
Performance optimization of the GReX code

AstroLab Team: Fabio Baruffa, Salvatore Cielo and Luigi Iapichino

Participants: Elias Roland Most and Ludwig Jens Papenfort

Institut für Theoretische Physik, Goethe Universität, Frankfurt am Main

Scientific goals

Figure 1: Magnetic field amplification due
to the turbulent Kelvin-Helmholtz instabil-
ity in a binary neutron star merger simu-
lated with GReX. Adaptive mesh refinement
efficiently captures the shear layer at ex-
treme resolutions (35 m).

Neutron star mergers are amongst the most violent
events in the universe, where two compact objects of
the size of Manhattan weighing more than our Sun col-
lide under the influence of strong gravity. The grav-
itational waves (GW) emitted by such an event have
recently been observed by the LIGO network for the
first time. This detection, GW170817, was accompa-
nied by an electromagnetic (EM) kilonova afterglow,
AT2017gfo, resulting from the decay of heavy elements
formed in the ejected material undergoing r-process nu-
cleosynthesis. It has also established a firm connection
to short gamma-ray bursts, enabling a multimessenger
view on neutron star mergers for the first time. All
these EM counterparts are ultimately enabled by the
presence of strong magnetic fields in the merger rem-
nant that either drive mass outflows by an induced shear
viscosity or facilitate jet launching when a black hole is
formed. Despite its importance, the magnetic field evo-
lution in the merger is only poorly understood: At the
time of merger a shear layer forms between the two stars
in which a strong magnetic field amplification by small
scale turbulence is taking place, see Fig. 1. The main
computational obstacle is that very high numerical res-
olutions are required to properly resolve the turbulence, which as previous studies indicate, may well
be < 1 m. Simulations to model these systems in 3D by using magnetohydrodynamics coupled to
fully dynamical space-time evolution are computationally extremely demanding and the requirements
to reach these scales are twofold. First, an efficient adaptive mesh refinement technique needs to be
employed such that the shear layer can be adequately resolved in a computationally efficient fashion
while keeping dynamically less important regions at low resolution. Second, solving the system of
equations in this hierarchical way needs to be scalable to large core counts. Ultimately, in order
to further push the resolution to new frontiers and gain important insights about the small scale
turbulence present in this process, exascale machines will be the only means of making significant
progress.

Code overview and performance

In order to model this process we plan to solve the equations of ideal general-relativistic magnetohy-
drodynamics in dynamical space-times using the GReX code. GReX is a new code written in C++17
and is built on the massively parallel AMReX framework (MPI+OpenMP) and has been successfully
run on up to 32,000 cores of the SuperMUC-NG system. GReX uses a high-order conservative finite
volume shock capturing algorithm to solve the equations of general-relativistic magnetohydrodynam-
ics coupled with a third order strongly stability preserving Runge-Kutta timestepping scheme. GReX

also uses the Z4c scheme to evolve the dynamical space-time required to capture the merger process in
neutron star mergers. The equations are solved using a fourth-order accurate centered finite-difference
scheme. The AMReX framework, which is the U.S. Exascale Compute Project co-design center for
mesh based codes, provides Berger-Rigoutsis patch-based adaptive mesh refinement that enables us

Page 1 of 4



3584 7168 14336 28670
Number of cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e 

nu
m

be
r o

f c
el

l u
pd

at
es

 p
er

 c
or

e

Theoretical
GReX

Weak scaling

1344 3584 7168 12880 25200
Number of cores

1

2

4

8

16

Sp
ee

du
p 

no
rm

al
ize

d 
to

 1
34

4 
co

re
s

Theoretical
GReX

Strong scaling

Figure 2: Scaling performed on FRONTERA for the GReX code. (Left) Weak scaling showing the
relative number of cell updates per core. (Right) Strong scaling of a production run on the normal
queue of FRONTERA.

to resolve regions of high space-time curvature, i.e. close to the neutron star, and also the strong
gradients near its surface in a computationally efficient fashion. Application codes based on AMReX
have been successfully used on > 100, 000 cores. To specifically leverage the architectural advantages
of recent Intel processors all compute kernels of GReX are vectorized using AVX-512 intrinsics and
result in an overall AVX-512 vector register use across the whole code of ' 95% on a Skylake-SP
node on SuperMUC-NG.
In order to assess the scaling of the code we have performed a set of weak and strong scaling test for
a medium sized AMR problem on the FRONTERA system, which is very similar to SuperMUC-NG.
The results are shown in Fig. 2 and demonstrate good scaling up to the equivalent of 1 island on
SuperMUC-NG.

Goals for the AstroLab project

Since the single node performance is already optimized to a very high degree, our goal is to achieve
extreme scalability of the code in order to enable even higher numerical resolutions for accurately
capturing magnetic turbulence in neutron star merger problems. We would like to continue to bench-
mark the production setup for a neutron star merger with magnetic turbulence on an extreme scale of
3-4 islands of SuperMUC-NG at LRZ. In particular, we would like to investigate if, given an optimal
base grid setup for 1-2 islands (38-76 thousand cores), we can still achieve good performance on such
an extreme core count, even when the grid is dynamically adapted as in Fig. 1. Additionally, such
scaling entails a demanding I/O test: while so far we have not had any problems with the I/O, which
has been used in the context of other AMReX simulations > 100, 000 cores, we would like to assess
that this also works well for our simulations.

