Iterative Solvers for Large Linear Systems Part lb: Consistency and Convergence

Andreas Meister

University of Kassel, Department of Analysis and Applied Mathematics

Outline

- Basics of Iterative Methods
- Splitting-schemes
- Jacobi- u. Gauß-Seidel-scheme
- Relaxation methods
- Methods for symmetric, positive definite Matrices
- Method of steepest descent
- Method of conjugate directions
- CG-scheme

Outline

- Multigrid Method
- Smoother, Prolongation, Restriction
- Twogrid Method and Extension
- Methods for non-singular Matrices
- GMRES
- BiCG, CGS and BiCGSTAB
- Preconditioning
- ILU, IC, GS, SGS, ...

A trivial scheme

- Choose $B=I$

$$
\begin{aligned}
\Longrightarrow M & =I^{-1}(I-A)=I-A \\
N & =I \\
\Longrightarrow \quad x_{m+1} & =(I-A) x_{m}+b
\end{aligned}
$$

"+ " : no assumptions on A
"+ " : $I^{-1} x$ is easy to calculate
"- " : bad approximation of A in general
Model problem:

$$
\underbrace{\left(\begin{array}{rr}
0.7 & -0.4 \\
-0.2 & 0.5
\end{array}\right)}_{A:=} \underbrace{\binom{x_{1}}{x_{2}}}_{x:=}=\underbrace{\binom{0.3}{0.3}}_{b:=}
$$

- A is non-singular (det $A=0.27)$ and $x^{\star}=A^{-1} b=\binom{1}{1}$

Fundamental questions

Aim: Find an answer to each of the following questions
(1) When does a Splitting scheme converge?
(2) Which are the ingredients that determine the rate of convergence?

A trivial scheme

Trivial scheme						
m	$x_{m, 1}$	$x_{m, 2}$	$\varepsilon_{m}:=\left\\|x_{m}-x^{*}\right\\|_{\infty}$	$\varepsilon_{m} / \varepsilon_{m-1}$		
0	$2.100000 \mathrm{e}+01$	$-1.900000 \mathrm{e}+01$	$2.000000 \mathrm{e}+01$			
1	$-1.000000 \mathrm{e}+00$	$-5.000000 \mathrm{e}+00$	$6.000000 \mathrm{e}+00$	$3.000000 \mathrm{e}-01$		
2	$-2.000000 \mathrm{e}+00$	$-2.400000 \mathrm{e}+00$	$3.400000 \mathrm{e}+00$	$5.666667 \mathrm{e}-01$		
3	$-1.260000 \mathrm{e}+00$	$-1.300000 \mathrm{e}+00$	$2.300000 \mathrm{e}+00$	$6.764706 \mathrm{e}-01$		
4	$-5.980000 \mathrm{e}-01$	$-6.020000 \mathrm{e}-01$	$1.602000 \mathrm{e}+00$	$6.965217 \mathrm{e}-01$		
5	$-1.202000 \mathrm{e}-01$	$-1.206000 \mathrm{e}-01$	$1.120600 \mathrm{e}+00$	$6.995006 \mathrm{e}-01$		
6	$2.157000 \mathrm{e}-01$	$2.156600 \mathrm{e}-01$	$7.843400 \mathrm{e}-01$	$6.999286 \mathrm{e}-01$		
7	$4.509740 \mathrm{e}-01$	$4.509700 \mathrm{e}-01$	$5.490300 \mathrm{e}-01$	$6.999898 \mathrm{e}-01$		
8	$6.156802 \mathrm{e}-01$	$6.156798 \mathrm{e}-01$	$3.843202 \mathrm{e}-01$	$6.999985 \mathrm{e}-01$		
9	$7.309760 \mathrm{e}-01$	$7.309759 \mathrm{e}-01$	$2.690241 \mathrm{e}-01$	$6.999998 \mathrm{e}-01$		
10	$8.116832 \mathrm{e}-01$	$8.116832 \mathrm{e}-01$	$1.883168 \mathrm{e}-01$	$7.000000 \mathrm{e}-01$		
11	$8.681782 \mathrm{e}-01$	$8.681782 \mathrm{e}-01$	$1.318218 \mathrm{e}-01$	$7.000000 \mathrm{e}-01$		
12	$9.077248 \mathrm{e}-01$	$9.077248 \mathrm{e}-01$	$9.227525 \mathrm{e}-02$	$7.000000 \mathrm{e}-01$		
13	$9.354073 \mathrm{e}-01$	$9.354073 \mathrm{e}-01$	$6.459267 \mathrm{e}-02$	$7.000000 \mathrm{e}-01$		
14	$9.547851 \mathrm{e}-01$	$9.547851 \mathrm{e}-01$	$4.521487 \mathrm{e}-02$	$7.000000 \mathrm{e}-01$		
15	$9.683496 \mathrm{e}-01$	$9.683496 \mathrm{e}-01$	$3.165041 \mathrm{e}-02$	$7.000000 \mathrm{e}-01$		
20	$9.946805 \mathrm{e}-01$	$9.946805 \mathrm{e}-01$	$5.319484 \mathrm{e}-03$	$7.000000 \mathrm{e}-01$		
25	$9.991060 \mathrm{e}-01$	$9.991060 \mathrm{e}-01$	$8.940457 \mathrm{e}-04$	$7.000000 \mathrm{e}-01$		
30	$9.998497 \mathrm{e}-01$	$9.998497 \mathrm{e}-01$	$1.502623 \mathrm{e}-04$	$7.000000 \mathrm{e}-01$		
40	$9.999958 \mathrm{e}-01$	$9.999958 \mathrm{e}-01$	$4.244537 \mathrm{e}-06$	$7.000000 \mathrm{e}-01$		
55	$1.000000 \mathrm{e}-00$	$1.000000 \mathrm{e}-00$	$2.015120 \mathrm{e}-08$	$7.000000 \mathrm{e}-01$		
70	$1.000000 \mathrm{e}-00$	$1.000000 \mathrm{e}-00$	$9.566903 \mathrm{e}-11$	$7.000002 \mathrm{e}-01$		
85	$1.000000 \mathrm{e}-00$	$1.000000 \mathrm{e}-00$	$4.540812 \mathrm{e}-13$	$6.998631 \mathrm{e}-01$		
96	$1.000000 \mathrm{e}-00$	$1.000000 \mathrm{e}-00$	$8.881784 \mathrm{e}-15$	$6.956522 \mathrm{e}-01$		

