Iterative Solvers for Large Linear Systems Part Ia: Introduction and Basics

Andreas Meister

University of Kassel, Department of Analysis and Applied Mathematics

Outline

- Basics of Iterative Methods
- Splitting-schemes
- Jacobi- u. Gauß-Seidel-scheme
- Relaxation methods
- Methods for symmetric, positive definite Matrices
- Method of steepest descent
- Method of conjugate directions
- CG-scheme

Outline

- Multigrid Method
- Smoother, Prolongation, Restriction
- Twogrid Method and Extension
- Methods for non-singular Matrices
- GMRES
- BiCG, CGS and BiCGSTAB
- Preconditioning
- ILU, IC, GS, SGS, ...

Numerics for linear systems of equations

Fundamentals of Linear Algebra and classical Iterative Solution Methods

- General problem:

Given: $A \in \mathbb{C}^{n \times n}$ non-singular, $b \in \mathbb{C}^{n}$
Sought after: $x \in \mathbb{C}^{n}$ with $A x=b$

- Main ideas of Splitting-schemes
- A trivial approach
- Consistency, convergence and rate of convergence
- Special Splitting-schemes
- Jacobi-method
- Gauß-Seidel-method
- Relaxation schemes
- SOR-method

Main ideas of Splitting-schemes

Definition: Iterative methods

Choose $x_{0} \in \mathbb{C}^{n}$ arbitrarily and calculate succecively approximations $x_{m} \in \mathbb{C}^{n}$ for $x^{\star}=A^{-1} b$ by means of

$$
x_{m+1}=\phi\left(x_{m}, b\right), \quad m=0,1, \ldots
$$

The method is called linear, if matrices $M, N \in \mathbb{C}^{n \times n}$ exist, such that

$$
\phi(x, b)=M x+N b
$$

The matrix M is called iteration matrix.
Procedure: Split $A \in \mathbb{C}^{n \times n}$ by means of $B \in \mathbb{C}^{n \times n}$ (non-singular) in the form:

$$
A=B+(A-B)
$$

Thus, one can write:

$$
A x=b
$$

$$
\Longleftrightarrow B x+(A-B) x=b
$$

$$
\Longleftrightarrow \quad B x=(B-A) x+b
$$

$$
\Longleftrightarrow \quad x=B^{-1}(B-A) x+B^{-1} b
$$

Main ideas of Splitting-schemes

Choose $x_{0} \in \mathbb{C}^{n}$ arbitrarily and calculated successively

$$
x_{m+1}=B^{-1}(B-A) x_{m}+B^{-1} b, \quad m=0,1, \ldots .
$$

Hence, we get:

$$
x_{m+1}=\phi\left(x_{m}, b\right)=M x_{m}+N b
$$

with

$$
\begin{aligned}
M & :=B^{-1}(B-A) \\
N & :=B^{-1}
\end{aligned}
$$

Conclusion:

Each Splitting scheme is linear

Main ideas of Splitting-schemes

Choose $x_{0} \in \mathbb{C}^{n}$ arbitrarily and calculated successively

$$
x_{m+1}=B^{-1}(B-A) x_{m}+B^{-1} b, \quad m=0,1, \ldots
$$

Desired properties of B :

- Good approximation of A (fast convergence)
- Example: $B=A$

$$
\begin{aligned}
\Longrightarrow x_{1} & =B^{-1}(B-A) x_{0}+B^{-1} b \\
& =B^{-1} b \\
& =A^{-1} b
\end{aligned}
$$

- Easy calculation of the matrix-vector-product $B^{-1} x$ (practicability)
- Less assumptions on A (useability)

A trivial scheme

- Choose $B=I$

$$
\begin{aligned}
\Longrightarrow M & =I^{-1}(I-A)=I-A \\
N & =I \\
\Longrightarrow \quad x_{m+1} & =(I-A) x_{m}+b
\end{aligned}
$$

"+ " : no assumptions on A
"+ " : $I^{-1} x$ is easy to calculate
"- " : bad approximation of A in general
Model problem:

$$
\underbrace{\left(\begin{array}{rr}
0.7 & -0.4 \\
-0.2 & 0.5
\end{array}\right)}_{A:=} \underbrace{\binom{x_{1}}{x_{2}}}_{x:=}=\underbrace{\binom{0.3}{0.3}}_{b:=}
$$

- A is non-singular (det $A=0.27$) and $x^{\star}=A^{-1} b=\binom{1}{1}$

