
ERLANGEN REGIONAL 
COMPUTING CENTER 

J. Eitzinger

PATC LRZ  2018, 26.3.2018

Architecture Specific Optimization 
Techniques



2

Monday Topic
9:00-10:30 Introduction to Computer architecture
10:30-10:45 Coffee Break
10:45-11:45 Node Topology and Performance Tools
11:45-12:30 Exercise 1: Stream Benchmark
12:30-13:30 Lunch Break
13:30-14:30 Basics of Performance Engineering
14:30-15:30 Exercise 2: In-cache triad
15:45-16:00 Coffee Break
16:00-17:00 Performance Modelling

Schedule
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Stored Program Computer: Base setting

 Improvements for relevant software
 What are the technical opportunities?
 Economical concerns
 Marketing concerns

C
PU

Memory

Control
Unit

Arithmetic
Logical

Unit

Input Output Architect’s view:
Make the common case fast !

401d08:   f3 0f 58 04 82         addss xmm0,[rdx + rax * 4]
401d0d:   48 83 c0 01            add    rax,1
401d11:   39 c7                  cmp edi,eax
401d13:   77 f3                  ja     401d08

for (int j=0; j<size; j++){
sum = sum + V[j];

}

Strategies
 Increase clock speed
 Parallelism
 Specialization

Execution and 
memory
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Performance increase by clock increase

Throughput:
1 Unit per 
second

Limit: Physical limitations for cooling!

Throughput:
4 Units per 
second
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Performance increase by parallelization

Throughput:
1 Unit per second

Problems
• Need enough parallel work
• No dependencies between work
• Usage mostly explicit

Throughput:
8 Unit per second
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Common lore: Efficiency is the fraction of peak performance you
reach!

Excursion in memory bandwidth
Some thoughts on efficiency …

Example: STREAM triad (A(:)= B(:)+C(:)*d) with data not fitting into
cache.

Intel Xeon X5482 (Harpertown 3.2 GHz):  553 Mflops/s (8 cores)
Efficiency 0.54% of peak

Intel Xeon E5-2680 (SandyBridge EP 2.7 GHz) 4357 Mflops/s (16 cores)
Efficiency  1.2% of peak

What can we do about it? Nothing!
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Reality:  This code is bound by main memory bandwidth.

HPT  6.6 GB/s (8.8 GB/s with WA)

SNB  52.3 GB/s (69.6 GB/s with WA)

In both cases this is near 100% of achievable memory bandwidth.

Excursion in memory bandwidth
A better way to think about efficiency

Efficiency increase: None !
Architecture improvement: 

8x

To think about efficiency you should focus on the 
utilization of the relevant resource!
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Notions of work:

• Application Work
• Flops
• LUPS
• VUPS

• Processor Work
• Instructions
• Data Volume

Hardware-Software Co-Design?
From algorithm to execution

Algorithm

Programming language

Machine code

Compiler
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Consider the following code:

#pragma omp parallel private(j)
{
for (int j=0; j<niter; j++) {
#pragma omp for

for (int i=0; i<size; i++) {
a[i] = b[i] + c[i] * d[i];

}
}
}   

Example: Threaded vector triad in C

Setup:
32 threads running on a dual 
socket 8-core SandyBridge-EP
gcc 4.7.0

/* global synchronization */

Every single synchronization in this setup costs in the order 
of 60000 cycles ! 
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Abstraction concept

Pragmatic solution:
 Optimizing libraries: Proven working solution
 Application code consolidation: Just a few community codes in 

every application class

 Stage 1: It just works! (aka: The compiler will fix it)
 Stage 2: We need new programming models!
 Stage 3: You need to modernize your code. (aka: It is your fault)

Why are we doing this?

Algorithm

Implementation

ISA

Hardware



HARDWARE OPTIMIZATIONS FOR
SINGLE-CORE EXECUTION

• ILP
• SIMD
• SMT
• Memory hierarchy
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Common technologies

 Instruction Level Parallelism (ILP)
 Instruction pipelining
 Superscalar execution
 Out-of-order execution

 Memory Hierarchy

 Branch Prediction Unit, Hardware Prefetching

 Single Instruction Multiple Data (SIMD)

 Simultaneous Multithreading (SMT)

Cycle
Stages

Bubbles Wind-up
Wind-down

Scheduler

Pipeline latency

Caches

Temporal locality Cache-line
Write allocate

Speculative execution

Lanes Register width
Packed

Scalar

Hazard
CPI
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Multicore architectures

Microarchitectural optimizations

© IntelCa. 8 Mrd. 
transistors in 500 

mm2

FPU FPU LSUALU

L1 Cache

L2 Cache
Core

core

core

core

core

core

core

core

core

core

core

core

core
…

Chip (up to  28 Cores) 

S
ockel

S
peicher

S
peicher

S
ockel

Node (2 Chips) 



14

General-purpose cache based microprocessor 
core

 Implements “Stored 
Program Computer” 
concept (Turing 1936)

 Similar designs on all 
modern systems

Stored-program computer

Modern CPU core
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Instruction level parallelism

Node-level Performance Engineering

Pipelining

Instructions

Stages

Superscalar execution

4-fach superskalar

I5 I4 I3 I2 I1

1 2 3 4 5Takt
12345

Throughput: 
1 instruction per cycle
Speedup by factor 5

Single instruction takes 5 cycles

Throughput: 
4 instructions per cycle
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Pipelining of arithmetic/functional units 
 Idea:
 Split complex instruction into several simple / fast steps (stages)
 Each step takes the same amount of time, e.g. a single cycle
 Execute different steps on different instructions at the same time (in 

parallel)

 Allows for shorter cycle times (simpler logic circuits), e.g.: 
 floating point multiplication takes 5 cycles, but 
 processor can work on 5 different multiplications simultaneously
 one result at each cycle after the pipeline is full

 Drawback: 
 Pipeline must be filled - startup times  (#Instructions >> pipeline steps)
 Efficient use of pipelines requires large number of independent 

instructions  instruction level parallelism
 Requires complex instruction scheduling by compiler/hardware –

software-pipelining / out-of-order

 Pipelining is widely used in modern computer architectures
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Technologies Driving Performance

ILP  Obstacle: Not more parallelism available

Clock    Obstacle: Power/Heat dissipation

Multi- Manycore Obstacle: Getting data to/from cores

SIMD  Obstacle: Power

Node-level Performance Engineering
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Moores Law: Single chip transistor count
# 

tra
ns

is
to

rs
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History of Intel chip performance

Trade cores for 
frequency96W

135W

145W
173W

Node-level Performance Engineering
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The real picture

SSE2

AVX

AVX512

FMA

Node-level Performance Engineering
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Finding the right compromise

# cores SIMD

Core 
complexity

Frequency

Nvidia
GP100

Intel 
Skylake-EP

Intel KNL

Area is total power budget!

Turbo: Change weights within 
the same architecture!

Node-level Performance Engineering
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NVidia Pascal GP100 block diagram

Architecture
 15.3 B Transistors
 ~ 1.4 GHz clock speed
 Up to 60 “SM” units

 64 SP “cores” each
 32 DP “cores” each
 2:1 SP:DP 

performance

 5.7 TFlop/s DP peak
 4 MB L2 Cache
 4096-bit HBM2
 MemBW ~ 732 GB/s

(theoretical)
 MemBW ~ 510 GB/s

(measured)

© NVIDIA Corp.
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Intel Xeon Phi “Knights Landing” block diagram

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

36 tiles 
(72 cores) 

max.

P P
32 KiB L1 32 KiB L1

1 MiB L2

VPU

VPU

VPU

VPU

TTTT TTTT

Architecture
 8 B Transistors
 Up to 1.5 GHz clock speed
 Up to 36x2 cores (2D mesh)

 2x 512-bit SIMD units (VPU) each
 4-way SMT

 3.5 TFlop/s DP peak (SP 2x)
 36 MiB L2 Cache
 16 GiB MCDRAM

 MemBW ~ 470 GB/s (measured)
 Large DDR4 main memory 

 MemBW ~ 90 GB/s (measured) 
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Trading single thread performance for parallelism:
GPGPUs vs. CPUs

Intel Xeon Platinum 
8170 “Skylake”

Intel Xeon Phi 7250
“Knights Landing”

NVidia Tesla P100 
“Pascal”

Cores@Clock 26 @ ≥2.1 GHz 68 @ 1.4 GHz 56 SMs @ ~1.3 GHz

SP Performance/core 147.2 GFlop/s 89.6 GFlop/s ~166 GFlop/s
Threads@STREAM ~8 ~40 > 10000

SP peak 3.83 TFlop/s 6.1 TFlop/s ~9.3 TFlop/s
Stream BW (meas.) 115.8 GB/s 450 GB/s (MCDRAM) 510 GB/s
Transistors / TDP 8 Billion / 173 W 8 Billion / 215W 14 Billion/300W
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Attainable memory bandwidth: Comparing architectures

Intel Broadwell (22 cores)
CoD enabled

AMD Naples (24 cores)

ECC=on

Single core 
does not 

saturate BW

BW saturation 
in NUMA 
domain

Intel Xeon Phi 7210 / KNL

NVIDIA P100 (Pascal)

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

DDR4

DDR4

DDR4

DDR4

DDR4

DDR4

36 tiles (72 
cores) 
max.
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SIMD and Turbo mode

Haswell 2.3 GHz Broadwell 2.3 GHz

Turn off Turbo is not an option because base 
AVX clock is low!
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And there is no guarantee

1456 Xeon E5-2630v4
10 cores  2.2 GHz
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Maximum DP floating point (FP) performance
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝐹𝐹𝐹𝐹 � 𝑛𝑛𝐹𝐹𝐹𝐹𝐹𝐹 � 𝑛𝑛𝑆𝑆𝑆𝑆𝐹𝐹𝑆𝑆 � 𝑓𝑓