A trivial scheme

Model problem:

Abbildung: Convergence history $\log _{10} \varepsilon_{m}$

A trivial scheme

Definition: Spectral radius

A number $\lambda \in \mathbb{C}$ is called eigenvalue of A, if a vector $x \neq 0$ exists, such that $A x=\lambda x$. The number

$$
\rho(A):=\max \{|\lambda|: \lambda \text { is eigenvalue of } A\}
$$

is called spectral radius of A.

A trivial scheme

Model problem:

$$
\underbrace{\left(\begin{array}{rr}
0.7 & -0.4 \\
-0.2 & 0.5
\end{array}\right)}_{A:=} \underbrace{\binom{x_{1}}{x_{2}}}_{x:=}=\underbrace{\binom{0.3}{0.3}}_{b:=}
$$

- A is non-singular $(\operatorname{det} A=0.27)$
- $x^{\star}=A^{-1} b=\binom{1}{1}$
- Spectral radius of the iteration matrix:

$$
\rho(M)=\rho(I-A)=\rho\left(\begin{array}{ll}
0.3 & 0.4 \\
0.2 & 0.5
\end{array}\right)=0.7
$$

Consistency, convergence and rate of convergence

Aim: Find an answer to each of the following questions
(1) When does a Splitting scheme converge?
(2) Which are the ingredients that determine the rate of convergence?

Consistency, convergence and rate of convergence

Consistency:

An iterative solution method $x_{m+1}=\phi\left(x_{m}, b\right)$ is called consistent w.r.t. the matrix A, if the solution $x^{\star}=A^{-1} b$ represents a fixpoint of ϕ, that means

$$
x^{\star}=\phi\left(x^{\star}, b\right)
$$

for each right hand side $b \in \mathbb{C}^{n}$.

In other words: Consistency means
If the iterative solution method yields $\quad x_{m}=A^{-1} b$, then $\quad x_{k}=A^{-1} b \quad$ for all $k \geq m$.

Mathematics and the real life

Part I: The cafeteria

Mathematics and the real life

Consistency:

Consistency

Statement for consistency

An iterative solution method is consistent if and only if

$$
M=I-N A
$$

Justification: Let $x^{\star}=A^{-1} b$
$" \Longleftarrow$ "Let $M=I-N A$, then we obtain

$$
x^{\star}=M x^{\star}+N \underbrace{A x^{\star}}_{=b}=M x^{\star}+N b=\phi\left(x^{\star}, b\right) .
$$

$" \Longrightarrow$ "Let ϕ be consistent, then

$$
\begin{aligned}
& x^{\star}=\quad \phi\left(x^{\star}, b\right) \quad=M x^{\star}+N b=M x^{\star}+N A x^{\star} \\
&=(M+N A) x^{\star} \\
& \stackrel{b=A x^{\star}}{\Longrightarrow} M=I-N A .
\end{aligned}
$$

Consistency

General form of a Splitting method

$$
x_{m+1}=\underbrace{B^{-1}(B-A)}_{M:=} x_{m}+\underbrace{B^{-1}}_{N:=} b, \quad m=0,1, \ldots
$$

For each Splitting method, one gets:

$$
M=B^{-1}(B-A)=I-B^{-1} A=I-N A
$$

Hence:
Each Splitting method is linear and consistent.

Convergence

Convergence:

An iterative solution method $x_{m+1}=\phi\left(x_{m}, b\right)$ is called convergent, if there exists a limit

$$
x=\lim _{m \rightarrow \infty} x_{m}=\lim _{m \rightarrow \infty} \phi\left(x_{m-1}, b\right)
$$

for each right hand side $b \in \mathbb{C}^{n}$, which is independent of the initial guess $x_{0} \in \mathbb{C}^{n}$

In other words: Convergence means:
The method has a unique destination.

