

PD. Dr. Juan J. Durillo

VIENNA

CLUSTER

rz

ENTIFIC

DEEP LEARNING INSTITUTE

THE GOALS OF THIS COURSE

- Get you up and on your feet quickly
- Build a foundation to tackle a deep learning project right away
- We won't cover the whole field, but we'll get a great head start
- Foundation from which to read articles, follow tutorials, take further classes

https://courses.nvidia.com/dli-event

VSC_FDL_AMBASSADOR_AP21

www.nvidia.com/dli

DEEP LEARNING INSTITUTE Part I: An Introduction to Deep Learning

Part 2: How a Neural Network Trains

Part 3: Convolutional Neural Networks

Part 4: Data Augmentation and Deployment

Part 5: Pre-trained Models

Part 6: Advanced Architectures

HISTORY OF AI

BEGINNING OF ARTIFICIAL INTELLIGENCE

COMPUTERS ARE MADE IN PART TO COMPLETE HUMAN TASKS EARLY ON, GENERALIZED INTELLIGENCE LOOKED POSSIBLE TURNED OUT TO BE HARDER THAN EXPECTED

EARLY NEURAL NETWORKS

Inspired by biology

Created in the 1950's

Outclassed by Von Neumann Architecture

EXPERT SYSTEMS

Programmed by hundreds of engineers

Rigorous programming of many rules

EXPERT SYSTEMS - LIMITATIONS

What are these three images?

THE DEEP LEARNING REVOLUTION

DATA

- Networks need a lot of information to learn from
- The digital era and the internet has supplied that data

COMPUTING POWER

Need a way for our artificial "brain" to observe lots of data within a practical amount of time.

THE IMPORTANCE OF THE GPU

WHAT IS DEEP LEARNING?

A (brief) introduction to Machine Learning 28.04.2021 | PD Dr. Juan J. Durillo

Perceptron - Artificial Neuron

 Works well even when the data is not linearly separable

(SUPERVISED) LEARNING

- Data domain Z: X×Y
 - $X \rightarrow$ domain of the input data
 - $\Upsilon \rightarrow$ set of labels (knowledge)
- Data Distribution is a probability distribution over a data domain
- Training set $z_1, ..., z_n$ from Z assumed to be drawn from the Data Distribution D
- Validation set $v_1, ..., v_m$ from Z also assumed to be drawn from D
- A machine learning model is a function that given a set of parameters Θ and z from Z produces a prediction
- The prediction quality is measured by a differentiable non-negative scalar-valued loss function, that we denote $\ell(\Theta; z)$

X: 32 x 32

Example (CIFAR10 dataset)

(SUPERVISED) LEARNING

- Given Θ we can define the expected loss as: $L(\Theta) = \mathbb{E}_{z \sim D}[\ell(\Theta; z)]$
- Given D, ℓ , and a model with parameter set Θ , we can define learning as:

"The task of finding parameters Θ that achieve low values of the expected loss, while we are given access to only n training examples"

- The mentioned task before is commonly referred to as *training*
- Empirical average loss given a subset of the training data set $S(z_1, ..., z_n)$ as:

$$\hat{L}(\Theta) = \frac{1}{n} \sum_{t=1}^{n} [\ell(\Theta; z_t)]$$

• Usually a proxy function, easier to understand by humans, is used for describing how well the training is performed (e.g., accuracy)

(SUPERVISED) LEARNING

• The dominant algorithms for training neural networks are based on mini-batch stochastic gradient descent (SGD)

• Given an initial point Θ_0 SGD attempt to decrease \hat{L} via the sequence of iterates

$$\Theta_t \leftarrow \Theta_{t-1} - n_t g(\Theta_{t-1}; B_t)$$

$$g(\Theta; B) = \frac{1}{|B|} \sum_{z \in B} \nabla \ell(\Theta; z)$$

 B_t : random subset of training examples

 n_t : positive scalar (learning rate)

epoch: update the weights after going over all training set

COMPUTER VISION TASKS

predicting the type or class of an object in an image

Image Classification

predicting the type or class on an object in an image and draw a bounding box around Image Classification + Localization

predicting the location of objects in an image via bounding boxes and the classes of the located objects

Object Detection

predicting the class to which each pixel in the image belongs to

Image Segmentation

ON INPUT REPRESENTATION

image

_dict=['EOS','a','my','sleeps','on','dog','cat','the','bed','floor']

sentence = ['a', 'dog', 'sleeps', 'on', 'the', 'floor', 'EOS']

language

NEURAL NETWORKS FOR IMAGE CLASSIFICATION

TRAINING NEURAL NETWORKS

NEURAL NETWORKS FOR IMAGE **CLASSIFICATION**

0 0 0 0 0 0 155 117 184 214 214 155 117 49 19 19 141 254 54 55 23 0 0 0 0 0 0 0 0 0 0 0 0 43 146 254 254 229 111 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 133 254 254 254 254 255 106 23 0 0 0 0 0 0 0 0 0 55 196 196 196 223 254 254 216 23 0 0 0 0 0 0 0 0 0 0 0 0 0 18 70 245 253 99 0 0 0 0 0

shift to the left

is a nine

NO MORE FEATURE ENGINEERING

LEARNING FEATURES FROM DATA: CONVOLUTIONS

*The London skyline image is designed by Freepik

FILTERS

Input Image:

LONDON

try the code yourself (in octave)!

