)
restrict keyword (C only!):

for(int i=0; i<n;i++)
A[i]=A[i-1]*s;

void f(double *A, double *B, double *C, int n) {
for(int i=0; i<n; ++i)

C[i] = A[i] + B[i];
}

void f(double restrict *A, double restrict *B, double restrict *C, int n) {…}

36

Why and how?

Why check the assembly code?
 Sometimes the only way to make sure the compiler “did the right

thing”
 Example: “LOOP WAS VECTORIZED” message is printed, but Loads

& Stores may still be scalar!
 Get the assembler code (Intel compiler):
icc –S –O3 -xHost triad.c -o a.out
 Disassemble Executable:
objdump –d ./a.out | less

The x86 ISA is documented in:
Intel Software Development Manual (SDM) 2A and 2B
AMD64 Architecture Programmer's Manual Vol. 1-5

37

Basics of the x86-64 ISA

 Instructions have 0 to 3 operands (4 with AVX-512)
 Operands can be registers, memory references or immediates
 Opcodes (binary representation of instructions) vary from 1 to 17 bytes
 There are two assembler syntax forms: Intel (left) and AT&T (right)
 Addressing Mode: BASE + INDEX * SCALE + DISPLACEMENT
 C: A[i] equivalent to *(A+i) (a pointer has a type: A+i*8)

movaps [rdi + rax*8+48], xmm3
add rax, 8
js 1b

401b9f: 0f 29 5c c7 30 movaps %xmm3,0x30(%rdi,%rax,8)
401ba4: 48 83 c0 08 add $0x8,%rax
401ba8: 78 a6 js 401b50 <triad_asm+0x4b>

movaps %xmm4, 48(%rdi,%rax,8)
addq $8, %rax
js ..B1.4

38

Basics of the x86-64 ISA with extensions

16 general Purpose Registers (64bit):
rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15
alias with eight 32 bit register set:
eax, ebx, ecx, edx, esi, edi, esp, ebp
8 opmask registers (16bit or 64bit, AVX512 only):
k0–k7
Floating Point SIMD Registers:
xmm0-xmm15 (xmm31) SSE (128bit) alias with 256-bit and 512-bit registers
ymm0-ymm15 (xmm31) AVX (256bit) alias with 512-bit registers
zmm0-zmm31 AVX-512 (512bit)

SIMD instructions are distinguished by:
VEX/EVEX prefix: v
Operation: mul, add, mov
Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h)
Width: scalar (s), packed (p)
Data type: single (s), double (d)

39

ISA support on KNL
KNL supports all legacy ISA extensions:
MMX, SSE, AVX, AVX2

Furthermore KNL supports:
 AVX-512 Foundation (F), KNL and Skylake
 AVX-512 Conflict Detection Instructions (CD), KNL and Skylake
 AVX-512 Exponential and Reciprocal Instructions (ER), KNL
 AVX-512 Prefetch Instructions (PF), KNL

AVX-512 extensions only supported on Skylake:
 AVX-512 Byte and Word Instructions (BW)
 AVX-512 Doubleword and Quadword Instructions (DQ)
 AVX-512 Vector Length Extensions (VL)

ISA Documentation:
Intel Architecture Instruction Set Extensions Programming Reference

40

Example for masked execution

Masking for predication is very helpful in cases such as e.g.
remainder loop handling or conditional handling.

41

Architecture specific issues KNC vs. KNL

KNC architectural issues
 Fragile single core performance (in-order, pairing, SMT)
 No proper hardware prefetching
 Shared access on segmented LLC costly

KNL fixes most of these issues and is more accessible!

Advices for KNL
 1 thread per core is usually best, sometime two threads per core
 Large pages can improve performance significantly (2M,1G)
 Consider the -no-prec-div option to enable AVX-512 ER instructions
 Aggressive software prefetching is usually not necessary
 MCDRAM is the preferred target memory (try cache mode first)
 Alignment restrictions and penalties are similar to Xeon. We experienced a

benefit from alignment to page size with the MCDRAM.

42

Case Study: Simplest code for the summation of the
elements of a vector (single precision)
float sum = 0.0;

for (int i=0; i<size; i++){
sum += data[i];

}

Instruction code:
401d08: f3 0f 58 04 82 addss xmm0,[rdx + rax * 4]
401d0d: 48 83 c0 01 add rax,1
401d11: 39 c7 cmp edi,eax
401d13: 77 f3 ja 401d08

Instruction
address

Opcodes Assembly
code

To get object code use
objdump –d on object file or
executable or compile with -S

AT&T syntax:
addss 0(%rdx,%rax,4),%xmm0

(final sum
across xmm0
omitted)

43

Case Study: Vector Triad (DP) on IvyBridge-EP

for (int i = 0; i < length; i++) {
A[i] = B[i] + D[i] * C[i];

}

Assembly code (-O1):
LBB0_3
movsd xmm0, [rdx]
mulsd xmm0, [rcx]
addsd xmm0, [rsi]
movsd [rax], xmm0
add rsi, 8
add rdx, 8
add rcx, 8
add rax, 8
dec edi
jne LBB0_3

To get object code use
objdump –d on object file or
executable or compile with -S

..B1.6:
movsd xmm0, [r12+rax*8]
mulsd xmm0, [r13+rax*8]
addsd xmm0, [r14+rax*8]
movsd [r15+rax*8], xmm0
inc rax
cmp rax, rbx
jl ..B1.6

C
LA

N
G

IC
C

.L4:
movsd xmm0,[rbx+rax]
mulsd xmm0,[r12+rax]
addsd xmm0,[r13+0+rax]
movsd [rbp+0+rax],xmm0
add rax, 8
cmp rax, r14
jne .L4

G
C

C

7 instructions per loop
iteration

44

Case Study: Vector Triad (DP) –O3 (Intel compiler)

..B1.19:
movsd xmm0, [r15+rsi*8]
movsd xmm3, [16+r15+rsi*8]
movsd xmm5, [32+r15+rsi*8]
movsd xmm7, [48+r15+rsi*8]
movhpd xmm0, [8+r15+rsi*8]
movhpd xmm3, [24+r15+rsi*8]
movhpd xmm5, [40+r15+rsi*8]
movhpd xmm7, [56+r15+rsi*8]
mulpd xmm0, [r14+rsi*8]
mulpd xmm3, [16+r14+rsi*8]
mulpd xmm5, [32+r14+rsi*8]
mulpd xmm7, [48+r14+rsi*8]
movsd xmm2, [r13+rsi*8]
movsd xmm4, [16+r13+rsi*8]
movsd xmm6, [32+r13+rsi*8]
movsd xmm8, [48+r13+rsi*8]
movhpd xmm2, [8+r13+rsi*8]
movhpd xmm4, [24+r13+rsi*8]
movhpd xmm6, [40+r13+rsi*8]
movhpd xmm8, [56+r13+rsi*8]

addpd xmm2, xmm0
addpd xmm4, xmm3
addpd xmm6, xmm5
addpd xmm8, xmm7
movaps [rdx+rsi*8], xmm2
movaps [16+rdx+rsi*8], xmm4
movaps [32+rdx+rsi*8], xmm6
movaps [48+rdx+rsi*8], xmm8
add rsi, 8
cmp rsi, r9
jb ..B1.19

3.86 instructions per
loop iteration

45

Case Study: Vector Triad (DP) –O3 –xHost
..B1.15:
vmovupd xmm2, [r15+rsi*8]
vmovupd xmm10, [32+r15+rsi*8]
vmovupd xmm3, [rdx+rsi*8]
vmovupd xmm11, [32+rdx+rsi*8]
vmovupd xmm0, [r14+rsi*8]
vmovupd xmm9, [32+r14+rsi*8]
vinsertf128 ymm4, ymm2,[16+r15+rsi*8], 1
vinsertf128 ymm12,ymm10,[48+r15+rsi*8],1
vinsertf128 ymm5, ymm3,[16+rdx+rsi*8], 1
vinsertf128 ymm13,ymm11,[48+rdx+rsi*8],1
vmulpd ymm7, ymm4, ymm5
vmulpd ymm15, ymm12, ymm13
vmovupd xmm4, [64+rdx+rsi*8]
vmovupd xmm12, [96+rdx+rsi*8]
vmovupd xmm3, [64+r15+rsi*8]
vmovupd xmm11, [96+r15+rsi*8]
vmovupd xmm2, [64+r14+rsi*8]
vmovupd xmm10, [96+r14+rsi*8]
vinsertf128 ymm14,ymm9,[48+r14+rsi*8], 1
vinsertf128 ymm6,ymm0,[16+r14+rsi*8], 1
vaddpd ymm8, ymm6, ymm7 vaddpd
ymm0, ymm14, ymm15

vmovupd [r13+rsi*8], ymm8
vmovupd [32+r13+rsi*8], ymm0
vinsertf128 ymm5, ymm3, [80+r15+rsi*8], 1
vinsertf128 ymm13,ymm11,[112+r15+rsi*8], 1
vinsertf128 ymm6, ymm4, [80+rdx+rsi*8], 1
vinsertf128 ymm14,ymm12,[112+rdx+rsi*8], 1
vmulpd ymm8, ymm5, ymm6
vmulpd ymm0, ymm13, ymm14
vinsertf128 ymm7, ymm2, [80+r14+rsi*8], 1
vinsertf128 ymm15,ymm10,[112+r14+rsi*8], 1
vaddpd ymm9, ymm7, ymm8
vaddpd ymm2, ymm15, ymm0
vmovupd [64+r13+rsi*8], ymm9
vmovupd [96+r13+rsi*8], ymm2
add rsi, 16
cmp rsi, r9
jb ..B1.15

2.44 instructions per
loop iteration

Benefit of SIMD limited by serial fraction!