Mathematics and the real life

Convergence:

Convergence and Consistency

We obtain:

For a consistent and convergent linear iterative solution method $x_{m+1}=\phi\left(x_{m}, b\right)$ one gets

$$
x^{\star}=A^{-1} b=\lim _{m \rightarrow \infty} \phi\left(x_{m}, b\right)
$$

for all $x_{0} \in \mathbb{C}^{n}$.

Justification:

- Convergence
- $x=\lim _{m \rightarrow \infty} x_{m}$ represents a fixpoint of the linear mapping ϕ.
- There exists exactly one fixpoint.
- Consistency
- $x^{\star}=A^{-1} b$ is a fixpoint.

Mathematics and the real life

Consistency and Convergence

Banach fixed point theorem

When does a Splitting scheme converge?

Let D be a complete subset of a normed space X and let $f: D \longrightarrow D$ be a contracting mapping on X, then the sequence

$$
x_{m+1}=f\left(x_{m}\right) \quad, m=0,1, \ldots
$$

is convergent independent of the initial guess $x_{0} \in D$. Furthermore the unique limit satisfies the equation $x=f(x) \in D$ and thus represents the unique fixpoint of f. Thereby, two inequalities describe the rate of convergence:

$$
\left\|x_{m}-x\right\| \leq \frac{q^{m}}{1-q}\left\|x_{1}-x_{0}\right\|
$$

a posteriori: $\quad\left\|x_{m}-x\right\| \leq \frac{q}{1-q}\left\|x_{m}-x_{m-1}\right\|$
where $0 \leq q<1$ represents the Lipschitz constant of f.

Banach fixed point theorem

Definition

Contractivity means:
We have

$$
\|f(x)-f(y)\| \leq q\|x-y\| \quad \text { with } \quad 0 \leq q<1
$$

for all x, y.

Banach fixed point theorem

Example:

We are looking for an $x \in D=[0,1]$ which satisfies $x=\cos x$.
\Longrightarrow Consequently, we are looking for a fixpoint of

$$
f(x)=\cos x \quad \text { in }[0,1]
$$

Properties:

(c) $f:[0,1] \longrightarrow[0,1]$
(2) $[0,1]$ represents a complete subset of \mathbb{R} w.r.t. $\|x\|=|x|$.
(3) $f^{\prime}(x)=-\sin x$
$\Longrightarrow q:=\max _{x \in[0,1]}\left|f^{\prime}(x)\right|<1$
$\Longrightarrow|f(x)-f(y)| \leq q \cdot|x-y| \quad$ with $\quad 0 \leq q<1$
$\longrightarrow \quad$ The sequence $x_{m+1}=f\left(x_{m}\right)$ will converge to $x=f(x)$ independet of the initial value $x_{0} \in[0,1]$.

Banach fixed point theorem

Fig.:Convergence history concerning $x_{0}=0.25$

Convergence

In the context of a Splitting scheme we have:
$\|\phi(x, b)-\phi(y, b)\|=\|M x+N b-(M y+N b)\|=\|M(x-y)\| \leq\|M\|\|x-y\|$

Thus

reads

Let $\|M\|<1$, then the Splitting method

$$
\phi(x, b)=M x+N b
$$

convergent.
A-priori error estimate:

$$
\left\|x_{m}-x^{\star}\right\| \leq \frac{\|M\|^{m}}{1-\|M\|}\left\|x_{1}-x_{0}\right\|
$$

Conjuction between norm und spectral radius

There hold:

- $\rho(M) \leq\|M\|$ for each matrix norm $\|\cdot\|$.
- For each matrix M and each $\epsilon>0$ there exists a norm such that

$$
\|M\| \leq \rho(M)+\epsilon .
$$

Thus, for each M we can write:

- If there exists a norm such that $\|M\|<1$, then $\rho(M)<1$
- if $\rho(M)<1$, then there exists a norm such that $\|M\|<1$.

Convergence

We obtain:

A Splitting method $\phi(x, b)=M x+N b$ is convergent if and only if

$$
\rho(M)<1
$$

holds.

Definition: Rate of convergence

$\rho(M)$ is called rate of convergence.

Consistency, convergence and rate of convergence

Aim: Find an answer to each of the following questions
(1) When does a Splitting scheme converge?

Method is convergent if and only if $\Longleftrightarrow \rho(M)<1$
(2) Which are the ingredients that determine the rate of convergence?

The rate convergence directly depends on $\rho(M)$
\Longrightarrow The smaller the merrier

Summary

- Splitting methods are always linear.
- Splitting methods are always consistent.
- Splitting methods converge to $x^{\star}=A^{-1} b$ for each initial guess $x_{0} \in \mathbb{C}^{n}$ to $x^{\star}=A^{-1} b$ if and only if $\rho(M)<1$.
- Usually splitting methods are converging faster if the spectral radius $\rho(M)$ is smaller.
- Rule of thumb for convergent schemes:

Squaring down the spectral radius leads to an iterative solution method, which requires only half of the iteration to reach the same error bound.