I=imread(<path-to-image>); GRAY=rgb2gray(I) FILTER=[1 0 -1; 1 0 -1; 1 0 -1]; % filter 2 CONVOLUTED=conv2(GREY,FILTER); Imwrite(CONVOLUTED, <path-to-result>); out of this picture? -1 filter 1 -1 0 -1 -1 filter 2 0 0 1 0 0 0 0 -1 0 0 0 -1 0 0 0 -1 0 0 1 0 -1 filter 3

Can we get only vertical lines

CONVOLUTIONAL NEURAL NETWORKS (CNN)

A pooling layer down sample the feature maps produced by a convolution into smaller number of parameters to reduce the computational complexity.

It is a common practice to add pooling layers after each one or two convolutions layers in the CNN architecture.

CNN ARCHITECTURE: A COMMON PATTERN AND ITS INFLUENCE

The execution time required during a forward pass through a neural network is bounded from below by the number of floating point operations (FLOPs).

This FLOP count depends on the deep neural network architecture and the amount of data.

LENET ARCHITECTURE

Architecture summary :

- 3 convolutional layers filters in all the layers equal to 5x5 (layer 1 depth = 6, layer 2 depth = 16, layer 3 depth = 120)
- As activation function the tanh function is used

ALEXNET AND VGG ARCHITECTURES

- What is the best kernel size for each layer?
- Concatenating filters instead of stacking them for reducing computational expenses

INCREASING COMPLEXITY

7 Exaflops 60 Million Parameters

2015 - Microsoft ResNet Superhuman Image Recognition

20 Exaflops 300 Million Parameters

2016 - Baidu Deep Speech 2 Superhuman Voice Recognition

100 Exaflops 8700 Million Parameters

2017 - Google Neural Machine Translation Near Human Language Translation

SUMMARY

Brief introduction to Deep Learning with emphasis in Deep Convolutional Neural Networks

Review of basic concepts: from perceptron to the learning task

Debrief of most important concepts of neural network architectures

DEEP LEARNING FLIPS TRADITIONAL PROGRAMMING ON ITS HEAD

TRADITIONAL PROGRAMMING Building a Classifier

MACHINE LEARNING Building a Classifier

THIS IS A FUNDAMENTAL SHIFT

WHEN TO CHOOSE DEEP LEARNING

Classic Programming

If rules are clear and straightforward, often better to just program it

Deep Learning

If rules are nuanced, complex, difficult to discern, use deep learning

DEEP LEARNING COMPARED TO OTHER AI

Depth and complexity of networks

Up to billions of parameters (and growing)

Many layers in a model

Important for learning complex rules

HOW DEEP LEARNING IS TRANSFORMING THE WORLD

COMPUTER VISION

ROBOTICS AND MANUFACTURING

OBJECT DETECTION SELF DRIVING CARS

NATURAL LANGUAGE PROCESSING

REAL TIME TRANSLATION

VOICE RECOGNITION

VIRTUAL ASSISTANTS

RECOMMENDER SYSTEMS

CONTENT CURATION TARGETED ADVERTISING

SHOPPING RECOMMENDATIONS

REINFORCEMENT LEARNING

ALPHAGO BEATS WORLD CHAMPION IN GO

AI BOTS BEAT PROFESSIONAL VIDEOGAMERS

STOCK TRADING ROBOTS

OVERVIEW OF THE COURSE

HANDS ON EXERCISES

- Get comfortable with the process of deep learning
- Exposure to different models and datatypes
- Get a jump-start to tackle your own projects

STRUCTURE OF THE COURSE

"Hello World" of Deep Learning

Train a more complicated model

New architectures and techniques to improve performance

Pre-trained models

Transfer learning

PLATFORM OF THE COURSE

Jupyter notebooks for interactive coding

SOFTWARE OF THE COURSE

- Major deep learning platforms:
 - TensorFlow + Keras (Google)
 - Pytorch (Facebook)
 - MXNet (Apache)
- We'll be using TensorFlow and Keras
- Good idea to gain exposure to others moving forward

FIRST EXERCISE: CLASSIFY HANDWRITTEN DIGITS

HELLO NEURAL NETWORKS

Train a network to correctly classify handwritten digits

• Historically important and difficult task for computers

Try learning like a Neural Network Get exposed to the example, and try to figure out the rules to how it works

LET'S GO!