Achievements within the AstroLab project

Single node OpenMP scalability

As a preliminary study, Salvatore Cielo and the AstroLab team have investigated the single-node
scalability of the GReX code using a realistic simulation setup, scaled down to a single node. By
performing different splits between the number of ranks and the number of threads it was found that
the code scales well from 1 to 48 cores in both pure MPI and MPI+OpenMP setups. This is shown
in Fig. 3. Only hyperthreading was found to not yield any significant improvement in runtime and
we chose to not use in the remainder of the tests.

Page 2 of 4



Figure 3: Intranode performance of a typical neutron star merger simulation with the GReX code.
(Left) Run time as a function of number of MPI ranks, where the different curves denote different
number of OpenMP threads. (Right) Same simulations but for fixed core count. The varying number
of MPI ranks corresponds to a different OpenMP thread count. Overall, the code scales well until the
physical limit of cores. Hyperthreading (green line) does not yield any performance improvements.

On-site workshop

In February 2020 we have met at LRZ for a one-day on-site workshop to discuss the status of the
GReX optimization project. Bottlenecks found up to this point were the logical results of load
balancing and communication when using a large number of AMR grids with many cells. After a
discussion and a detailed analysis of single node with reports from the Intel R© Application Performance
SnapshotTM(APS) and trace data from Intel Trace Analyzer and CollectorTM(ITAC), it became clear
that one of the major issues is the domain decomposition. This is done via a set of spatially overlapping
patches of different sizes. These patches need to be distributed equally among the ranks, but depending
on the physical problem this may not always be the case. This highlights the need for a fine tuned
physical problem setup when using AMR.

Impact of local tiling

One option to alleviate the decomposition issues is to use local tiling, provided by the AMReX
framework. In the tiling approach each patch is split again into subpatches that can be distributed
among the threads of the same MPI rank. An investigation into different tile size shows (Table 1)
that a tile size of 16 cells may perform as well as without tiling on single-node runs, but degrades the
performance significantly

Max grid size
Tile size

(along y and z)
Time of single

timestep
Difference

wrt no tiling

Single node 32 32 225.6 s +2.4%
32 16 238.1 s +8.1%
16 16 237.9 s +8.0%

256 nodes 32 32 1257 s +73%
16 16 912 s +26%

Table 1: Impact of tile size on the run time for a single time step (average of three). All runs feature
12 OpenMP threads for 4 MPI ranks per node. Tiles izes of 32 or 16 perform almost as well as no
tiling for single node runs, but the communication overhead degrades the performance significantly
for larger runs, though smaller tiles may help code balancing (as 16 outperforms 32 on 256 nodes).
Tile sizes smaller than 16 are never convenient.

Page 3 of 4



(about 25% on total runtime) on larger runs (256 nodes of SuperMUC-NG and above). The reason for
this is likely found in the communication overhead at the boundary of each newly created tile. Thus,
while tiling may have significant impact in other contexts, we prefer to focus any further optimization
effort on alleviating the pressure on the MPI communication.

Improved ghost zone exchange

In order to reduce some of the MPI overhead found in the APS analysis, the ghost zone exchange
was rewritten to reduce the amount of communication when using subcycling in time. The overhead
stemmed from the fact that for an AMR level l, the next higher level l+ 1 requires the filling of ghost
zones at the level boundary. Since level l evolves with time step ∆tl and level l + 1 with ∆tl/2, we
need to interpolate coarse grid values both in space and in time. Previously, this interpolation was
always done on the rank holding the coarse level and only the interpolated ghost zone values where
communicated. Within the new approach, we instead communicate the spatially interpolated coarse
grid values needed to compute all fine grid ghost zones. This way only one communication step is
necessary and the level boundary filling can then happen locally (and without extra communication)
on the fine level. We found that this leads to an improvement of 20% on our local workstation.

Final scaling

36864 49152 73728 148608
Number of cores

1

2

4

sp
ee

d
u

p

Figure 4: Strong scaling of GReX on
SuperMUC-NG. The change in runtimes is re-
ported via the effective speed-up. The dashed
line corresponds to a perfect ideal scaling.

As the final part of the project, the scaling
performance of the optimized code was assessed
on SuperMUC-NG as part of the Extreme-Scaling-
Workshop. In accordance with the FRONTERA scal-
ing results, it was found that the code scales reason-
ably well to about 50, 000 cores, but then degrades
when going to ' 70, 000 cores. When further doubling
the number of cores the scalability again improves, al-
lowing for the code to successfully run on ' 150, 000
cores. See also Fig. 4 for further details. While the
reason for the loss of optimal scaling is not yet un-
derstood, it might likely be associated with a differ-
ent load-balancing at intermediate core counts for the
specific problem setup. We plan to investigate this in
more detail in the future.

Page 4 of 4