46

Case Study: Vector Triad (DP) –O3 –xHost
#pragma vector aligned

..B1.7:
movaps xmm0, [r13+rcx*8]
movaps xmm2, [16+r13+rcx*8]
movaps xmm3, [32+r13+rcx*8]
movaps xmm4, [48+r13+rcx*8]
mulpd xmm0, [rbp+rcx*8]
mulpd xmm2, [16+rbp+rcx*8]
mulpd xmm3, [32+rbp+rcx*8]
mulpd xmm4, [48+rbp+rcx*8]
addpd xmm0, [r12+rcx*8]
addpd xmm2, [16+r12+rcx*8]
addpd xmm3, [32+r12+rcx*8]
addpd xmm4, [48+r12+rcx*8]
movaps [r15+rcx*8], xmm0
movaps [16+r15+rcx*8], xmm2
movaps [32+r15+rcx*8], xmm3
movaps [48+r15+rcx*8], xmm4
add rcx, 8
cmp rcx, rsi
jb ..B1.7

..B1.7:
vmovupd ymm0, [r15+rcx*8]
vmovupd ymm4, [32+r15+rcx*8]
vmovupd ymm7, [64+r15+rcx*8]
vmovupd ymm10,[96+r15+rcx*8]
vmulpd ymm2, ymm0, [rdx+rcx*8]
vmulpd ymm5, ymm4, [32+rdx+rcx*8]
vmulpd ymm8, ymm7, [64+rdx+rcx*8]
vmulpd ymm11, ymm10, [96+rdx+rcx*8]
vaddpd ymm3, ymm2, [r14+rcx*8]
vaddpd ymm6, ymm5, [32+r14+rcx*8]
vaddpd ymm9, ymm8, [64+r14+rcx*8]
vaddpd ymm12, ymm11, [96+r14+rcx*8]
vmovupd [r13+rcx*8], ymm3
vmovupd [32+r13+rcx*8], ymm6
vmovupd [64+r13+rcx*8], ymm9
vmovupd [96+r13+rcx*8], ymm12
add rcx, 16
cmp rcx, rsi
jb ..B1.7

2.38 instructions per
loop iteration

1.19 instructions per
loop iteration

47

Case Study: Vector Triad (DP) –O3 –xHost
#pragma vector aligned on Haswell-EP
..B1.7:
vmovupd ymm2, [r15+rcx*8]
vmovupd ymm4, [32+r15+rcx*8]
vmovupd ymm6, [64+r15+rcx*8]
vmovupd ymm8, [96+r15+rcx*8]
vmovupd ymm0, [rdx+rcx*8]
vmovupd ymm3, [32+rdx+rcx*8]
vmovupd ymm5, [64+rdx+rcx*8]
vmovupd ymm7, [96+rdx+rcx*8]
vfmadd213pd ymm2, ymm0, [r14+rcx*8]
vfmadd213pd ymm4, ymm3, [32+r14+rcx*8]
vfmadd213pd ymm6, ymm5, [64+r14+rcx*8]
vfmadd213pd ymm8, ymm7, [96+r14+rcx*8]
vmovupd [r13+rcx*8], ymm2
vmovupd [32+r13+rcx*8], ymm4
vmovupd [64+r13+rcx*8], ymm6
vmovupd [96+r13+rcx*8], ymm8
add rcx, 16
cmp rcx, rsi
jb ..B1.7

1.19 instructions per
loop iteration

23 uops vs. 27 µops (AVX)

On X86 ISA instruction are
converted to so-called µops
(elementary ops like load, add,
mult). For performance the
number of µops is important.

48

SIMD processing – The whole picture

SIMD influences instruction
execution in the core – other
runtime contributions stay the
same!

AVX example:
Scalar 12
SSE 6
AVX 3

15 cy

21

Execution Cache Memory

Per-cacheline (8
iterations) cycle
counts

Execution Units

Caches

Memory 21 cy

3 cy
15

Total runtime with data loaded
from memory:

Scalar 48
SSE 42
AVX 39

SIMD only effective if runtime is dominated
by instructions execution!

Comparing total execution time:

49

 Only part of application may be vectorized, arithmetic vs.
load/store (Amdahls law), data transfers
 Memory saturation often makes SIMD obsolete

Limits of SIMD processing

16cy
4cy
2cy
1cy

4cy 4cy
Per-cacheline
cycle counts

Cache MemoryExecution

diminishing
returns (Amdahl)

16cy
4cy
2cy

Scalar
SSE
AVX
AVX512

Possible solution:
Improve cache
bandwidth

50

Rules for vectorizable loops

1. Countable
2. Single entry and single exit
3. Straight line code
4. No function calls (exception intrinsic math functions)

Better performance with:
1. Simple inner loops with unit stride
2. Minimize indirect addressing
3. Align data structures (SSE 16bytes, AVX 32bytes)
4. In C use the restrict keyword for pointers to rule out aliasing

Obstacles for vectorization:
 Non-contiguous memory access
 Data dependencies

51

Memory hierarchy

You can either build a
small und fast memory
or a
large and slow memory.

Purpose of many optimizations is therefore to load
data mostly from fast memory layers.

Memory

L3 Cache

Disk

L2 Cache

L1 Cache10-9

10-8

10-7

10-4

Latency [s]

1012

1011

109

Bandwidth
[bytes/s]

Core

52

How does data travel from memory to the CPU and back?

Remember: Caches are organized
in cache lines (e.g., 64 bytes)
Only complete cache lines are
transferred between memory
hierarchy levels (except registers)

MISS: Load or store instruction does
not find data in a cache level
 CL transfer required

Example: Array copy A(:)=C(:)

Registers and caches:
Data transfers in a memory hierarchy

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS
ST A(1)MISS

write
allocate

evict
(delayed)

3 CL
transfers

LD C(2..Ncl)
ST A(2..Ncl) HIT

C(:) A(:)

53

Recap: Data transfers in a memory hierarchy
 How does data travel from memory to the CPU and back?
 Example: Array copy A(:)= C(:)

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS
ST A(1)MISS

write
allocate

evict
(delayed)

3 CL
transfers

LD C(2..Ncl)
ST A(2..Ncl)

HIT

CPU registers

Cache

Memory

CL

CL

CLCL

LD C(1)

NTST A(1)
MISS

2 CL
transfers

LD C(2..Ncl)
NTST A(2..Ncl)

HIT

Standard stores Nontemporal (NT)
stores

50%
performance
boost for
COPY

C(:) A(:) C(:) A(:)

54

Fusion: SIMD and the memory hierarchy

SIMD optimizations often also involves data structure
changes:
 Enable block wise load and store.
 Reduce runtime contribution from data transfers by

blocking. Load or store data at least from L2 cache.
Promote temporal and spatial data access locality
 Promote good use of hardware prefetcher. Long streaming

data access patterns.

 Above requirements may collide with object oriented
programming paradigm: array of structures vs
structure of arrays

55

• All efforts are targeted on increasing instruction throughput
• Every hardware optimization puts an assumption against the

executed software
• One can distinguish transparent and explicit solutions

• Common technologies:
• Instruction level parallelism (ILP)
• Data parallel execution (SIMD), does not affect instruction

throughput
• Exploit temporal data access locality (Caches)
• Hide data access latencies (Prefetching)
• Avoid hazards

Conclusions about core architectures

PRELUDE:
SCALABILITY 4 THE WIN!