Super-
scalarity

FMA
factor

SIMD
factor

Clock
Speed

uArch 𝒏𝒏𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝑭𝑭𝑭𝑭 𝒏𝒏𝑭𝑭𝑭𝑭𝑭𝑭 𝒏𝒏𝑺𝑺𝑺𝑺𝑭𝑭𝑺𝑺 ncores Release 𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 𝑭𝑭𝒄𝒄𝒄𝒄𝒔𝒔𝒔𝒔
[GF/s]

𝑭𝑭𝒄𝒄𝒉𝒉𝒉𝒉𝒔𝒔
[GF/s]

𝑭𝑭𝒔𝒔𝒔𝒔𝒔𝒔𝒉𝒉𝒔𝒔𝒔𝒔
[GF/s] TDP GF/

Watt

Sandy Bridge 2 1 4 8 Q1/2012 E5-2680 11.7 173 7 130 1,33
Ivy Bridge 2 1 4 10 Q3/2013 E5-2690-v2 24 240 7,2 130 1,85

KNC 1 2 8 61 Q2/2014 7120A 10.6 1210 1,3 300 4,03
Haswell 2 2 4 14 Q3/2014 E5-2695-v3 21.6 425 6,6 120 3,54

Broadwell 2 2 4 22 Q1/2016 E5-2699-v4 17.6 704 7,2 145 4,85
Pascal 1 2 32 56 Q2/2016 GP100 36.8 4700 1,5 300 15,67

KNL 2 2 8 72 Q4/2016 7290F 35.2 2995 3,4 260 11,52

Skylake 2 2 8 26 Q3/2017 8170 23.4 1581 7,6 165 9,58
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Intel IvyBridge-EP
Number of cores ncore 12
FP instructions per cycle F 2
FP ops per instructions S 4 (DP) / 8 (SP)
Clock speed [GHz] n 2.7
Performance [GF/s]  P 259 (DP) / 518 (SP)

The driving forces behind performance 2012

P = ncore * F * S * ν

But: P=5.4 GF/s for serial, non-SIMD code 

TOP500 rank 1 (1996)

Intel IvyBridge-EP

Node-level Performance Engineering
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Intel IvyBridge-EP
Number of cores ncore 28
FP instructions per cycle F 2
FMA factor M 2
FP ops per instructions S 8 (DP) / 16 (SP)
Clock speed [GHz] n 2.3 (scalar 2.8)
Performance [GF/s]  P 2060 (DP) / 4122 (SP)

The driving forces behind performance 2018

P = ncore * F * M * S * ν

But: P=5.6 GF/s for serial, non-SIMD code 

Intel Skylake-SP

Node-level Performance Engineering
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Core details: Simultaneous multi-threading (SMT)
S

ta
nd

ar
d 

co
re

2-
w

ay
 S

M
T
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Data parallel execution units (SIMD)

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

Scalar execution

Register widths
• 1  operand

• 2 operands (SSE)

• 4  operands (AVX)

• 8 operands (AVX512)

= +
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Data parallel execution units (SIMD)

for (int j=0; j<size; j++){
A[j] = B[j] + C[j];

}

Register widths
• 1  operand

• 2 operands (SSE)

• 4  operands (AVX)

• 8 operands (AVX512)

SIMD execution

= +
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SIMD processing – Basics 
Steps (done by the compiler) for “SIMD processing”
for(int i=0; i<n;i++) 

C[i]=A[i]+B[i];

for(int i=0; i<n;i+=4){
C[i]  =A[i]  +B[i];
C[i+1]=A[i+1]+B[i+1];
C[i+2]=A[i+2]+B[i+2];
C[i+3]=A[i+3]+B[i+3];}

//remainder loop handling

LABEL1:
VLOAD R0  A[i]
VLOAD R1  B[i]
V64ADD[R0,R1]  R2
VSTORE R2  C[i]
ii+4
i<(n-4)? JMP LABEL1 

//remainder loop handling

“Loop unrolling”

Load 256 Bits starting from address of A[i] to 
register R0

Add the corresponding 64 Bit entries in  R0 and
R1 and store the 4 results to R2

Store R2 (256 Bit) to address 
starting at C[i]
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SIMD processing – Basics 
No SIMD vectorization  for loops with data dependencies:

“Pointer aliasing” may prevent  SIMDfication

C/C++ allows that A  &C[-1] and B  &C[-2]
 C[i] = C[i-1] + C[i-2]: dependency  No SIMD
If “pointer aliasing” is not used, tell it to the compiler:
–fno-alias (Intel), -Msafeptr (PGI), -fargument-noalias (gcc)
restrict keyword (C only!):

for(int i=0; i<n;i++) 
A[i]=A[i-1]*s;

void f(double *A, double *B, double *C, int n) {
for(int i=0; i<n; ++i) 

C[i] = A[i] + B[i];
}

void f(double restrict *A, double restrict *B, double restrict *C, int n) {…}
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Why and how?

Why check the assembly code?
 Sometimes the only way to make sure the compiler  “did the right 

thing”
 Example: “LOOP WAS VECTORIZED” message is printed, but Loads 

& Stores may still be scalar! 
 Get the assembler code (Intel compiler):
icc –S –O3  -xHost triad.c -o a.out
 Disassemble Executable:
objdump –d  ./a.out | less

The x86 ISA is documented in:
Intel Software Development Manual (SDM) 2A and 2B
AMD64 Architecture Programmer's Manual Vol. 1-5
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Basics of the x86-64 ISA

 Instructions have 0 to 3 operands (4 with AVX-512)
 Operands can be registers, memory references or immediates
 Opcodes (binary representation of instructions) vary from 1 to 17 bytes
 There are two assembler syntax forms: Intel (left) and AT&T (right)
 Addressing Mode: BASE + INDEX * SCALE + DISPLACEMENT
 C:  A[i] equivalent to *(A+i)  (a pointer has a type: A+i*8)

movaps [rdi + rax*8+48], xmm3
add rax, 8
js 1b

401b9f: 0f 29 5c c7 30     movaps %xmm3,0x30(%rdi,%rax,8)
401ba4: 48 83 c0 08        add $0x8,%rax
401ba8: 78 a6              js 401b50 <triad_asm+0x4b>

movaps    %xmm4, 48(%rdi,%rax,8) 
addq $8, %rax
js   ..B1.4 
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Basics of the x86-64 ISA with extensions

16 general Purpose Registers (64bit):  
rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, r8-r15
alias with eight  32 bit register set:
eax, ebx, ecx, edx, esi, edi, esp, ebp
8 opmask registers (16bit or 64bit, AVX512 only):
k0–k7
Floating Point SIMD Registers:
xmm0-xmm15 (xmm31)  SSE (128bit)   alias with 256-bit and 512-bit registers
ymm0-ymm15 (xmm31)  AVX (256bit)   alias with 512-bit registers
zmm0-zmm31          AVX-512 (512bit)

SIMD instructions are distinguished by:
VEX/EVEX prefix:  v
Operation: mul, add, mov
Modifier: nontemporal (nt), unaligned (u), aligned (a), high (h)
Width: scalar (s), packed (p)
Data type: single (s),  double  (d)



39

ISA support on KNL
KNL supports all legacy ISA extensions:
MMX, SSE, AVX, AVX2

Furthermore KNL supports:
 AVX-512 Foundation (F), KNL and Skylake
 AVX-512 Conflict Detection Instructions (CD), KNL and Skylake
 AVX-512 Exponential and Reciprocal Instructions (ER), KNL
 AVX-512 Prefetch Instructions (PF), KNL

AVX-512 extensions only supported on Skylake:
 AVX-512 Byte and Word Instructions (BW)
 AVX-512 Doubleword and Quadword Instructions (DQ)
 AVX-512 Vector Length Extensions (VL)

ISA Documentation:
Intel Architecture Instruction Set Extensions Programming Reference 
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Example for masked execution

Masking for predication is very helpful  in cases such as e.g. 
remainder loop handling or conditional handling.
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Architecture specific issues KNC vs. KNL

KNC architectural issues
 Fragile single core performance (in-order, pairing, SMT)
 No proper hardware prefetching
 Shared access on segmented LLC costly

KNL fixes most of these issues and is more accessible!

Advices for KNL
 1 thread per core is usually best, sometime two threads per core
 Large pages can improve performance significantly (2M,1G)
 Consider the -no-prec-div option to enable AVX-512 ER instructions
 Aggressive software prefetching is usually not necessary
 MCDRAM is the preferred target memory (try cache mode first)
 Alignment restrictions and penalties are similar to Xeon. We experienced a 

benefit from alignment to page size with the MCDRAM.
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Case Study: Simplest code for the summation of the 
elements of a vector (single precision)
float sum = 0.0;

for (int i=0; i<size; i++){
sum += data[i];

}

Instruction code:
401d08:   f3 0f 58 04 82          addss xmm0,[rdx + rax * 4]
401d0d:   48 83 c0 01             add    rax,1
401d11:   39 c7                   cmp edi,eax
401d13:   77 f3                   ja 401d08

Instruction 
address

Opcodes Assembly 
code

To get  object code use 
objdump –d on object file or 
executable or compile with -S

AT&T syntax:
addss 0(%rdx,%rax,4),%xmm0

(final sum
across xmm0 
omitted)
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Case Study: Vector Triad (DP) on IvyBridge-EP

for (int i = 0; i < length; i++) {
A[i] = B[i] + D[i] * C[i];

}

Assembly code (-O1):
LBB0_3
movsd xmm0, [rdx]
mulsd xmm0, [rcx]
addsd xmm0, [rsi]
movsd [rax], xmm0
add rsi, 8
add rdx, 8
add rcx, 8
add rax, 8
dec edi
jne LBB0_3

To get  object code use 
objdump –d on object file or 
executable or compile with -S

..B1.6:                         
movsd xmm0, [r12+rax*8]
mulsd xmm0, [r13+rax*8]
addsd xmm0, [r14+rax*8]
movsd [r15+rax*8], xmm0
inc rax
cmp rax, rbx
jl ..B1.6

C
LA

N
G

IC
C

.L4:
movsd xmm0,[rbx+rax]
mulsd xmm0,[r12+rax]
addsd xmm0,[r13+0+rax]
movsd [rbp+0+rax],xmm0
add rax, 8
cmp rax, r14
jne .L4

G
C

C

7 instructions per loop 
iteration
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Case Study: Vector Triad (DP) –O3 (Intel compiler)

..B1.19:
movsd xmm0,  [r15+rsi*8]
movsd xmm3,  [16+r15+rsi*8]
movsd xmm5,  [32+r15+rsi*8]
movsd xmm7,  [48+r15+rsi*8]
movhpd xmm0,  [8+r15+rsi*8]
movhpd xmm3,  [24+r15+rsi*8]
movhpd xmm5,  [40+r15+rsi*8]
movhpd xmm7,  [56+r15+rsi*8]
mulpd xmm0,  [r14+rsi*8]
mulpd xmm3,  [16+r14+rsi*8]
mulpd xmm5,  [32+r14+rsi*8]
mulpd xmm7,  [48+r14+rsi*8]
movsd xmm2,  [r13+rsi*8]
movsd xmm4,  [16+r13+rsi*8]
movsd xmm6,  [32+r13+rsi*8]
movsd xmm8,  [48+r13+rsi*8]
movhpd xmm2,  [8+r13+rsi*8]
movhpd xmm4,  [24+r13+rsi*8]
movhpd xmm6,  [40+r13+rsi*8]
movhpd xmm8,  [56+r13+rsi*8]

addpd xmm2, xmm0
addpd xmm4, xmm3
addpd xmm6, xmm5
addpd xmm8, xmm7
movaps [rdx+rsi*8], xmm2
movaps [16+rdx+rsi*8], xmm4
movaps [32+rdx+rsi*8], xmm6
movaps [48+rdx+rsi*8], xmm8
add rsi, 8
cmp rsi, r9
jb ..B1.19

3.86 instructions per 
loop iteration
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Case Study: Vector Triad (DP) –O3 –xHost
..B1.15:        
vmovupd xmm2, [r15+rsi*8]         
vmovupd xmm10, [32+r15+rsi*8]        
vmovupd xmm3, [rdx+rsi*8]         
vmovupd xmm11, [32+rdx+rsi*8]        
vmovupd xmm0, [r14+rsi*8]         
vmovupd xmm9, [32+r14+rsi*8]        
vinsertf128 ymm4, ymm2,[16+r15+rsi*8], 1        
vinsertf128 ymm12,ymm10,[48+r15+rsi*8],1        
vinsertf128 ymm5, ymm3,[16+rdx+rsi*8], 1        
vinsertf128 ymm13,ymm11,[48+rdx+rsi*8],1        
vmulpd ymm7, ymm4, ymm5           
vmulpd ymm15, ymm12, ymm13        
vmovupd xmm4, [64+rdx+rsi*8]        
vmovupd xmm12, [96+rdx+rsi*8]        
vmovupd xmm3, [64+r15+rsi*8]        
vmovupd xmm11, [96+r15+rsi*8]        
vmovupd xmm2, [64+r14+rsi*8]        
vmovupd xmm10, [96+r14+rsi*8]        
vinsertf128 ymm14,ymm9,[48+r14+rsi*8], 1        
vinsertf128 ymm6,ymm0,[16+r14+rsi*8], 1        
vaddpd ymm8, ymm6, ymm7         vaddpd
ymm0, ymm14, ymm15

vmovupd [r13+rsi*8], ymm8         
vmovupd [32+r13+rsi*8], ymm0        
vinsertf128 ymm5, ymm3, [80+r15+rsi*8], 1        
vinsertf128 ymm13,ymm11,[112+r15+rsi*8], 1        
vinsertf128 ymm6, ymm4,  [80+rdx+rsi*8], 1        
vinsertf128 ymm14,ymm12,[112+rdx+rsi*8], 1        
vmulpd ymm8, ymm5, ymm6           
vmulpd ymm0, ymm13, ymm14       
vinsertf128 ymm7, ymm2, [80+r14+rsi*8], 1        
vinsertf128 ymm15,ymm10,[112+r14+rsi*8], 1        
vaddpd ymm9, ymm7, ymm8           
vaddpd ymm2, ymm15, ymm0         
vmovupd [64+r13+rsi*8], ymm9        
vmovupd [96+r13+rsi*8], ymm2          
add rsi, 16                       
cmp rsi, r9                        
jb ..B1.15

2.44 instructions per 
loop iteration

Benefit of SIMD limited by serial fraction!
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Case Study: Vector Triad (DP) –O3 –xHost
#pragma vector aligned

..B1.7:          
movaps xmm0, [r13+rcx*8]          
movaps xmm2, [16+r13+rcx*8]        
movaps xmm3, [32+r13+rcx*8]        
movaps xmm4, [48+r13+rcx*8]        
mulpd xmm0, [rbp+rcx*8]           
mulpd xmm2, [16+rbp+rcx*8]        
mulpd xmm3, [32+rbp+rcx*8]        
mulpd xmm4, [48+rbp+rcx*8]        
addpd xmm0, [r12+rcx*8]           
addpd xmm2, [16+r12+rcx*8]        
addpd xmm3, [32+r12+rcx*8]        
addpd xmm4, [48+r12+rcx*8]        
movaps [r15+rcx*8], xmm0
movaps [16+r15+rcx*8], xmm2        
movaps [32+r15+rcx*8], xmm3        
movaps [48+r15+rcx*8], xmm4          
add rcx, 8                        
cmp rcx, rsi
jb ..B1.7

..B1.7:                             
vmovupd ymm0, [r15+rcx*8]         
vmovupd ymm4, [32+r15+rcx*8]        
vmovupd ymm7, [64+r15+rcx*8]        
vmovupd ymm10,[96+r15+rcx*8]        
vmulpd ymm2, ymm0, [rdx+rcx*8]        
vmulpd ymm5, ymm4, [32+rdx+rcx*8]        
vmulpd ymm8, ymm7, [64+rdx+rcx*8]        
vmulpd ymm11, ymm10, [96+rdx+rcx*8]        
vaddpd ymm3, ymm2, [r14+rcx*8]        
vaddpd ymm6, ymm5, [32+r14+rcx*8]        
vaddpd ymm9, ymm8, [64+r14+rcx*8]        
vaddpd ymm12, ymm11, [96+r14+rcx*8]        
vmovupd [r13+rcx*8], ymm3         
vmovupd [32+r13+rcx*8], ymm6        
vmovupd [64+r13+rcx*8], ymm9        
vmovupd [96+r13+rcx*8], ymm12         
add rcx, 16                       
cmp rcx, rsi
jb ..B1.7

2.38 instructions per 
loop iteration

1.19 instructions per 
loop iteration
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Case Study: Vector Triad (DP) –O3 –xHost
#pragma vector aligned on Haswell-EP
..B1.7:
vmovupd ymm2, [r15+rcx*8]        
vmovupd ymm4, [32+r15+rcx*8]        
vmovupd ymm6, [64+r15+rcx*8]        
vmovupd ymm8, [96+r15+rcx*8]        
vmovupd ymm0, [rdx+rcx*8]        
vmovupd ymm3, [32+rdx+rcx*8]        
vmovupd ymm5, [64+rdx+rcx*8]        
vmovupd ymm7, [96+rdx+rcx*8]        
vfmadd213pd ymm2, ymm0, [r14+rcx*8]        
vfmadd213pd ymm4, ymm3, [32+r14+rcx*8]        
vfmadd213pd ymm6, ymm5, [64+r14+rcx*8]        
vfmadd213pd ymm8, ymm7, [96+r14+rcx*8]        
vmovupd [r13+rcx*8], ymm2
vmovupd [32+r13+rcx*8], ymm4        
vmovupd [64+r13+rcx*8], ymm6        
vmovupd [96+r13+rcx*8], ymm8         
add rcx, 16                      
cmp rcx, rsi
jb ..B1.7

1.19 instructions per 
loop iteration

23 uops vs. 27 µops (AVX) 

On  X86 ISA instruction are 
converted to so-called µops
(elementary ops like load, add, 
mult). For performance the 
number of µops is important.
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SIMD processing – The whole picture

SIMD influences instruction 
execution in the core – other 
runtime contributions stay the 
same!

AVX example:
Scalar 12
SSE      6
AVX      3

15 cy

21

Execution Cache Memory

Per-cacheline (8 
iterations) cycle 
counts

Execution Units

Caches

Memory 21 cy

3 cy
15

Total runtime with data loaded 
from memory:

Scalar 48
SSE     42
AVX     39

SIMD only effective if runtime is dominated 
by instructions execution!

Comparing total execution time:
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 Only part of application may be vectorized, arithmetic vs. 
load/store (Amdahls law), data transfers
 Memory saturation often makes SIMD obsolete

Limits of SIMD processing

16cy
4cy
2cy
1cy

4cy 4cy
Per-cacheline
cycle counts

Cache MemoryExecution

diminishing 
returns (Amdahl)

16cy
4cy
2cy

Scalar
SSE
AVX
AVX512

Possible solution: 
Improve cache 
bandwidth
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Rules for vectorizable loops

1. Countable
2. Single entry and single exit
3. Straight line code
4. No function calls (exception intrinsic math functions)

Better performance with:
1. Simple inner loops with unit stride
2. Minimize indirect addressing
3. Align data structures (SSE 16bytes, AVX 32bytes)
4. In C use the restrict keyword for pointers to rule out aliasing 

Obstacles for vectorization:
 Non-contiguous memory access
 Data dependencies
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Memory hierarchy

You can either build a
small und fast memory
or a
large and slow memory.