57

Lore 1
In a world of highly parallel computer architectures only highly

scalable codes will survive

Lore 2
Single core performance no longer matters since we have so many

of them and use scalable codes

Scalability Myth: Code scalability is the key issue

58

Scalability Myth: Code scalability is the key issue

Prepared for
the highly
parallel era!

!$OMP PARALLEL DO
do k = 1 , Nk
do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo
enddo
!$OMP END PARALLEL DO

Changing only the
compile options makes
this code scalable on an
8-core chip

–O3 -xAVX

59

Scalability Myth: Code scalability is the key issue
!$OMP PARALLEL DO
do k = 1 , Nk
do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*(x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo
enddo
!$OMP END PARALLEL DO

Single core/socket efficiency
is key issue!

Upper limit from simple
performance model:
35 GB/s & 24 Byte/update

TOPOLOGY OF MULTI-CORE /
MULTI-SOCKET SYSTEMS

• Chip Topology
• Node Topology
• Memory Organisation

61

• Core: Unit reading and executing instruction stream

• Chip: One integrated circuit die

• Socket/Package: May consist of multiple chips

• Memory Hierarchy:
• Private caches
• Shared caches
• ccNUMA: Replicated memory interfaces

Building blocks for multi-core compute nodes

62

Multicore architecture

Mehrkern-Architekturen

© IntelCa. 8 Mrd.
Transistoren auf

500 mm2

FPU FPU LSUALU

L1 Cache

L2 Cache
Kern

core

core

core

core

core

core

core

core

core

core

core

core
…

Chip (bis zu 28 Kerne)

S
ockel

S
peicher

S
peicher

S
ockel

Knoten (2 Chips)

63

Topology of Super computers

© LRZSuperMUC

Speicher Speicher

Sockel

Knoten (2 Chips)

Knoten

Knoten

Knoten

Knoten
Blade (4 Knoten)

Sockel

Blade

Blade

Blade

Blade
Chassis (16 Blades)

Blade

Blade

Blade

Blade

Blade

Blade

Blade

Blade

Blade

Blade

Blade

Blade

Chassis

Chassis

Chassis

Schrank (3 Chassis)

Ein System besteht
aus vielen Schränken!

64

Chip Topologies

SandyBridge-EP, 8C, 32nm 435mm2

Westmere-EP, 6C, 32nm 248mm2

 Separation into core and uncore
 Memory hierarchy holding together

the chip design
 L1 (L2) private caches
 L3 cache shared (LLC)

 Serialized LLC not scalable

 Segmented ring bus, distributed
LLC scalable design

65

From UMA to ccNUMA
Memory architectures

Today: Dual-socket Intel (Westmere,…) node:

Yesterday (2006): Dual-socket Intel “Core2” node:

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

Cache-coherent Non-Uniform Memory
Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at the
price of ccNUMA architectures, but:
Where does my data finally end up?

66

ccNUMA performance problems
“The other affinity” to care about
 ccNUMA:

 Whole memory is transparently accessible by all processors
 but physically distributed
 with varying bandwidth and latency
 and potential contention (shared memory paths)

 How do we make sure that memory access is always as "local"
and "distributed" as possible?

 Page placement is implemented in units of OS pages (often 4kB, possibly
more)

C C C C

M M

C C C C

M M

67

Intel Broadwell EP node
2 chips, 2 sockets, 11 cores per ccNUMA domain (CoD mode)

ccNUMA map: Bandwidth penalties for remote access
 Run 11 threads per ccNUMA domain (half chip)
 Place memory in different domain 4x4 combinations
 STREAM copy benchmark using standard stores

C
PU

 n
od

e

Memory node

ST
R

EA
M

 tr
ia

d
pe

rf
or

m
an

ce
 [M

B
/s

]

68

"Golden Rule" of ccNUMA:
A memory page gets mapped into the local memory of the
processor that first touches it!

 Except if there is not enough local memory available

Caveat: "touch" means "write", not "allocate"
Example:
double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++)
huge[i] = 0.0;

It is sufficient to touch a single item to map the entire page

ccNUMA default memory locality

Memory not
mapped here yet

Mapping takes
place here

69

Initialize data in parallel to ensure placement into locality domains:

double *huge = (double*)malloc(N*sizeof(double));
// parallel init of data
#pragma omp parallel for schedule(static)
for(i=0; i<N; i++)

huge[i] = 0.0;
// ...

// actual work done on data
#pragma omp parallel for reduction(+:sum) schedule(static)
for(i=0; i<N; i++)

sum += huge[i];

Initialization by parallel first touch

70

Parallel init: Correct parallel initialization
LD0: Force data into LD0 via numactl –m 0
Interleaved: numactl --interleave <LD range>

The curse and blessing of interleaved placement:
OpenMP STREAM on a Cray XE6 Interlagos node

71

The curse and blessing of interleaved placement:
same on 4-socket (48 core) Magny Cours node

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8

parallel init LD0 interleaved

NUMA domains (6 threads per domain)

B
an

dw
id

th
 [M

by
te

/s
]

72

Modern computer architecture has a rich “topology”

Node-level hardware parallelism takes many forms
 Sockets/devices – CPU: 1-8, GPGPU: 1-6
 Cores – moderate (CPU: 4-16) to massive (GPGPU: 1000’s)
 SIMD – moderate (CPU: 2-8) to massive (GPGPU: 10’s-100’s)

Exploiting performance: parallelism + bottleneck awareness
 “High Performance Computing” == computing at a bottleneck

Performance of programs is sensitive to architecture
 Topology/affinity influences overheads of popular programming models
 Standards do not contain (many) topology-aware features

› Things are starting to improve slowly (MPI 3.0, OpenMP 4.0)
 Apart from overheads, performance features are largely independent of the

programming model

Conclusions about Node Topologies

MULTICORE PERFORMANCE AND
TOOLS
PROBING NODE TOPOLOGY

 Standard tools
 likwid-topology

74

Tools for Node-level Performance Engineering

 Gather Node Information
hwloc, likwid-topology, likwid-powermeter

 Affinity control and data placement
OpenMP and MPI runtime environments, hwloc, numactl, likwid-pin

 Runtime Profiling
Compilers, gprof, HPC Toolkit, …

 Performance Profilers
Intel VtuneTM, likwid-perfctr, PAPI based tools, Linux perf, …

 Microbenchmarking
STREAM, likwid-bench, lmbench

75

LIKWID tool suite:

Like
I
Knew
What
I’m
Doing

Open source tool collection
(developed at RRZE):
http://code.google.com/p/likwid

How do we figure out the node topology?

J. Treibig, G. Hager, G. Wellein: LIKWID: A
lightweight performance-oriented tool suite for
x86 multicore environments. PSTI2010, Sep 13-
16, 2010, San Diego, CA
http://arxiv.org/abs/1004.4431

76

Likwid Tool Suite

 Command line tools for Linux:
 easy to install
 works with standard linux kernel
 simple and clear to use
 supports Intel and AMD CPUs

 Current tools:
 likwid-topology: Print thread and cache topology
 likwid-pin: Pin threaded application without touching code
 likwid-perfctr: Measure performance counters
 likwid-powermeter: Query turbo mode steps. Measure ETS.
 likwid-bench: Low-level bandwidth benchmark generator tool

77

Output of likwid-topology –g
on one node of Intel Haswell-EP

--
CPU name: Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz
CPU type: Intel Xeon Haswell EN/EP/EX processor
CPU stepping: 2
**
Hardware Thread Topology
**
Sockets: 2
Cores per socket: 14
Threads per core: 2
--
HWThread Thread Core Socket Available
0 0 0 0 *

0 1 0 *

…
43 1 1 1 *
44 1 2 1 *
--
Socket 0: (0 28 1 29 2 30 3 31 4 32 5 33 6 34 7 35 8 36 9 37 10 38 11 39 12 40 13 41)
Socket 1: (14 42 15 43 16 44 17 45 18 46 19 47 20 48 21 49 22 50 23 51 24 52 25 53 26 54 27 55)
--
**
Cache Topology
**
Level: 1
Size: 32 kB
Cache groups: (0 28) (1 29) (2 30) (3 31) (4 32) (5 33) (6 34) (7 35) (8 36) (9 37) (10 38) (11 39) (12 40) (13 41
) (14 42) (15 43) (16 44) (17 45) (18 46) (19 47) (20 48) (21 49) (22 50) (23 51) (24 52) (25 53) (26 54) (27 55)
--
Level: 2
Size: 256 kB
Cache groups: (0 28) (1 29) (2 30) (3 31) (4 32) (5 33) (6 34) (7 35) (8 36) (9 37) (10 38) (11 39) (12 40) (13 41
) (14 42) (15 43) (16 44) (17 45) (18 46) (19 47) (20 48) (21 49) (22 50) (23 51) (24 52) (25 53) (26 54) (27 55)
--
Level: 3
Size: 17 MB
Cache groups: (0 28 1 29 2 30 3 31 4 32 5 33 6 34) (7 35 8 36 9 37 10 38 11 39 12 40 13 41) (14 42 15 43 16 44 17 45 18 46 19 47 20 48)
(21 49 22 50 23 51 24 52 25 53 26 54 27 55)
--