Purpose of many optimizations is therefore to load 
data mostly from fast memory layers.

Memory

L3 Cache

Disk

L2 Cache

L1 Cache10-9

10-8

10-7

10-4

Latency [s]

1012

1011

109

Bandwidth 
[bytes/s]

Core
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How does data travel from memory to the CPU and back?

Remember: Caches are organized
in cache lines (e.g., 64 bytes)
Only complete cache lines are
transferred between memory
hierarchy levels (except registers)

MISS: Load or store instruction does
not find data in a cache level
 CL transfer required

Example: Array copy A(:)=C(:)

Registers and caches:
Data transfers in a memory hierarchy

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS
ST A(1)MISS

write
allocate

evict
(delayed)

3 CL 
transfers

LD C(2..Ncl)
ST A(2..Ncl) HIT

C(:) A(:)
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Recap: Data transfers in a memory hierarchy
 How does data travel from memory to the CPU and back?
 Example: Array copy A(:)= C(:)

CPU registers

Cache

Memory

CL

CL CL

CL

LD C(1)

MISS
ST A(1)MISS

write
allocate

evict
(delayed)

3 CL 
transfers

LD C(2..Ncl)
ST A(2..Ncl)

HIT

CPU registers

Cache

Memory

CL

CL

CLCL

LD C(1)

NTST A(1)
MISS

2 CL 
transfers

LD C(2..Ncl)
NTST A(2..Ncl)

HIT

Standard stores Nontemporal (NT) 
stores

50% 
performance 
boost for 
COPY

C(:) A(:) C(:) A(:)
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Fusion: SIMD and the memory hierarchy

SIMD optimizations often also involves data structure
changes:
 Enable block wise load and store.
 Reduce runtime contribution from data transfers by

blocking. Load or store data at least from L2 cache. 
Promote temporal and spatial data access  locality
 Promote good use of hardware prefetcher. Long streaming

data access patterns.

 Above requirements may collide with object oriented 
programming paradigm:   array of structures   vs   
structure of arrays
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• All efforts are targeted on increasing instruction throughput
• Every hardware optimization puts an assumption against the 

executed software
• One can distinguish transparent and explicit solutions

• Common technologies:
• Instruction level parallelism (ILP)
• Data parallel execution (SIMD), does not affect instruction 

throughput
• Exploit temporal data access locality (Caches)
• Hide data access latencies (Prefetching)
• Avoid hazards

Conclusions about core architectures



PRELUDE:
SCALABILITY 4 THE WIN!
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Lore 1
In a world of highly parallel computer architectures only highly 

scalable codes will survive

Lore 2
Single core performance no longer matters since we have so many 

of them and use scalable codes

Scalability Myth: Code scalability is the key issue
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Scalability Myth: Code scalability is the key issue

Prepared for 
the highly 
parallel era!

!$OMP PARALLEL DO
do k = 1 , Nk
do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*( x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+ 
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo
enddo
!$OMP END PARALLEL DO

Changing only the 
compile options makes 
this code scalable on an 
8-core chip

–O3 -xAVX
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Scalability Myth: Code scalability is the key issue
!$OMP PARALLEL DO
do k = 1 , Nk
do j = 1 , Nj; do i = 1 , Ni

y(i,j,k)= b*( x(i-1,j,k)+ x(i+1,j,k)+ x(i,j-1,k)+ 
x(i,j+1,k)+ x(i,j,k-1)+ x(i,j,k+1))

enddo; enddo
enddo
!$OMP END PARALLEL DO

Single core/socket efficiency 
is key issue!

Upper limit from simple 
performance model:
35 GB/s & 24 Byte/update



TOPOLOGY OF MULTI-CORE / 
MULTI-SOCKET SYSTEMS

• Chip Topology
• Node Topology
• Memory Organisation
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• Core: Unit reading and executing instruction stream

• Chip: One integrated circuit die

• Socket/Package: May consist of multiple chips

• Memory Hierarchy:
• Private caches
• Shared caches
• ccNUMA: Replicated memory interfaces

Building blocks for multi-core compute nodes
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Multicore architecture

Mehrkern-Architekturen

© IntelCa. 8 Mrd. 
Transistoren auf 

500 mm2

FPU FPU LSUALU

L1 Cache

L2 Cache
Kern

core

core

core

core

core

core

core

core

core

core

core

core
…

Chip (bis zu 28 Kerne) 

S
ockel

S
peicher

S
peicher

S
ockel

Knoten (2 Chips) 
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Topology of Super computers

© LRZSuperMUC

Speicher Speicher

Sockel

Knoten (2 Chips) 

Knoten

Knoten

Knoten

Knoten
Blade (4 Knoten) 

Sockel

Blade

Blade

Blade

Blade
Chassis (16 Blades) 

Blade

Blade

Blade

Blade

Blade

Blade

Blade

Blade

Blade

Blade

Blade

Blade

Chassis

Chassis

Chassis

Schrank (3 Chassis) 

Ein System besteht
aus vielen Schränken!
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Chip Topologies

SandyBridge-EP, 8C, 32nm 435mm2

Westmere-EP, 6C, 32nm 248mm2

 Separation into core and uncore
 Memory hierarchy holding together 

the chip design
 L1 (L2) private caches
 L3 cache shared (LLC)

 Serialized LLC  not scalable

 Segmented ring bus, distributed 
LLC  scalable design
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From UMA to ccNUMA
Memory architectures

Today: Dual-socket Intel (Westmere,…) node:

Yesterday (2006): Dual-socket Intel “Core2” node:

Uniform Memory Architecture (UMA)

Flat memory ; symmetric MPs

Cache-coherent Non-Uniform Memory 
Architecture (ccNUMA)

HT / QPI provide scalable bandwidth at the 
price of ccNUMA architectures, but: 
Where does my data finally end up?



66

ccNUMA performance problems
“The other affinity” to care about
 ccNUMA:

 Whole memory is transparently accessible by all processors
 but physically distributed
 with varying bandwidth and latency
 and potential contention (shared memory paths)

 How do we make sure that memory access is always as "local" 
and "distributed" as possible?

 Page placement is implemented in units of OS pages (often 4kB, possibly 
more)

C C C C

M M

C C C C

M M
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Intel Broadwell EP node
2 chips, 2 sockets, 11 cores per ccNUMA domain (CoD mode)

ccNUMA map: Bandwidth penalties for remote access
 Run 11 threads per ccNUMA domain (half chip)
 Place memory in different domain  4x4 combinations
 STREAM copy benchmark using standard stores

C
PU

 n
od

e

Memory node

ST
R

EA
M

 tr
ia

d 
pe

rf
or

m
an

ce
 [M

B
/s

]
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"Golden Rule" of ccNUMA:
A memory page gets mapped into the local memory of the 
processor that first touches it!

 Except if there is not enough local memory available

Caveat: "touch" means "write", not "allocate"
Example: 
double *huge = (double*)malloc(N*sizeof(double));

for(i=0; i<N; i++)
huge[i] = 0.0;

It is sufficient to touch a single item to map the entire page

ccNUMA default memory locality

Memory not 
mapped here yet

Mapping takes 
place here
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Initialize data in parallel to ensure placement into locality domains:

double *huge = (double*)malloc(N*sizeof(double));
// parallel init of data
#pragma omp parallel for schedule(static)
for(i=0; i<N; i++)

huge[i] = 0.0;
// ...

// actual work done on data
#pragma omp parallel for reduction(+:sum) schedule(static)
for(i=0; i<N; i++)

sum += huge[i];

Initialization by parallel first touch
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Parallel init: Correct parallel initialization
LD0: Force data into LD0 via  numactl –m 0
Interleaved:  numactl --interleave <LD range>

The curse and blessing of interleaved placement: 
OpenMP STREAM on a Cray XE6 Interlagos node
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The curse and blessing of interleaved placement: 
same on 4-socket (48 core) Magny Cours node

0

20000

40000

60000

80000

100000

120000

1 2 3 4 5 6 7 8

parallel init LD0 interleaved

# NUMA domains (6 threads per domain)
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Modern computer architecture has a rich “topology”

Node-level hardware parallelism takes many forms
 Sockets/devices – CPU: 1-8, GPGPU: 1-6
 Cores – moderate (CPU: 4-16) to massive (GPGPU: 1000’s)
 SIMD – moderate (CPU: 2-8) to massive (GPGPU: 10’s-100’s) 

Exploiting performance: parallelism + bottleneck awareness
 “High Performance Computing” == computing at a bottleneck

Performance of programs is sensitive to architecture
 Topology/affinity influences overheads of popular programming models
 Standards do not contain (many) topology-aware features

› Things are starting to improve slowly (MPI 3.0, OpenMP 4.0)
 Apart from overheads, performance features are largely independent of the 

programming model

Conclusions about Node Topologies



MULTICORE PERFORMANCE AND 
TOOLS
PROBING NODE TOPOLOGY

 Standard tools
 likwid-topology
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Tools for Node-level Performance Engineering

 Gather Node Information                                                                  
hwloc, likwid-topology, likwid-powermeter

 Affinity control and data placement                                                
OpenMP and MPI runtime environments, hwloc, numactl, likwid-pin

 Runtime Profiling                                                                         
Compilers, gprof, HPC Toolkit, …

 Performance Profilers                                                                           
Intel VtuneTM, likwid-perfctr, PAPI based tools, Linux perf, …

 Microbenchmarking
STREAM, likwid-bench, lmbench
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LIKWID tool suite:

Like
I
Knew
What
I’m
Doing

Open source tool collection 
(developed at RRZE):
http://code.google.com/p/likwid

How do we figure out the node topology?

J. Treibig, G. Hager, G. Wellein: LIKWID: A 
lightweight performance-oriented tool suite for 
x86 multicore environments. PSTI2010, Sep 13-
16, 2010, San Diego, CA
http://arxiv.org/abs/1004.4431
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Likwid Tool Suite

 Command line tools for Linux:
 easy to install
 works with standard linux kernel
 simple and clear to use
 supports Intel and AMD CPUs

 Current tools:
 likwid-topology: Print thread and cache topology
 likwid-pin: Pin threaded application without touching code
 likwid-perfctr: Measure performance counters
 likwid-powermeter: Query turbo mode steps. Measure ETS.
 likwid-bench: Low-level bandwidth benchmark generator tool
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Output of  likwid-topology –g
on one node of Intel Haswell-EP

--------------------------------------------------------------------------------
CPU name: Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz
CPU type: Intel Xeon Haswell EN/EP/EX processor
CPU stepping: 2
********************************************************************************
Hardware Thread Topology
********************************************************************************
Sockets: 2
Cores per socket: 14
Threads per core: 2
--------------------------------------------------------------------------------
HWThread Thread Core Socket Available
0 0 0 0 *

0 1 0 *

…
43              1 1 1 *
44              1 2 1 *
--------------------------------------------------------------------------------
Socket 0: ( 0 28 1 29 2 30 3 31 4 32 5 33 6 34 7 35 8 36 9 37 10 38 11 39 12 40 13 41 )
Socket 1: ( 14 42 15 43 16 44 17 45 18 46 19 47 20 48 21 49 22 50 23 51 24 52 25 53 26 54 27 55 )
--------------------------------------------------------------------------------
********************************************************************************
Cache Topology
********************************************************************************
Level: 1
Size: 32 kB
Cache groups: ( 0 28 ) ( 1 29 ) ( 2 30 ) ( 3 31 ) ( 4 32 ) ( 5 33 ) ( 6 34 ) ( 7 35 ) ( 8 36 ) ( 9 37 ) ( 10 38 ) ( 11 39 ) ( 12 40 ) ( 13 41
) ( 14 42 ) ( 15 43 ) ( 16 44 ) ( 17 45 ) ( 18 46 ) ( 19 47 ) ( 20 48 ) ( 21 49 ) ( 22 50 ) ( 23 51 ) ( 24 52 ) ( 25 53 ) ( 26 54 ) ( 27 55 )
--------------------------------------------------------------------------------
Level: 2
Size: 256 kB
Cache groups: ( 0 28 ) ( 1 29 ) ( 2 30 ) ( 3 31 ) ( 4 32 ) ( 5 33 ) ( 6 34 ) ( 7 35 ) ( 8 36 ) ( 9 37 ) ( 10 38 ) ( 11 39 ) ( 12 40 ) ( 13 41
) ( 14 42 ) ( 15 43 ) ( 16 44 ) ( 17 45 ) ( 18 46 ) ( 19 47 ) ( 20 48 ) ( 21 49 ) ( 22 50 ) ( 23 51 ) ( 24 52 ) ( 25 53 ) ( 26 54 ) ( 27 55 )
--------------------------------------------------------------------------------
Level: 3
Size: 17 MB
Cache groups: ( 0 28 1 29 2 30 3 31 4 32 5 33 6 34 ) ( 7 35 8 36 9 37 10 38 11 39 12 40 13 41 ) ( 14 42 15 43 16 44 17 45 18 46 19 47 20 48 )
( 21 49 22 50 23 51 24 52 25 53 26 54 27 55 )
--------------------------------------------------------------------------------

All physical 
processor IDs
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Output of likwid-topology continued

********************************************************************************
NUMA Topology
********************************************************************************
NUMA domains: 4
--------------------------------------------------------------------------------
Domain: 0
Processors: ( 0 28 1 29 2 30 3 31 4 32 5 33 6 34 )
Distances: 10 21 31 31
Free memory: 13292.9 MB
Total memory: 15941.7 MB
--------------------------------------------------------------------------------
Domain: 1
Processors: ( 7 35 8 36 9 37 10 38 11 39 12 40 13 41 )
Distances: 21 10 31 31
Free memory: 13514 MB
Total memory: 16126.4 MB
--------------------------------------------------------------------------------
Domain: 2
Processors: ( 14 42 15 43 16 44 17 45 18 46 19 47 20 48 )
Distances: 31 31 10 21
Free memory: 15025.6 MB
Total memory: 16126.4 MB
--------------------------------------------------------------------------------
Domain: 3
Processors: ( 21 49 22 50 23 51 24 52 25 53 26 54 27 55 )
Distances: 31 31 21 10
Free memory: 15488.9 MB
Total memory: 16126 MB
--------------------------------------------------------------------------------
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Output of likwid-topology continued

********************************************************************************
Graphical Topology
********************************************************************************
Socket 0:
+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| |  0 28  | |  1 29  | |  2 30  | |  3 31  | |  4 32  | |  5 33  | |  6 34  | |  7 35  | |  8 36  | |  9 37  | | 10 38  | | 11 39  | | 12 40  | | 13 41  | |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | | 32kB  | |  32kB  | |  32kB  | |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | | 256kB | |  256kB | |  256kB | |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| +--------------------------------------------------------------------------+ +--------------------------------------------------------------------------+ |
| |                                   17MB                                   | |                                   17MB      | |
| +--------------------------------------------------------------------------+ +--------------------------------------------------------------------------+ |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
Socket 1:
+-----------------------------------------------------------------------------------------------------------------------------------------------------------+
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| | 14 42  | | 15 43  | | 16 44  | | 17 45  | | 18 46  | | 19 47  | | 20 48  | | 21 49  | | 22 50  | | 23 51  | | 24 52  | | 25 53  | | 26 54  | | 27 55  | |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | |  32kB  | | 32kB  | |  32kB  | |  32kB  | |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | |  256kB | | 256kB | |  256kB | |  256kB | |
| +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ +--------+ |
| +--------------------------------------------------------------------------+ +--------------------------------------------------------------------------+ |
| |                                   17MB                                   | |                                   17MB      | |
| +--------------------------------------------------------------------------+ +--------------------------------------------------------------------------+ |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------+

Cluster on die mode 
and SMT enabled!



ENFORCING THREAD/PROCESS-
CORE AFFINITY UNDER THE LINUX 
OS

 Standard tools and OS affinity facilities under
program control

 likwid-pin
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Example: STREAM benchmark on 16-core Sandy Bridge:
Anarchy vs. thread pinning

No pinning

Pinning (physical cores first, 
first socket first)

 There are several reasons for caring 
about affinity:

 Eliminating performance variation

 Making use of architectural features

 Avoiding resource contention

 Benchmark how code reacts to variations
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More thread/Process-core affinity (“pinning”) options

 Highly OS-dependent system calls
 But available on all systems

Linux: sched_setaffinity()
Windows: SetThreadAffinityMask()

 Hwloc project (http://www.open-mpi.de/projects/hwloc/)
 Support for “semi-automatic” pinning in some 

compilers/environments
 All modern compilers with OpenMP support
 Generic Linux: taskset, numactl, likwid-pin (see below)
 OpenMP 4.0 (see any recent OpenMP/hybrid programming tutorial)

 Affinity awareness in MPI libraries
 SGI MPT
 OpenMPI
 Intel MPI
 …
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Likwid-pin
Overview
 Pins processes and threads to specific cores without touching code
 Directly supports pthreads, gcc OpenMP, Intel OpenMP
 Based on combination of wrapper tool together with overloaded pthread library 

binary must be dynamically linked!
 Can also be used as a superior replacement for taskset
 Supports logical core numbering within a node

 Usage examples:

 likwid-pin -c 0-3,4,6 ./myApp parameters 

 likwid-pin -c S0:0-7 ./myApp parameters 

 likwid-pin –c N:0-15 ./myApp parameters
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LIKWID terminology
Thread group syntax

 The OS numbers all processors (hardware threads) on a node
 The numbering is enforced at boot time by the BIOS 
 LIKWID introduces thread groups consisting of processors sharing 

a topological entity (e.g. socket or shared cache)
 A thread group is defined by a single character + index

 Example for likwid-pin:
likwid-pin –c S1:0-3,6,7 ./a.out
 Thread group expression may be chained with @:
likwid-pin –c S0:0-3@S1:0-3 ./a.out

 Alternative expression based syntax:
likwid-pin –c E:S0:4:2:2 ./a.out

E:<thread domain>:<num threads>:<chunk size>:<stride>

 Xeon Phi: likwid-pin –c E:N:60:2:4 ./a.out

+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| |  0 4| |  1 5| | 2 6 | | 3 7 | |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+

Physical processors first!

+-------------------------------------+
| +------+ +------+ +------+ +------+ |
| |  0  4| |  1  5| | 2  6 | | 3  7 | |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| |  32kB| |  32kB| |  32kB| |  32kB| |
| +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ |
| | 256kB| | 256kB| | 256kB| | 256kB| |
| +------+ +------+ +------+ +------+ |
| +---------------------------------+ |
| |                8MB              | |
| +---------------------------------+ |
+-------------------------------------+

Block wise placement!
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Likwid
Currently available thread domains
Possible unit prefixes

N node

S socket

M NUMA domain

C outer level cache group
Chipset

Memory

Default if –c is not 
specified!
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Likwid-pin
Example: Intel OpenMP

Running the STREAM benchmark with likwid-pin:
$ likwid-pin -c S0:0-3 ./stream
[likwid-pin] Main PID -> core 0 - OK
----------------------------------------------
Double precision appears to have 16 digits of accuracy
Assuming 8 bytes per DOUBLE PRECISION word
----------------------------------------------
Array size =   20000000
Offset     =         32
The total memory requirement is  457 MB
You are running each test  10 times
--
The *best* time for each test is used
*EXCLUDING* the first and last iterations
[pthread wrapper] [pthread wrapper] PIN_MASK: 0->1  1->2  2->3  
[pthread wrapper] SKIP MASK: 0x1

threadid 140370139711232 -> SKIP 
threadid 140370117211968 -> core 1 - OK
threadid 140370113013632 -> core 2 - OK
threadid 140369974597568 -> core 3 - OK

[... rest of STREAM output omitted ...]