All physical
processor IDs

78

Output of likwid-topology continued

**
NUMA Topology
**
NUMA domains: 4
--
Domain: 0
Processors: (0 28 1 29 2 30 3 31 4 32 5 33 6 34)
Distances: 10 21 31 31
Free memory: 13292.9 MB
Total memory: 15941.7 MB
--
Domain: 1
Processors: (7 35 8 36 9 37 10 38 11 39 12 40 13 41)
Distances: 21 10 31 31
Free memory: 13514 MB
Total memory: 16126.4 MB
--
Domain: 2
Processors: (14 42 15 43 16 44 17 45 18 46 19 47 20 48)
Distances: 31 31 10 21
Free memory: 15025.6 MB
Total memory: 16126.4 MB
--
Domain: 3
Processors: (21 49 22 50 23 51 24 52 25 53 26 54 27 55)
Distances: 31 31 21 10
Free memory: 15488.9 MB
Total memory: 16126 MB
--

79

Output of likwid-topology continued

**
Graphical Topology
**
Socket 0:
+---+
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | 0 28 | | 1 29 | | 2 30 | | 3 31 | | 4 32 | | 5 33 | | 6 34 | | 7 35 | | 8 36 | | 9 37 | | 10 38 | | 11 39 | | 12 40 | | 13 41 | |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| +--+ +--+ |
| | 17MB | | 17MB | |
| +--+ +--+ |
+---+
Socket 1:
+---+
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | 14 42 | | 15 43 | | 16 44 | | 17 45 | | 18 46 | | 19 47 | | 20 48 | | 21 49 | | 22 50 | | 23 51 | | 24 52 | | 25 53 | | 26 54 | | 27 55 | |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | | 32kB | |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | | 256kB | |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| +--+ +--+ |
| | 17MB | | 17MB | |
| +--+ +--+ |
+---+

Cluster on die mode
and SMT enabled!

ENFORCING THREAD/PROCESS-
CORE AFFINITY UNDER THE LINUX
OS

 Standard tools and OS affinity facilities under
program control

 likwid-pin

81

Example: STREAM benchmark on 16-core Sandy Bridge:
Anarchy vs. thread pinning

No pinning

Pinning (physical cores first,
first socket first)

 There are several reasons for caring
about affinity:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

 Benchmark how code reacts to variations

82

More thread/Process-core affinity (“pinning”) options

 Highly OS-dependent system calls
 But available on all systems

Linux: sched_setaffinity()
Windows: SetThreadAffinityMask()

 Hwloc project (http://www.open-mpi.de/projects/hwloc/)
 Support for “semi-automatic” pinning in some

compilers/environments
 All modern compilers with OpenMP support
 Generic Linux: taskset, numactl, likwid-pin (see below)
 OpenMP 4.0 (see any recent OpenMP/hybrid programming tutorial)

 Affinity awareness in MPI libraries
 SGI MPT
 OpenMPI
 Intel MPI
 …

83

Likwid-pin
Overview
 Pins processes and threads to specific cores without touching code
 Directly supports pthreads, gcc OpenMP, Intel OpenMP
 Based on combination of wrapper tool together with overloaded pthread library

binary must be dynamically linked!
 Can also be used as a superior replacement for taskset
 Supports logical core numbering within a node

 Usage examples:

 likwid-pin -c 0-3,4,6 ./myApp parameters

 likwid-pin -c S0:0-7 ./myApp parameters

 likwid-pin –c N:0-15 ./myApp parameters

84

LIKWID terminology
Thread group syntax

 The OS numbers all processors (hardware threads) on a node
 The numbering is enforced at boot time by the BIOS
 LIKWID introduces thread groups consisting of processors sharing

a topological entity (e.g. socket or shared cache)
 A thread group is defined by a single character + index

 Example for likwid-pin:
likwid-pin –c S1:0-3,6,7 ./a.out
 Thread group expression may be chained with @:
likwid-pin –c S0:0-3@S1:0-3 ./a.out

 Alternative expression based syntax:
likwid-pin –c E:S0:4:2:2 ./a.out

E:<thread domain>:<num threads>:<chunk size>:<stride>

 Xeon Phi: likwid-pin –c E:N:60:2:4 ./a.out

+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 0 4| | 1 5| | 2 6 | | 3 7 | |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | |
| +---------------------------------+ |
+-------------------------------------+

Physical processors first!

+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| | 0 4| | 1 5| | 2 6 | | 3 7 | |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 32kB| | 32kB| | 32kB| | 32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| | 8MB | |
| +---------------------------------+ |
+-------------------------------------+

Block wise placement!

85

Likwid
Currently available thread domains
Possible unit prefixes

N node

S socket

M NUMA domain

C outer level cache group
Chipset

Memory

Default if –c is not
specified!

86

Likwid-pin
Example: Intel OpenMP

Running the STREAM benchmark with likwid-pin:
$ likwid-pin -c S0:0-3 ./stream
[likwid-pin] Main PID -> core 0 - OK
--
Double precision appears to have 16 digits of accuracy
Assuming 8 bytes per DOUBLE PRECISION word
--
Array size = 20000000
Offset = 32
The total memory requirement is 457 MB
You are running each test 10 times
--
The *best* time for each test is used
EXCLUDING the first and last iterations
[pthread wrapper] [pthread wrapper] PIN_MASK: 0->1 1->2 2->3
[pthread wrapper] SKIP MASK: 0x1

threadid 140370139711232 -> SKIP
threadid 140370117211968 -> core 1 - OK
threadid 140370113013632 -> core 2 - OK
threadid 140369974597568 -> core 3 - OK

[... rest of STREAM output omitted ...]

Skip shepherd
thread

Main PID always
pinned

Pin all spawned
threads in turn

87

likwid-perfctr
Basic approach to performance analysis

1. Runtime profile / Call graph (gprof): Where are the hot spots?
2. Instrument hot spots (prepare for detailed measurement)
3. Find performance signatures
Possible signatures:
 Bandwidth saturation
 Instruction throughput limitation (real or language-induced)
 Latency impact (irregular data access, high branch ratio)
 Load imbalance
 ccNUMA issues (data access across ccNUMA domains)
 Pathologic cases (false cacheline sharing, expensive

operations)
Goal: Come up with educated guess about a performance-limiting
motif (Performance Pattern)

lik
w

id
-p

er
fc

tr
ca

n
he

lp
he

re

88

Probing performance behavior
 How do we find out about the performance properties and

requirements of a parallel code?
 Profiling via advanced tools is often overkill
 A coarse overview is often sufficient
 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm”

on Linux/Altix)
 Simple end-to-end measurement of hardware performance metrics
 “Marker” API for starting/stopping

counters
 Multiple measurement region

support
 Preconfigured and extensible

metric groups, list with
likwid-perfctr -a

BRANCH: Branch prediction miss rate/ratio
CACHE: Data cache miss rate/ratio
CLOCK: Clock of cores
DATA: Load to store ratio
FLOPS_DP: Double Precision MFlops/s
FLOPS_SP: Single Precision MFlops/s
FLOPS_X87: X87 MFlops/s
L2: L2 cache bandwidth in MBytes/s
L2CACHE: L2 cache miss rate/ratio
L3: L3 cache bandwidth in MBytes/s
L3CACHE: L3 cache miss rate/ratio
MEM: Main memory bandwidth in MBytes/s
TLB: TLB miss rate/ratio