Skip shepherd 
thread

Main PID always 
pinned

Pin all spawned 
threads in turn
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likwid-perfctr
Basic approach to performance analysis

1. Runtime profile / Call graph (gprof): Where are the hot spots?
2. Instrument hot spots (prepare for detailed measurement)
3. Find performance signatures
Possible signatures:
 Bandwidth saturation
 Instruction throughput limitation (real or language-induced)
 Latency impact (irregular data access, high branch ratio)
 Load imbalance
 ccNUMA issues (data access across ccNUMA domains)
 Pathologic cases (false cacheline sharing, expensive 

operations)
Goal: Come up with educated guess about a performance-limiting 
motif (Performance Pattern)

lik
w
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Probing performance behavior
 How do we find out about the performance properties and 

requirements of a parallel code?
 Profiling via advanced tools is often overkill
 A coarse overview is often sufficient
 likwid-perfctr (similar to “perfex” on IRIX, “hpmcount” on AIX, “lipfpm” 

on Linux/Altix)
 Simple end-to-end measurement of hardware performance metrics
 “Marker” API for starting/stopping 

counters
 Multiple measurement region 

support
 Preconfigured and extensible 

metric groups, list with
likwid-perfctr -a

BRANCH: Branch prediction miss rate/ratio
CACHE: Data cache miss rate/ratio
CLOCK: Clock of cores
DATA: Load to store ratio
FLOPS_DP: Double Precision MFlops/s
FLOPS_SP: Single Precision MFlops/s
FLOPS_X87: X87 MFlops/s
L2: L2 cache bandwidth in MBytes/s
L2CACHE: L2 cache miss rate/ratio
L3: L3 cache bandwidth in MBytes/s
L3CACHE: L3 cache miss rate/ratio
MEM: Main memory bandwidth in MBytes/s
TLB: TLB miss rate/ratio
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likwid-perfctr
Example usage with preconfigured metric group 
$ likwid-perfctr –g L2 –C S1:0-3 ./a.out
--------------------------------------------------------------------------------
CPU name:       Intel(R) Xeon(R) CPU E5-2695 v3 @ 2.30GHz […]
--------------------------------------------------------------------------------
<<<< PROGRAM OUTPUT >>>>
--------------------------------------------------------------------------------
Group 1: L2
+-----------------------+---------+------------+------------+------------+------------+
|         Event         | Counter |   Core 14  |   Core 15  |   Core 16  |   Core 17  |
+-----------------------+---------+------------+------------+------------+------------+
|   INSTR_RETIRED_ANY |  FIXC0  | 1298031144 | 1965945005 | 1854182290 | 1862521357 |
| CPU_CLK_UNHALTED_CORE |  FIXC1  | 2353698512 | 2894134935 | 2894645261 | 2895023739 |
|  CPU_CLK_UNHALTED_REF |  FIXC2  | 2057044629 | 2534405765 | 2535218217 | 2535560434 |
|    L1D_REPLACEMENT    |   PMC0  |  212900444 |  200544877 |  200389272 |  200387671 |
|    L2_TRANS_L1D_WB    |   PMC1  |  112464863 |  99931184  |  99982371  |  99976697  |
|     ICACHE_MISSES     |   PMC2  |    21265   |    26233   |    12646   |    12363   |
+-----------------------+---------+------------+------------+------------+------------+
[… statistics output omitted …]
+--------------------------------+------------+------------+------------+------------+
|             Metric |   Core 14  |   Core 15  |   Core 16  |   Core 17  |
+--------------------------------+------------+------------+------------+------------+
|       Runtime (RDTSC) [s]      |   1.1314   |   1.1314   |   1.1314   |   1.1314   |
|      Runtime unhalted [s]      |   1.0234   |   1.2583   |   1.2586   |   1.2587   |
|           Clock [MHz]          |  2631.6699 |  2626.4367 |  2626.0579 |  2626.0468 |
|               CPI              |   1.8133   |   1.4721   |   1.5611   |   1.5544   |
|  L2D load bandwidth [MBytes/s] | 12042.7388 | 11343.8446 | 11335.0428 | 11334.9523 |
|  L2D load data volume [GBytes] |   13.6256  |   12.8349  |   12.8249  |   12.8248  |
| L2D evict bandwidth [MBytes/s] |  6361.5883 |  5652.6192 |  5655.5146 |  5655.1937 |
| L2D evict data volume [GBytes] |   7.1978   |   6.3956   |   6.3989   |   6.3985   |
|     L2 bandwidth [MBytes/s]    | 18405.5299 | 16997.9477 | 16991.2728 | 16990.8453 |
|     L2 data volume [GBytes]    |   20.8247  |   19.2321  |   19.2246  |   19.2241  |
+--------------------------------+------------+------------+------------+------------+

Always 
measured

Derived 
metrics

Configured metrics 
(this group)
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likwid-perfctr
Best practices for runtime counter analysis 
Things to look at (in roughly this order)

 Excess work

 Load balance (flops, instructions, BW)

 In-socket memory BW saturation

 Flop/s, loads and stores per flop metrics

 SIMD vectorization

 CPI metric

 # of instructions, 
branches, mispredicted branches

Caveats

 Load imbalance may not show in 
CPI or # of instructions
 Spin loops in OpenMP barriers/MPI 

blocking calls
 Looking at “top” or the Windows Task 

Manager does not tell you anything 
useful

 In-socket performance 
saturation may have various 
reasons

 Cache miss metrics are 
sometimes misleading
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likwid-perfctr
Marker API (C/C++ and Fortran)
 A marker API is available to restrict measurements to code regions
 The API only turns counters on/off. The configuration of the counters is still done 

by likwid-perfctr
 Multiple named region support, accumulation over multiple calls
 Inclusive and overlapping regions allowed

#include <likwid.h>
. . .
LIKWID_MARKER_INIT; // must be called from serial region
#pragma omp parallel
{
LIKWID_MARKER_THREADINIT; // only reqd. if measuring multiple threads

}
. . .
LIKWID_MARKER_START(“Compute”);
. . .
LIKWID_MARKER_STOP(“Compute”);
. . .
LIKWID_MARKER_START(“Postprocess”);
. . .
LIKWID_MARKER_STOP(“Postprocess”);
. . .
LIKWID_MARKER_CLOSE;  // must be called from serial region

 Activate macros with -DLIKWID_PERFMON
 Run likwid-perfctr with –m switch to

enable marking
 See https://github.com/RRZE-
HPC/likwid/wiki/TutorialMarkerF90
for Fortran example

https://github.com/RRZE-HPC/likwid/wiki/TutorialMarkerF90
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likwid-perfctr
Compiling, linking, and running with the marker API

Compile:
cc -I /path/to/likwid.h -DLIKWID_PERFMON -c program.c

Link:
cc -L /path/to/liblikwid program.o -llikwid

Run:
likwid-perfctr -C <MASK> -g <GROUP> -m ./a.out

 One separate block of output for every marked region  
 Caveat: marker API can cause overhead; do not call too 

frequently!
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1. Define relevant test cases
2. Establish a sensible performance metric
3. Acquire a runtime profile (sequential)
4. Identify hot kernels (Hopefully there are any!)
5. Carry out optimization process for each kernel

Motivation:
• Understand observed performance
• Learn about code characteristics and machine capabilities
• Deliberately decide on optimizations

Basics of Optimization

Iteratively
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Preparation
 Reliable timing (Minimum time which can be measured?)
 Document code generation (Flags, Compiler Version)
 Get exclusive System
 System state (Clock, Turbo mode, Memory, Caches)
 Consider to automate runs with a skript (Shell, python, perl)

Doing
 Affinity control
 Check: Is the result reasonable?
 Is result deterministic and reproducible.
 Statistics: Mean, Best ??
 Basic variants: Thread count, affinity, working set size (Baseline!)

Best Practices Benchmarking
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Postprocessing
 Documentation
 Try to understand and explain the result
 Plan variations to gain more information
 Many things can be better understood if you plot them (gnuplot, 

xmgrace)

Best Practices Benchmarking cont.
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1. Instruction execution
Primary resource of the processor.

2. Data transfer bandwidth
Data transfers as a consequence of instruction execution.

Focus on resource utilization

What is the limiting resource?
Do you fully utilize available resources?
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Overview

Implementation

Instruction code

Algorithm

core

L1

L2

L3

SIMD
FMA

Memory

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

core

L1

L2

L3

SIMD
FMA

Memory

1 Reduce algorithmic work

2 Minimize processor work

3 Distribute work and data for optimal 
utilization of parallel resources

5 Use most effective 
execution units on chip

4 Avoid slow data paths

6 Avoid bottlenecks
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• A bottleneck is a performance limiting setting
• Microarchitectures expose numerous bottlenecks

Observation 1:
Most applications face a single bottleneck at a time!

Observation 2:
There is a limited number of relevant bottlenecks!

Thinking in Bottlenecks
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Reduce complexity!

We propose a human driven process to enable a systematic 
way to success!

• Executed by humans. 
• Uses tools by means of data acquisition only.

Uses one of the most powerful tools available:

Process vs. Tool

Your brain !
You are a investigator making sense of what’s going on. 
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Performance Engineering Process: Analysis

Pattern

MicrobenchmarkingHardware/Instruction 
set architecture

Algorithm/Code 
Analysis

Application 
Benchmarking

Step 1 Analysis: Understanding observed performance

Performance 
patterns are 

typical 
performance 
limiting motifs 

The set of input data indicating 
a pattern is its signature
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Understand observed performance: Where am I?

Input:
• Static code analysis
• HPM data
• Scaling data set size
• Scaling number of used cores
• Microbenchmarking

Performance patterns are typical performance limiting motives. 
The set of input data indicating a pattern is its signature.

Performance analysis phase

PatternSignature
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Performance Engineering Process: Modelling

Pattern

Performance Model

Qualitative view

Quantitative view

Step 2 Formulate Model: Validate pattern and get quantitative insight.

Validation Traces/HW metrics

W
ro

ng
 p

at
te

rn
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Performance Engineering Process: Optimization

Optimize for better 
resource utilization

Eliminate non-
expedient activity

Pattern

Performance Model

Performance 
improves until next 

bottleneck is hit

Improves 
Performance

Step 3 Optimization: Improve utilization of offered resources.



105

Performance pattern classification

1. Maximum resource utilization
(computing at a bottleneck)

2. Optimal use of parallel resources

3. Hazards
(something “goes wrong”)

4. Use of most effective instructions

5. Work related 
(too much work or too inefficiently done)

Node-level Performance Engineering
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Patterns (I): Bottlenecks & parallelism

Pattern Performance behavior Metric signature, LIKWID
performance group(s)

Bandwidth saturation Saturating speedup across 
cores sharing a data path

Bandwidth meets BW of suitable 
streaming benchmark (MEM, L3)

ALU saturation Throughput at design limit(s)
Good (low) CPI, integral ratio of 
cycles to specific instruction 
count(s) (FLOPS_*, DATA, CPI)

Bad ccNUMA page placement
Bad or no scaling across NUMA 
domains, performance improves 
with interleaved page placement

Unbalanced bandwidth on 
memory interfaces / High remote 
traffic (MEM)

Load imbalance / serial
fraction Saturating/sub-linear speedup

Different amount of “work” on the 
cores (FLOPS_*); note that 
instruction count is not reliable!

Node-level Performance Engineering
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Patterns (II): Hazards

Pattern Performance behavior Metric signature, LIKWID
performance group(s)

False sharing of cache
lines

Large discrepancy from 
performance model in parallel case, 
bad scalability

Frequent (remote) CL evicts 
(CACHE)

Pipelining issues
In-core throughput far from design 
limit, performance insensitive to 
data set size

(Large) integral ratio of cycles to 
specific instruction count(s), bad 
(high) CPI (FLOPS_*, DATA, CPI)

Control flow issues See above High branch rate and branch miss 
ratio (BRANCH)

Micro-architectural
anomalies

Large discrepancy from simple 
performance model based on 
LD/ST and arithmetic throughput

Relevant events are very 
hardware-specific, e.g., memory 
aliasing stalls, conflict misses, 
unaligned LD/ST, requeue events

Latency-bound data 
access

Simple bandwidth performance 
model much too optimistic

Low BW utilization / Low cache hit 
ratio, frequent CL evicts or 
replacements (CACHE, DATA, 
MEM)

Node-level Performance Engineering
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Patterns (III): Work-related

Pattern Performance behavior Metric signature, LIKWID 
performance group(s)

Synchronization overhead
Speedup going down as more cores 
are added / No speedup with small 
problem sizes / Cores busy but low 
FP performance

Large non-FP instruction count 
(growing with number of cores 
used) / Low CPI (FLOPS_*, CPI)

Instruction overhead
Low application performance, good 
scaling across cores, performance 
insensitive to problem size

Low CPI near theoretical limit / 
Large non-FP instruction count 
(constant vs. number of cores) 
(FLOPS_*, DATA, CPI)

Excess data volume Simple bandwidth performance 
model much too optimistic

Low BW utilization / Low cache hit 
ratio, frequent CL evicts or 
replacements (CACHE, DATA, 
MEM)

Code 
composition

Expensive 
instructions

Similar to instruction overhead

Many cycles per instruction (CPI) 
if the problem is large-latency 
arithmetic

Ineffective 
instructions

Scalar instructions dominating in 
data-parallel loops (FLOPS_*, 
CPI)

Node-level Performance Engineering
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Where to start

Look at the code and understand what it is doing!

Scaling runs:
 Scale #cores inside ccNUMA domain
 Scale across ccNUMA domains
 Scale working set size (if possible)

HPM measurements:
 Memory Bandwidth
 Instruction decomposition: Arithmetic, data, branch, other
 SIMD vectorized fraction
 Data volumes inside memory hierarchy
 CPI
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Pattern:  Bandwidth Saturation

1. Perform scaling run inside ccNUMA domain
2. Measure memory bandwidth with HPM
3. Compare to micro benchmark with similar data access pattern

Saturating
bandwidth

Scalable
bandwidth

Measured bandwidth spmv: 
45964 MB/s
Synthetic load benchmark:
47022 MB/s
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Pattern: Instruction Overhead

Instruction 
decomposition

Inlining failed Inefficient data 
structures

Arithmetic FP 12% 21%
Load/Store 30% 50%
Branch 24% 10%
Other 34% 19%
C++ codes which suffer from overhead (inlining problems, complex 
abstractions) need a lot more overall instructions related to the arithmetic 
instructions
 Often (but not always) “good” (i.e., low) CPI 
 Low-ish bandwidth
 Low # of floating-point instructions vs. other instructions

1. Perform a HPM instruction decomposition analysis
2. Measure resource utilization
3. Static code analysis
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Pattern: Inefficient Instructions

1. HPM measurement: Relation packed vs. scalar instructions
2. Static assembly code analysis: Search for scalar loads

+--------------------------------------+-------------+-------------+-------------+-------------+-------------+
|                Event                 |   core 0    |   core 1    |   core 2    |   core 3    |   core 4    |
+--------------------------------------+-------------+-------------+-------------+-------------+-------------+
|          INSTR_RETIRED_ANY           | 2.19445e+11 | 1.7674e+11  | 1.76255e+11 | 1.75728e+11 | 1.75578e+11 |
|        CPU_CLK_UNHALTED_CORE         | 1.4396e+11  | 1.28759e+11 | 1.28846e+11 | 1.28898e+11 | 1.28905e+11 |
|         CPU_CLK_UNHALTED_REF         | 1.20204e+11 | 1.0895e+11  | 1.09024e+11 | 1.09067e+11 | 1.09074e+11 |
| FP_COMP_OPS_EXE_SSE_FP_PACKED_DOUBLE | 1.1169e+09  | 1.09639e+09 | 1.09739e+09 | 1.10112e+09 | 1.10033e+09 |
| FP_COMP_OPS_EXE_SSE_FP_SCALAR_DOUBLE | 3.62746e+10 | 3.45789e+10 | 3.45446e+10 | 3.44553e+10 | 3.44829e+10 |
|      SIMD_FP_256_PACKED_DOUBLE       |      0      |      0      |      0      |      0      |      0      | +--
------------------------------------+-------------+-------------+-------------+-------------+-------------+

Small fraction 
of packed 

instructions
No AVX

 There is usually no counter for packed vs scalar (SIMD) loads and 
stores.

 Also the compiler usually does not distinguish!

Only solution: Inspect code at assembly level.
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Pattern: Synchronization overhead

sync 
overhead 
grows with # 
of threads

bandwidth 
scalability 
across 
memory 
interfaces

1. Performance is decreasing with growing core counts
2. Performance is sensitive to topology
3. Static code analysis: Estimate work vs. barrier cost.
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Thread synchronization overhead on IvyBridge-EP 
Barrier overhead in CPU cycles

2 Threads Intel  16.0 GCC 5.3.0
Shared L3 599 425
SMT threads 612 423
Other socket 1486 1067

Full domain Intel 16.0 GCC 5.3.0
Socket (10 cores) 1934 1301
Node (20 cores) 4999 7783
Node +SMT 5981 9897

Strong topology 
dependence!

10 cores 10 cores

2.2 GHz

 Strong dependence on compiler, CPU and system environment!
 OMP_WAIT_POLICY=ACTIVE can make a big difference

Overhead grows 
with thread count
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Thread synchronization overhead on Xeon Phi 7210 (64-core)
Barrier overhead in CPU cycles (Intel C compiler 16.03)

SMT1 SMT2 SMT3 SMT4
One core n/a 963 1580 2240
Full chip 5720 8100 9900 11400

Still the pain may be much larger, as more work can be done in one cycle
on Phi compared to a full Ivy Bridge node

3.2x cores (20 vs 64) on Phi
4x more operations per cycle per core on Phi

 4 ∙ 3.2 = 12.8x more work done on Xeon Phi per cycle

1.9x more barrier penalty (cycles) on Phi (11400 vs. 6000)

 One barrier causes 1.9 ∙ 12.8 ≈ 24x more pain .

2 threads on 
distinct cores: 

730



“SIMPLE” PERFORMANCE 
MODELING:
THE ROOFLINE MODEL

Loop-based performance modeling: 
Execution vs. data transfer
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How to perform a instruction throughput analysis on the example of 
Intel’s port based scheduler model.

Preliminary: Estimating Instruction throughput

Port 0 Port 1 Port 5Port 2 Port 3 Port 4

ALU ALU ALU

FMUL FADD FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Issue 6 uops

Retire 4 uops

SandyBridge

16b 16b 16b
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Every new generation provides incremental improvements.
The OOO microarchitecture is a blend between P6 (Pentium Pro) 
and P4 (Netburst) architectures.

Preliminary: Estimating Instruction throughput

Port 0 Port 1 Port 5Port 2 Port 3 Port 4 Port 6 Port 7

ALU ALU ALU

FMA FMA FSHUF

JUMP

LOAD LOAD

AGU AGU

STORE

Retire 4 uops

32b 32b 32b

AGU

Haswell

FMUL

ALU

JUMP

Issue 8 uops
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double  *A, *B, *C, *D;
for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i]
}

How many cycles to process one 64byte cacheline?