89

likwid-perfctr
Example usage with preconfigured metric group
$ likwid-perfctr –g L2 –C S1:0-3 ./a.out
--
CPU name: Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz […]
--
<<<< PROGRAM OUTPUT >>>>
--
Group 1: L2
+-----------------------+---------+------------+------------+------------+------------+
| Event | Counter | Core 14 | Core 15 | Core 16 | Core 17 |
+-----------------------+---------+------------+------------+------------+------------+
INSTR_RETIRED_ANY	FIXC0	1298031144	1965945005	1854182290	1862521357
CPU_CLK_UNHALTED_CORE	FIXC1	2353698512	2894134935	2894645261	2895023739
CPU_CLK_UNHALTED_REF	FIXC2	2057044629	2534405765	2535218217	2535560434
L1D_REPLACEMENT	PMC0	212900444	200544877	200389272	200387671
L2_TRANS_L1D_WB	PMC1	112464863	99931184	99982371	99976697
ICACHE_MISSES	PMC2	21265	26233	12646	12363
+-----------------------+---------+------------+------------+------------+------------+					
[… statistics output omitted …]					
+--------------------------------+------------+------------+------------+------------+					
Metric	Core 14	Core 15	Core 16	Core 17	
+--------------------------------+------------+------------+------------+------------+					
Runtime (RDTSC) [s]	1.1314	1.1314	1.1314	1.1314	
Runtime unhalted [s]	1.0234	1.2583	1.2586	1.2587	
Clock [MHz]	2631.6699	2626.4367	2626.0579	2626.0468	
CPI	1.8133	1.4721	1.5611	1.5544	
L2D load bandwidth [MBytes/s]	12042.7388	11343.8446	11335.0428	11334.9523	
L2D load data volume [GBytes]	13.6256	12.8349	12.8249	12.8248	
L2D evict bandwidth [MBytes/s]	6361.5883	5652.6192	5655.5146	5655.1937	
L2D evict data volume [GBytes]	7.1978	6.3956	6.3989	6.3985	
L2 bandwidth [MBytes/s]	18405.5299	16997.9477	16991.2728	16990.8453	
L2 data volume [GBytes]	20.8247	19.2321	19.2246	19.2241	
+--------------------------------+------------+------------+------------+------------+

Always
measured

Derived
metrics

Configured metrics
(this group)

90

likwid-perfctr
Best practices for runtime counter analysis
Things to look at (in roughly this order)

 Excess work

 Load balance (flops, instructions, BW)

 In-socket memory BW saturation

 Flop/s, loads and stores per flop metrics

 SIMD vectorization

 CPI metric

 # of instructions,
branches, mispredicted branches

Caveats

 Load imbalance may not show in
CPI or # of instructions
 Spin loops in OpenMP barriers/MPI

blocking calls
 Looking at “top” or the Windows Task

Manager does not tell you anything
useful

 In-socket performance
saturation may have various
reasons

 Cache miss metrics are
sometimes misleading

91

likwid-perfctr
Marker API (C/C++ and Fortran)
 A marker API is available to restrict measurements to code regions
 The API only turns counters on/off. The configuration of the counters is still done

by likwid-perfctr
 Multiple named region support, accumulation over multiple calls
 Inclusive and overlapping regions allowed

#include <likwid.h>
. . .
LIKWID_MARKER_INIT; // must be called from serial region
#pragma omp parallel
{
LIKWID_MARKER_THREADINIT; // only reqd. if measuring multiple threads

}
. . .
LIKWID_MARKER_START(“Compute”);
. . .
LIKWID_MARKER_STOP(“Compute”);
. . .
LIKWID_MARKER_START(“Postprocess”);
. . .
LIKWID_MARKER_STOP(“Postprocess”);
. . .
LIKWID_MARKER_CLOSE; // must be called from serial region

 Activate macros with -DLIKWID_PERFMON
 Run likwid-perfctr with –m switch to

enable marking
 See https://github.com/RRZE-
HPC/likwid/wiki/TutorialMarkerF90
for Fortran example

https://github.com/RRZE-HPC/likwid/wiki/TutorialMarkerF90

92

likwid-perfctr
Compiling, linking, and running with the marker API

Compile:
cc -I /path/to/likwid.h -DLIKWID_PERFMON -c program.c

Link:
cc -L /path/to/liblikwid program.o -llikwid

Run:
likwid-perfctr -C <MASK> -g <GROUP> -m ./a.out

 One separate block of output for every marked region
 Caveat: marker API can cause overhead; do not call too

frequently!

ERLANGEN REGIONAL
COMPUTING CENTER

J. Eitzinger

PATC LRZ 2018, 26.3.2018

Basics of Performance Engineering

94

1. Define relevant test cases
2. Establish a sensible performance metric
3. Acquire a runtime profile (sequential)
4. Identify hot kernels (Hopefully there are any!)
5. Carry out optimization process for each kernel

Motivation:
• Understand observed performance
• Learn about code characteristics and machine capabilities
• Deliberately decide on optimizations

Basics of Optimization

Iteratively

95

Preparation
 Reliable timing (Minimum time which can be measured?)
 Document code generation (Flags, Compiler Version)
 Get exclusive System
 System state (Clock, Turbo mode, Memory, Caches)
 Consider to automate runs with a skript (Shell, python, perl)

Doing
 Affinity control
 Check: Is the result reasonable?
 Is result deterministic and reproducible.
 Statistics: Mean, Best ??
 Basic variants: Thread count, affinity, working set size (Baseline!)

Best Practices Benchmarking

96

Postprocessing
 Documentation
 Try to understand and explain the result
 Plan variations to gain more information
 Many things can be better understood if you plot them (gnuplot,

xmgrace)

Best Practices Benchmarking cont.

97

1. Instruction execution
Primary resource of the processor.

2. Data transfer bandwidth
Data transfers as a consequence of instruction execution.

Focus on resource utilization

What is the limiting resource?
Do you fully utilize available resources?

98

Overview

Implementation

Instruction code

Algorithm

core

L1

L2

L3

SIMD
FMA

Memory

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

Memory

1 Reduce algorithmic work

2 Minimize processor work

3 Distribute work and data for optimal
utilization of parallel resources

5 Use most effective
execution units on chip

4 Avoid slow data paths

6 Avoid bottlenecks

99

• A bottleneck is a performance limiting setting
• Microarchitectures expose numerous bottlenecks

Observation 1:
Most applications face a single bottleneck at a time!

Observation 2:
There is a limited number of relevant bottlenecks!

Thinking in Bottlenecks

100

Reduce complexity!

We propose a human driven process to enable a systematic
way to success!

• Executed by humans.
• Uses tools by means of data acquisition only.

Uses one of the most powerful tools available:

Process vs. Tool

Your brain !
You are a investigator making sense of what’s going on.

101

Performance Engineering Process: Analysis

Pattern

MicrobenchmarkingHardware/Instruction
set architecture

Algorithm/Code
Analysis

Application
Benchmarking

Step 1 Analysis: Understanding observed performance

Performance
patterns are

typical
performance
limiting motifs

The set of input data indicating
a pattern is its signature

102

Understand observed performance: Where am I?

Input:
• Static code analysis
• HPM data
• Scaling data set size
• Scaling number of used cores
• Microbenchmarking

Performance patterns are typical performance limiting motives.
The set of input data indicating a pattern is its signature.

Performance analysis phase

PatternSignature

103

Performance Engineering Process: Modelling

Pattern

Performance Model

Qualitative view

Quantitative view

Step 2 Formulate Model: Validate pattern and get quantitative insight.

Validation Traces/HW metrics

W
ro

ng
 p

at
te

rn

104

Performance Engineering Process: Optimization

Optimize for better
resource utilization

Eliminate non-
expedient activity

Pattern

Performance Model

Performance
improves until next

bottleneck is hit

Improves
Performance

Step 3 Optimization: Improve utilization of offered resources.

105

Performance pattern classification

1. Maximum resource utilization
(computing at a bottleneck)

2. Optimal use of parallel resources

3. Hazards
(something “goes wrong”)

4. Use of most effective instructions

5. Work related
(too much work or too inefficiently done)

Node-level Performance Engineering

106

Patterns (I): Bottlenecks & parallelism

Pattern Performance behavior Metric signature, LIKWID
performance group(s)

Bandwidth saturation Saturating speedup across
cores sharing a data path

Bandwidth meets BW of suitable
streaming benchmark (MEM, L3)

ALU saturation Throughput at design limit(s)
Good (low) CPI, integral ratio of
cycles to specific instruction
count(s) (FLOPS_*, DATA, CPI)

Bad ccNUMA page placement
Bad or no scaling across NUMA
domains, performance improves
with interleaved page placement

Unbalanced bandwidth on
memory interfaces / High remote
traffic (MEM)

Load imbalance / serial
fraction Saturating/sub-linear speedup

Different amount of “work” on the
cores (FLOPS_*); note that
instruction count is not reliable!