Exercise: Estimate performance of triad on 
SandyBridge @3GHz

64byte  equivalent to 8 scalar iterations or 2 AVX vector iterations.

Cycle 1:  load and ½ store  and mult and  add
Cycle 2:  load and ½ store
Cycle 3:  load                                       Answer:  6 cycles
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double  *A, *B, *C, *D;
for (int i=0; i<N; i++) {

A[i] = B[i] + C[i] * D[i]
}

Whats the performance in GFlops/s and bandwidth in MBytes/s ?

Exercise: Estimate performance of triad on 
SandyBridge @3GHz

One AVX iteration (3 cycles) performs 4x2=8 flops.

(3 GHZ / 3 cycles) * 4 updates * 2 flops/update = 8 GFlops/s
4 GUPS/s * 4 words/update * 8byte/word = 128 GBytes/s
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The Roofline Model1,2

1. Pmax = Applicable peak performance of a loop, assuming that 
data comes from L1 cache (this is not necessarily Ppeak)

2. I = Computational intensity (“work” per byte transferred) over 
the slowest data path utilized (“the bottleneck”)
 Code balance BC = I -1

3. bS = Applicable peak bandwidth of the slowest data path utilized

Expected performance:

R.W. Hockney and I.J. Curington: f1/2: A parameter to characterize memory and communication bottlenecks. 
Parallel Computing 10, 277-286 (1989).  DOI: 10.1016/0167-8191(89)90100-2

W. Schönauer: Scientific Supercomputing: Architecture and Use of Shared and Distributed   Memory Parallel Computers. Self-edition (2000)
S. Williams: Auto-tuning Performance on Multicore Computers. UCB Technical Report No. UCB/EECS-2008-164. PhD thesis (2008)

[B/s][F/B]

𝑃𝑃 = min 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐼𝐼 � 𝑏𝑏𝑆𝑆

http://dx.doi.org/10.1016/0167-8191(89)90100-2
http://www.rz.uni-karlsruhe.de/%7Erx03/book
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf
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“Simple” Roofline: The vector triad
Vector triad A(:)=B(:)+C(:)*D(:) on a 2.7 GHz 8-core SNB chip 

Consider full chip (8 cores):

Memory bandwidth: bS = 40 GB/s
Code balance (incl. write allocate):  
Bc = (4+1) Words / 2 Flops = 20 B/F  I = 0.05 F/B

 I ∙ bS = 2.0 GF/s (1.1% of peak performance)

Ppeak / core = 21.7 Gflop/s ((4+4) Flops/cy x 2.7 GHz)
Pmax / core = 7.2 Gflop/s (1 AVX LD/cy)

 Pmax = 8 * 7.2 Gflop/s = 57.6 Gflop/s (33% peak)

𝑃𝑃 = min 𝑃𝑃max, 𝐼𝐼 � 𝑏𝑏𝑆𝑆 = min 57.6,2.0 ⁄GFlop s = 2.0 ⁄GFlop s
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A not so simple Roofline example
Example:     do i=1,N; s=s+a(i); enddo
in single precision on an 8-core 2.2 GHz Sandy Bridge socket @ “large” N

ADD peak  
(best possible 
code)

no SIMD

3-cycle latency 
per ADD if not 
unrolled

P (worst loop code)

𝑃𝑃 = min(𝑃𝑃max, 𝐼𝐼 � 𝑏𝑏𝑆𝑆)

How do we
get these
numbers???

I = 1 flop / 4 byte (SP!)

141 GF/s

17.6 GF/s

5.9 GF/s

282 GF/s

Machine peak  
(ADD+MULT)
Out of reach for this 
code

P 
(better loop code)
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Applicable peak for the summation loop

Plain scalar code, no SIMD

LOAD r1.0  0
i  1
loop: 
LOAD r2.0  a(i)
ADD r1.0  r1.0+r2.0
++i ? loop

result  r1.0

ADD pipes utilization:

 1/24 of ADD peak

SI
M

D
 la

ne
s
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Applicable peak for the summation loop

Scalar code, 3-way unrolling
LOAD r1.0  0
LOAD r2.0  0
LOAD r3.0  0
i  1

loop: 
LOAD r4.0  a(i)
LOAD r5.0  a(i+1)
LOAD r6.0  a(i+2)

ADD r1.0  r1.0 + r4.0
ADD r2.0  r2.0 + r5.0
ADD r3.0  r3.0 + r6.0

i+=3 ? loop
result  r1.0+r2.0+r3.0

ADD pipes utilization:

 1/8 of ADD peak
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Applicable peak for the summation loop

SIMD-vectorized, 3-way unrolled
LOAD [r1.0,…,r1.7]  [0,…,0]
LOAD [r2.0,…,r2.7]  [0,…,0]
LOAD [r3.0,…,r3.7]  [0,…,0]
i  1

loop: 
LOAD [r4.0,…,r4.7]  [a(i),…,a(i+7)]
LOAD [r5.0,…,r5.7]  [a(i+8),…,a(i+15)]
LOAD [r6.0,…,r6.7]  [a(i+16),…,a(i+23)]

ADD r1  r1 + r4
ADD r2  r2 + r5
ADD r3  r3 + r6

i+=24 ? loop
result  r1.0+r1.1+...+r3.6+r3.7

ADD pipes utilization:

 ADD peak
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Input to the roofline model

… on the example of       do i=1,N; s=s+a(i); enddo
in single precision

analysis

Code analysis:
1 ADD + 1 LOAD

architectureThroughput: 1 ADD + 1 LD/cy
Pipeline depth: 3 cy (ADD)

8-way SIMD, 8 cores

measurement

Maximum memory
bandwidth 40 GB/s

Worst code: P = 5.9 GF/s (core bound)
Better code: P = 10 GF/s (memory bound)

5.9 … 141 GF/s

10 GF/s
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The roofline formalism is based on some (crucial) assumptions:
 There is a clear concept of “work” vs. “traffic”

› “work” = flops, updates, iterations…
› “traffic” = required data to do “work”

 Attainable bandwidth of code = input parameter! Determine 
effective bandwidth via simple streaming benchmarks to model more 
complex kernels and applications

 Data transfer and core execution overlap perfectly!
 Slowest data path is modeled only; all others are assumed to be 

infinitely fast
 The bandwidth of the slowest data path can be utilized to 100% 

(“saturation”)
 Latency effects are ignored, i.e. perfect streaming mode

Assumptions for the Roofline Model
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Typical code optimizations in the Roofline Model

1. Hit the BW bottleneck by good
serial code

2. Increase intensity to make better
use of BW bottleneck

3. Increase intensity and go from
memory-bound to core-bound

4. Hit the core bottleneck by good
serial code

5. Shift Pmax by accessing
additional hardware features or
using a different 
algorithm/implementation
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Saturation effects in multicore chips are not explained
 Reason: “saturation assumption” 
 Cache line transfers and core execution do sometimes not overlap

perfectly
 Only increased “pressure” on the memory

interface can saturate the bus
 need more cores!

ECM model gives more insight

Shortcomings of the roofline model

A(:)=B(:)+C(:)*D(:)

Roofline predicts
full socket BW
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Where the roofline model fails

In memory
performance

below saturation
pointIn cache

situations
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ECM = “Execution-Cache-Memory”

Assumptions: 
Single-core execution time is composed of

1. In-core execution
2. Data transfers in the memory hierarchy

Data transfers may or may not overlap with 
each other or with in-core execution

Scaling is linear until the relevant bottleneck 
is reached 

Input:
Same as for Roofline
+ data transfer times in hierarchy

ECM Model
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ECM = “Execution-Cache-Memory”

• Analytical performance model

• Focus on resource utilization
• Instruction Execution
• Data Movement

• Lightspeed assumption:
• Optimal instruction throughput
• Always bandwidth bound

Introduction to ECM model

The RULES™ for x86 CPUs
1. Single-core execution time is 

composed of
1. In-core execution
2. Data transfers in the memory 

hierarchy
2. All timings are in units of one CL
3. LOADS in the L1 cache do not 

overlap with any other data 
transfer

4. Scaling across cores is linear 
until a shared bottleneck is hit
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ECM for A(:)=B(:)+C(:)*D(:) on 2.7 GHz SNB core

CL 
transfer

Write-
allocate
CL 
transfer

Prediction: 50 cy/CL
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Identify relevant bandwidth bottlenecks
 L3 cache
 Memory interface

Scale single-thread performance until first bottleneck is hit:

Multicore scaling in the ECM model

. . .Example:
Scalable L3 

on Sandy 
Bridge

𝑛𝑛 cores: 𝑃𝑃 𝑛𝑛 = min(𝑛𝑛𝑃𝑃0, 𝐼𝐼 � 𝑏𝑏𝑆𝑆)
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Model: Scales until saturation sets in 

Saturation point (# cores) well predicted

Measurement: scaling not perfect

Caveat: This is specific for this 
architecture and this benchmark!

Check: Use “overlappable” kernel code

ECM prediction vs. measurements for
A(:)=B(:)+C(:)*D(:), no overlap
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In-core execution is dominated
by divide operation
(44 cycles with AVX, 22 scalar)

 Almost perfect agreement
with ECM model

ECM prediction vs. measurements for
A(:)=B(:)+C(:)/D(:) with full overlap

Parallelism  “heals” bad 
single-core performance

… just barely!
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• The ECM model is a powerful analysis tool to get insight into:
• Runtime contributions
• Bottleneck identification
• Runtime overlap

It can predict single core performance for any memory hierarchy 
level and provide an estimate of multicore scalability.

Summary: The ECM Model
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