Node-level Performance Engineering

107

Patterns (II): Hazards

Pattern Performance behavior Metric signature, LIKWID
performance group(s)

False sharing of cache
lines

Large discrepancy from
performance model in parallel case,
bad scalability

Frequent (remote) CL evicts
(CACHE)

Pipelining issues
In-core throughput far from design
limit, performance insensitive to
data set size

(Large) integral ratio of cycles to
specific instruction count(s), bad
(high) CPI (FLOPS_*, DATA, CPI)

Control flow issues See above High branch rate and branch miss
ratio (BRANCH)

Micro-architectural
anomalies

Large discrepancy from simple
performance model based on
LD/ST and arithmetic throughput

Relevant events are very
hardware-specific, e.g., memory
aliasing stalls, conflict misses,
unaligned LD/ST, requeue events

Latency-bound data
access

Simple bandwidth performance
model much too optimistic

Low BW utilization / Low cache hit
ratio, frequent CL evicts or
replacements (CACHE, DATA,
MEM)

Node-level Performance Engineering

108

Patterns (III): Work-related

Pattern Performance behavior Metric signature, LIKWID
performance group(s)

Synchronization overhead
Speedup going down as more cores
are added / No speedup with small
problem sizes / Cores busy but low
FP performance

Large non-FP instruction count
(growing with number of cores
used) / Low CPI (FLOPS_*, CPI)

Instruction overhead
Low application performance, good
scaling across cores, performance
insensitive to problem size

Low CPI near theoretical limit /
Large non-FP instruction count
(constant vs. number of cores)
(FLOPS_*, DATA, CPI)

Excess data volume Simple bandwidth performance
model much too optimistic

Low BW utilization / Low cache hit
ratio, frequent CL evicts or
replacements (CACHE, DATA,
MEM)

Code
composition

Expensive
instructions

Similar to instruction overhead

Many cycles per instruction (CPI)
if the problem is large-latency
arithmetic

Ineffective
instructions

Scalar instructions dominating in
data-parallel loops (FLOPS_*,
CPI)

Node-level Performance Engineering

109

Where to start

Look at the code and understand what it is doing!

Scaling runs:
 Scale #cores inside ccNUMA domain
 Scale across ccNUMA domains
 Scale working set size (if possible)

HPM measurements:
 Memory Bandwidth
 Instruction decomposition: Arithmetic, data, branch, other
 SIMD vectorized fraction
 Data volumes inside memory hierarchy
 CPI

111

Pattern: Bandwidth Saturation

1. Perform scaling run inside ccNUMA domain
2. Measure memory bandwidth with HPM
3. Compare to micro benchmark with similar data access pattern

Saturating
bandwidth

Scalable
bandwidth

Measured bandwidth spmv:
45964 MB/s
Synthetic load benchmark:
47022 MB/s

114

Pattern: Instruction Overhead

Instruction
decomposition

Inlining failed Inefficient data
structures

Arithmetic FP 12% 21%
Load/Store 30% 50%
Branch 24% 10%
Other 34% 19%
C++ codes which suffer from overhead (inlining problems, complex
abstractions) need a lot more overall instructions related to the arithmetic
instructions
 Often (but not always) “good” (i.e., low) CPI
 Low-ish bandwidth
 Low # of floating-point instructions vs. other instructions

1. Perform a HPM instruction decomposition analysis
2. Measure resource utilization
3. Static code analysis

115

Pattern: Inefficient Instructions

1. HPM measurement: Relation packed vs. scalar instructions
2. Static assembly code analysis: Search for scalar loads

+--------------------------------------+-------------+-------------+-------------+-------------+-------------+
| Event | core 0 | core 1 | core 2 | core 3 | core 4 |
+--------------------------------------+-------------+-------------+-------------+-------------+-------------+
INSTR_RETIRED_ANY	2.19445e+11	1.7674e+11	1.76255e+11	1.75728e+11	1.75578e+11
CPU_CLK_UNHALTED_CORE	1.4396e+11	1.28759e+11	1.28846e+11	1.28898e+11	1.28905e+11
CPU_CLK_UNHALTED_REF	1.20204e+11	1.0895e+11	1.09024e+11	1.09067e+11	1.09074e+11
FP_COMP_OPS_EXE_SSE_FP_PACKED_DOUBLE	1.1169e+09	1.09639e+09	1.09739e+09	1.10112e+09	1.10033e+09
FP_COMP_OPS_EXE_SSE_FP_SCALAR_DOUBLE	3.62746e+10	3.45789e+10	3.45446e+10	3.44553e+10	3.44829e+10
SIMD_FP_256_PACKED_DOUBLE	0	0	0	0	0
------------------------------------+-------------+-------------+-------------+-------------+-------------+

Small fraction
of packed

instructions
No AVX

 There is usually no counter for packed vs scalar (SIMD) loads and
stores.

 Also the compiler usually does not distinguish!

Only solution: Inspect code at assembly level.

116

Pattern: Synchronization overhead

sync
overhead
grows with #
of threads

bandwidth
scalability
across
memory
interfaces

1. Performance is decreasing with growing core counts
2. Performance is sensitive to topology
3. Static code analysis: Estimate work vs. barrier cost.

117

Thread synchronization overhead on IvyBridge-EP
Barrier overhead in CPU cycles

2 Threads Intel 16.0 GCC 5.3.0
Shared L3 599 425
SMT threads 612 423
Other socket 1486 1067

Full domain Intel 16.0 GCC 5.3.0
Socket (10 cores) 1934 1301
Node (20 cores) 4999 7783
Node +SMT 5981 9897

Strong topology
dependence!

10 cores 10 cores

2.2 GHz

 Strong dependence on compiler, CPU and system environment!
 OMP_WAIT_POLICY=ACTIVE can make a big difference

Overhead grows
with thread count

118

Thread synchronization overhead on Xeon Phi 7210 (64-core)
Barrier overhead in CPU cycles (Intel C compiler 16.03)

SMT1 SMT2 SMT3 SMT4
One core n/a 963 1580 2240
Full chip 5720 8100 9900 11400

Still the pain may be much larger, as more work can be done in one cycle
on Phi compared to a full Ivy Bridge node

3.2x cores (20 vs 64) on Phi
4x more operations per cycle per core on Phi

 4 ∙ 3.2 = 12.8x more work done on Xeon Phi per cycle

1.9x more barrier penalty (cycles) on Phi (11400 vs. 6000)

 One barrier causes 1.9 ∙ 12.8 ≈ 24x more pain .

2 threads on
distinct cores:

730

“SIMPLE” PERFORMANCE
MODELING:
THE ROOFLINE MODEL

Loop-based performance modeling:
Execution vs. data transfer

120

How to perform a instruction throughput analysis on the example of
Intel’s port based scheduler model.

Preliminary: Estimating Instruction throughput

Port 0 Port 1 Port 5Port 2 Port 3 Port 4

ALU ALU ALU

FMUL FADD FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Issue 6 uops

Retire 4 uops

SandyBridge

16b 16b 16b

121

Every new generation provides incremental improvements.
The OOO microarchitecture is a blend between P6 (Pentium Pro)
and P4 (Netburst) architectures.

Preliminary: Estimating Instruction throughput

Port 0 Port 1 Port 5Port 2 Port 3 Port 4 Port 6 Port 7

ALU ALU ALU

FMA FMA FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Retire 4 uops

32b 32b 32b

AGU

Haswell

FMUL

ALU

JUMP

Issue 8 uops

122

double *A, *B, *C, *D;
for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i]
}

How many cycles to process one 64byte cacheline?

Exercise: Estimate performance of triad on
SandyBridge @3GHz

64byte equivalent to 8 scalar iterations or 2 AVX vector iterations.

Cycle 1: load and ½ store and mult and add
Cycle 2: load and ½ store
Cycle 3: load Answer: 6 cycles

123

double *A, *B, *C, *D;
for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i]
}

Whats the performance in GFlops/s and bandwidth in MBytes/s ?

Exercise: Estimate performance of triad on
SandyBridge @3GHz

One AVX iteration (3 cycles) performs 4x2=8 flops.

(3 GHZ / 3 cycles) * 4 updates * 2 flops/update = 8 GFlops/s
4 GUPS/s * 4 words/update * 8byte/word = 128 GBytes/s

124

The Roofline Model1,2

1. Pmax = Applicable peak performance of a loop, assuming that
data comes from L1 cache (this is not necessarily Ppeak)

2. I = Computational intensity (“work” per byte transferred) over
the slowest data path utilized (“the bottleneck”)
 Code balance BC = I -1

3. bS = Applicable peak bandwidth of the slowest data path utilized

Expected performance:

R.W. Hockney and I.J. Curington: f1/2: A parameter to characterize memory and communication bottlenecks.
Parallel Computing 10, 277-286 (1989). DOI: 10.1016/0167-8191(89)90100-2

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed Memory Parallel Computers. Self-edition (2000)
S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

[B/s][F/B]

𝑃𝑃 = min 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐼𝐼 � 𝑏𝑏𝑆𝑆

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/%7Erx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf

125

“Simple” Roofline: The vector triad
Vector triad A(:)=B(:)+C(:)*D(:) on a 2.7 GHz 8-core SNB chip

Consider full chip (8 cores):

Memory bandwidth: bS = 40 GB/s
Code balance (incl. write allocate):
Bc = (4+1) Words / 2 Flops = 20 B/F I = 0.05 F/B

 I ∙ bS = 2.0 GF/s (1.1% of peak performance)

Ppeak / core = 21.7 Gflop/s ((4+4) Flops/cy x 2.7 GHz)
Pmax / core = 7.2 Gflop/s (1 AVX LD/cy)

 Pmax = 8 * 7.2 Gflop/s = 57.6 Gflop/s (33% peak)

𝑃𝑃 = min 𝑃𝑃max, 𝐼𝐼 � 𝑏𝑏𝑆𝑆 = min 57.6,2.0 ⁄GFlop s = 2.0 ⁄GFlop s

126

A not so simple Roofline example
Example: do i=1,N; s=s+a(i); enddo
in single precision on an 8-core 2.2 GHz Sandy Bridge socket @ “large” N

ADD peak
(best possible
code)

no SIMD

3-cycle latency
per ADD if not
unrolled

P (worst loop code)

𝑃𝑃 = min(𝑃𝑃max, 𝐼𝐼 � 𝑏𝑏𝑆𝑆)

How do we
get these
numbers???

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak
(ADD+MULT)
Out of reach for this
code

P
(better loop code)

127

Applicable peak for the summation loop

Plain scalar code, no SIMD

LOAD r1.0 0
i 1
loop:
LOAD r2.0 a(i)
ADD r1.0 r1.0+r2.0
++i ? loop

result r1.0

ADD pipes utilization:

 1/24 of ADD peak

SI
M

D
 la

ne
s

128

Applicable peak for the summation loop

Scalar code, 3-way unrolling
LOAD r1.0 0
LOAD r2.0 0
LOAD r3.0 0
i 1

loop:
LOAD r4.0 a(i)
LOAD r5.0 a(i+1)
LOAD r6.0 a(i+2)

ADD r1.0 r1.0 + r4.0
ADD r2.0 r2.0 + r5.0
ADD r3.0 r3.0 + r6.0

i+=3 ? loop
result r1.0+r2.0+r3.0

ADD pipes utilization:

 1/8 of ADD peak

129

Applicable peak for the summation loop

SIMD-vectorized, 3-way unrolled
LOAD [r1.0,…,r1.7] [0,…,0]
LOAD [r2.0,…,r2.7] [0,…,0]
LOAD [r3.0,…,r3.7] [0,…,0]
i 1

loop:
LOAD [r4.0,…,r4.7] [a(i),…,a(i+7)]
LOAD [r5.0,…,r5.7] [a(i+8),…,a(i+15)]
LOAD [r6.0,…,r6.7] [a(i+16),…,a(i+23)]

ADD r1 r1 + r4
ADD r2 r2 + r5
ADD r3 r3 + r6

i+=24 ? loop
result r1.0+r1.1+...+r3.6+r3.7

ADD pipes utilization:

 ADD peak

130

Input to the roofline model

… on the example of do i=1,N; s=s+a(i); enddo
in single precision

analysis

Code analysis:
1 ADD + 1 LOAD

architectureThroughput: 1 ADD + 1 LD/cy
Pipeline depth: 3 cy (ADD)

8-way SIMD, 8 cores

measurement

Maximum memory
bandwidth 40 GB/s

Worst code: P = 5.9 GF/s (core bound)
Better code: P = 10 GF/s (memory bound)

5.9 … 141 GF/s

10 GF/s

131

The roofline formalism is based on some (crucial) assumptions:
 There is a clear concept of “work” vs. “traffic”

› “work” = flops, updates, iterations…
› “traffic” = required data to do “work”

 Attainable bandwidth of code = input parameter! Determine
effective bandwidth via simple streaming benchmarks to model more
complex kernels and applications

 Data transfer and core execution overlap perfectly!
 Slowest data path is modeled only; all others are assumed to be

infinitely fast
 The bandwidth of the slowest data path can be utilized to 100%

(“saturation”)
 Latency effects are ignored, i.e. perfect streaming mode

Assumptions for the Roofline Model

132

Typical code optimizations in the Roofline Model

1. Hit the BW bottleneck by good
serial code

2. Increase intensity to make better
use of BW bottleneck

3. Increase intensity and go from
memory-bound to core-bound

4. Hit the core bottleneck by good
serial code

5. Shift Pmax by accessing
additional hardware features or
using a different
algorithm/implementation

133

Saturation effects in multicore chips are not explained
 Reason: “saturation assumption”
 Cache line transfers and core execution do sometimes not overlap

perfectly
 Only increased “pressure” on the memory

interface can saturate the bus
 need more cores!

ECM model gives more insight

Shortcomings of the roofline model

A(:)=B(:)+C(:)*D(:)

Roofline predicts
full socket BW

134

Where the roofline model fails

In memory
performance

below saturation
pointIn cache

situations

135

ECM = “Execution-Cache-Memory”

Assumptions:
Single-core execution time is composed of

1. In-core execution
2. Data transfers in the memory hierarchy

Data transfers may or may not overlap with
each other or with in-core execution

Scaling is linear until the relevant bottleneck
is reached

Input:
Same as for Roofline
+ data transfer times in hierarchy

ECM Model

136

ECM = “Execution-Cache-Memory”

• Analytical performance model

• Focus on resource utilization
• Instruction Execution
• Data Movement

• Lightspeed assumption:
• Optimal instruction throughput
• Always bandwidth bound

Introduction to ECM model

The RULES™ for x86 CPUs
1. Single-core execution time is

composed of
1. In-core execution
2. Data transfers in the memory

hierarchy
2. All timings are in units of one CL
3. LOADS in the L1 cache do not

overlap with any other data
transfer

4. Scaling across cores is linear
until a shared bottleneck is hit

137

ECM for A(:)=B(:)+C(:)*D(:) on 2.7 GHz SNB core

CL
transfer

Write-
allocate
CL
transfer

Prediction: 50 cy/CL

140

Identify relevant bandwidth bottlenecks
 L3 cache
 Memory interface

Scale single-thread performance until first bottleneck is hit:

Multicore scaling in the ECM model

. . .Example:
Scalable L3

on Sandy
Bridge

𝑛𝑛 cores: 𝑃𝑃 𝑛𝑛 = min(𝑛𝑛𝑃𝑃0, 𝐼𝐼 � 𝑏𝑏𝑆𝑆)

141

Model: Scales until saturation sets in

Saturation point (# cores) well predicted

Measurement: scaling not perfect

Caveat: This is specific for this
architecture and this benchmark!

Check: Use “overlappable” kernel code

ECM prediction vs. measurements for
A(:)=B(:)+C(:)*D(:), no overlap

142

In-core execution is dominated
by divide operation
(44 cycles with AVX, 22 scalar)

 Almost perfect agreement
with ECM model

ECM prediction vs. measurements for
A(:)=B(:)+C(:)/D(:) with full overlap

Parallelism “heals” bad
single-core performance

… just barely!

143

• The ECM model is a powerful analysis tool to get insight into:
• Runtime contributions
• Bottleneck identification
• Runtime overlap

It can predict single core performance for any memory hierarchy
level and provide an estimate of multicore scalability.

Summary: The ECM Model

144

References

 J. Treibig and G. Hager: Introducing a Performance Model for Bandwidth-Limited Loop
Kernels. Proceedings of the Workshop “Memory issues on Multi- and Manycore
Platforms” at PPAM 2009, the 8th International Conference on Parallel Processing and
Applied Mathematics, Wroclaw, Poland, September 13-16, 2009. Lecture Notes in
Computer Science Volume 6067, 2010, pp 615-624.
DOI: 10.1007/978-3-642-14390-8_64 (2010).

 G. Hager, J. Treibig, J. Habich, and G. Wellein: Exploring performance and power
properties of modern multicore chips via simple machine models.
Concurrency and Computation: Practice and Experience,
DOI: 10.1002/cpe.3180 (2013).

 M. Wittmann, G. Hager, T. Zeiser, J. Treibig, and G. Wellein: Chip-level and multi-node
analysis of energy-optimized lattice-Boltzmann CFD simulations.
Concurrency Computat.: Pract. Exper. (2015), DOI: 10.1002/cpe.3489

 H. Stengel, J. Treibig, G. Hager, and G. Wellein: Quantifying performance bottlenecks of
stencil computations using the Execution-Cache-Memory model. Proc. ICS’15, the 29th

International Conference on Supercomputing, Newport Beach, CA, June 8-11, 2015.
DOI: 10.1145/2751205.2751240

http://dx.doi.org/10.1007/978-3-642-14390-8_64
http://dx.doi.org/10.1002/cpe.3180
http://dx.doi.org/10.1002/cpe.3489
http://dx.doi.org/10.1145/2751205.2751240

145

Further references

 M. Wittmann, G. Hager, J. Treibig and G. Wellein: Leveraging shared caches for parallel
temporal blocking of stencil codes on multicore processors and clusters. Parallel
Processing Letters 20 (4), 359-376 (2010).
DOI: 10.1142/S0129626410000296

 J. Treibig, G. Hager, H. G. Hofmann, J. Hornegger, and G. Wellein: Pushing the limits for
medical image reconstruction on recent standard multicore processors. International
Journal of High Performance Computing Applications 27(2), 162-177 (2013).
DOI: 10.1177/1094342012442424

 S. Kronawitter, H. Stengel, G. Hager, and C. Lengauer: Domain-Specific Optimization of
Two Jacobi Smoother Kernels and their Evaluation in the ECM Performance Model.
Parallel Processing Letters 24, 1441004 (2014).
DOI: 10.1142/S0129626414410047

 J. Hofmann, D. Fey, M. Riedmann, J. Eitzinger, G. Hager, and G. Wellein: Performance
analysis of the Kahan-enhanced scalar product on current multi- and manycore
processors. Concurrency & Computation: Practice & Experience (2016). Available
online, DOI: 10.1002/cpe.3921.

http://dx.doi.org/10.1142/S0129626410000296
http://dx.doi.org/10.1177/1094342012442424
http://dx.doi.org/10.1142/S0129626414410047
http://dx.doi.org/10.1002/cpe.3921

	Architecture Specific Optimization Techniques
	Schedule
	Stored Program Computer: Base setting
	Performance increase by clock increase�
	Performance increase by parallelization
	Excursion in memory bandwidth�Some thoughts on efficiency …
	Excursion in memory bandwidth�A better way to think about efficiency
	Hardware-Software Co-Design?�From algorithm to execution
	Example: Threaded vector triad in C
	Why are we doing this?
	Hardware Optimizations for single-core execution
	Common technologies
	Multicore architectures
	General-purpose cache based microprocessor core
	Instruction level parallelism
	Pipelining of arithmetic/functional units
	Technologies Driving Performance
	Moores Law: Single chip transistor count
	History of Intel chip performance
	The real picture
	Finding the right compromise
	NVidia Pascal GP100 block diagram
	Intel Xeon Phi “Knights Landing” block diagram
	Trading single thread performance for parallelism:�GPGPUs vs. CPUs
	Attainable memory bandwidth: Comparing architectures
	SIMD and Turbo mode
	And there is no guarantee
	Maximum DP floating point (FP) performance
	The driving forces behind performance 2012
	The driving forces behind performance 2018
	Core details: Simultaneous multi-threading (SMT)
	Data parallel execution units (SIMD)
	Data parallel execution units (SIMD)
	SIMD processing – Basics
	SIMD processing – Basics
	Why and how?
	Basics of the x86-64 ISA
	Basics of the x86-64 ISA with extensions
	ISA support on KNL
	Example for masked execution
	Architecture specific issues KNC vs. KNL
	Case Study: Simplest code for the summation of the elements of a vector (single precision)
	Case Study: Vector Triad (DP) on IvyBridge-EP
	Case Study: Vector Triad (DP) –O3 (Intel compiler)
	Case Study: Vector Triad (DP) –O3 –xHost
	Case Study: Vector Triad (DP) –O3 –xHost�#pragma vector aligned
	Case Study: Vector Triad (DP) –O3 –xHost�#pragma vector aligned on Haswell-EP
	SIMD processing – The whole picture
	Limits of SIMD processing
	Rules for vectorizable loops
	Memory hierarchy
	Registers and caches:�Data transfers in a memory hierarchy
	Recap: Data transfers in a memory hierarchy
	Fusion: SIMD and the memory hierarchy
	Conclusions about core architectures
	Prelude:�Scalability 4 the win!
	Scalability Myth: Code scalability is the key issue
	Scalability Myth: Code scalability is the key issue
	Scalability Myth: Code scalability is the key issue
	Topology of Multi-core / multi-socket systems
	Building blocks for multi-core compute nodes
	Multicore architecture
	Topology of Super computers
	Chip Topologies
	From UMA to ccNUMA �Memory architectures�
	ccNUMA performance problems�“The other affinity” to care about
	Intel Broadwell EP node�2 chips, 2 sockets, 11 cores per ccNUMA domain (CoD mode)
	ccNUMA default memory locality
	Initialization by parallel first touch
	The curse and blessing of interleaved placement: �OpenMP STREAM on a Cray XE6 Interlagos node
	The curse and blessing of interleaved placement: �same on 4-socket (48 core) Magny Cours node
	Conclusions about Node Topologies
	Multicore Performance and Tools�Probing node topology
	Tools for Node-level Performance Engineering
	How do we figure out the node topology?
	Likwid Tool Suite
	Output of likwid-topology –g�on one node of Intel Haswell-EP
	Output of likwid-topology continued
	Output of likwid-topology continued
	Enforcing thread/process-core affinity under the Linux OS
	Foliennummer 81
	More thread/Process-core affinity (“pinning”) options
	Likwid-pin�Overview
	LIKWID terminology�Thread group syntax
	Likwid�Currently available thread domains
	Likwid-pin�Example: Intel OpenMP
	likwid-perfctr�Basic approach to performance analysis
	Probing performance behavior
	likwid-perfctr�Example usage with preconfigured metric group
	likwid-perfctr�Best practices for runtime counter analysis
	likwid-perfctr�Marker API (C/C++ and Fortran)
	likwid-perfctr�Compiling, linking, and running with the marker API
	Basics of Performance Engineering
	Basics of Optimization
	Best Practices Benchmarking
	Best Practices Benchmarking cont.
	Focus on resource utilization
	Overview
	Thinking in Bottlenecks
	Process vs. Tool
	Performance Engineering Process: Analysis
	Performance analysis phase
	Performance Engineering Process: Modelling
	Performance Engineering Process: Optimization
	Performance pattern classification
	Patterns (I): Bottlenecks & parallelism
	Patterns (II): Hazards
	Patterns (III): Work-related
	Where to start
	Pattern: Bandwidth Saturation
	Pattern: Instruction Overhead
	Pattern: Inefficient Instructions
	Pattern: Synchronization overhead
	Thread synchronization overhead on IvyBridge-EP �Barrier overhead in CPU cycles
	Thread synchronization overhead on Xeon Phi 7210 (64-core)�Barrier overhead in CPU cycles (Intel C compiler 16.03)
	“Simple” performance modeling:�The Roofline Model��
	Preliminary: Estimating Instruction throughput
	Preliminary: Estimating Instruction throughput
	Exercise: Estimate performance of triad on SandyBridge @3GHz
	Exercise: Estimate performance of triad on SandyBridge @3GHz
	The Roofline Model1,2
	“Simple” Roofline: The vector triad
	A not so simple Roofline example
	Applicable peak for the summation loop
	Applicable peak for the summation loop
	Applicable peak for the summation loop
	Input to the roofline model
	Assumptions for the Roofline Model
	Typical code optimizations in the Roofline Model
	Shortcomings of the roofline model
	Where the roofline model fails
	ECM Model
	Introduction to ECM model
	ECM for A(:)=B(:)+C(:)*D(:) on 2.7 GHz SNB core
	Multicore scaling in the ECM model
	ECM prediction vs. measurements for A(:)=B(:)+C(:)*D(:), no overlap
	ECM prediction vs. measurements for A(:)=B(:)+C(:)/D(:) with full overlap
	Summary: The ECM Model
	References
	Further references

