
Dr. Volker Weinberg | LRZ

MODULE SIX:
LOOP OPTIMIZATIONS

GANG WORKER VECTOR

GANG WORKER VECTOR

 Gang / Worker / Vector defines the
various levels of parallelism we can
achieve with OpenACC

 This parallelism is most useful when
parallelizing multi-dimensional loop
nests

 OpenACC allows us to define a generic
Gang / Worker / Vector model that will
be applicable to a variety of hardware,
but we fill focus a little bit on a GPU
specific implementation

Workers

Gang

Vector

Gang

GANG WORKER VECTOR
 When paralleling our loops, the highest

level of parallelism is gang level
parallelism

 When encountering either the kernels or
parallel directive, multiple gangs will be
generated, and loop iterations will be
spread across the gangs

 These gangs are completely
independent of each other, and there is
no way to for the programmer to know
exactly how many gangs are running at
a given time

 In many architecures, the gangs have
completely separate (or private) memory

Gang

GANG WORKER VECTOR
 In our code example, we see that we are

applying the gang clause to an outer-
loop

 This means that the outer-loop iterations
will be split across some number of
gangs

 These gangs will then execute in parallel
with each other

 Whenever a parallel compute region is
encountered, some number of gangs will
be created

 The programmer is able to specify
exactly how many gangs to create

#pragma acc parallel loop gang
for(i = 0; i < N; i++)
for(j = 0; j < M; j++)
< loop code >

GANG WORKER VECTOR
 A vector is the lowest level of

parallelism

 Every gang will have at least 1 vector

 A vector has the ability to run a single
instruction on multiple data elements

 Many different architectures can
implement vectors in different ways,
however, OpenACC allows for us to
define them in a general, non-hardware-
specific way

Vector

GANG WORKER VECTOR

 In our code example, the inner-loop
iterations will be evenly divided across a
vector

 This means that those loop iterations will
be executing in parallel with one-another

 Any loop that is inside of our vector loop
cannot be parallelized further

Vector

#pragma acc parallel loop gang
for(i = 0; i < N; i++)
#pragma acc loop vector
for(j = 0; j < M; j++)
< loop code >

3 Workers

GANG WORKER VECTOR

 The worker clause is a way for the
programmer to have multiple vectors
within a gang

 The primary use of the worker clause is
to split up one large vector into multiple
smaller vectors

 This can be useful when our inner
parallel loops are very small, and will not
benefit from having a large vector

3 Workers

GANG WORKER VECTOR

 In our sample code, we apply both gang
and worker level parallelism to our outer-
loop

 The main difference this creates for our
code is that we can now have smaller
vectors running the inner loop

 This will most likely improve
performance if the inner loop is relatively
small

#pragma acc parallel loop gang worker
for(i = 0; i < N; i++)
#pragma acc loop vector
for(j = 0; j < M; j++)
< loop code >

PARALLEL DIRECTIVE SYNTAX

#pragma acc parallel num_gangs(2) \
num_workers(2) vector_length(32)

{
#pragma acc loop gang worker
for(int x = 0; x < 4; x++){
#pragma acc loop vector
for(int y = 0; y < 32; y++){
array[x][y]++;

}
}

}

 When using the parallel directive, you may
define the number of gangs/workers/vectors
with num_gangs(N), num_workers(M),
vector_length(Q)

 Then, you may define where they belong in
the loops using gang, worker, vector

PARALLEL DIRECTIVE SYNTAX

#pragma acc parallel loop num_gangs(2) num_workers(2) \
vector_length(32) gang worker

for(int x = 0; x < 4; x++){
#pragma acc loop vector
for(int y = 0; y < 32; y++){
array[x][y]++;

}
}

 You may also apply gang/worker/vector
when using the parallel loop construct

KERNELS DIRECTIVE SYNTAX

#pragma acc kernels loop gang(2) worker(2)
for(int x = 0; x < 4; x++){
#pragma acc loop vector(32)
for(int y = 0; y < 32; y++){
array[x][y]++;

}
}

 When using the kernels directive, the
process is somewhat simplified

 You may define the location and
number by using gang(N),
worker(M), vector(Q)

 You may also define gang, worker,
and vector using the same method
as with the parallel directive

 If you do not specify a number, the
compiler will decide one

KERNELS DIRECTIVE SYNTAX
#pragma acc kernels
{
#pragma acc loop gang(2) worker(2)
for(int x = 0; x < 4; x++){
#pragma acc loop vector(32)
for(int y = 0; y < 32; y++){
array[x][y]++;

}
}

#pragma acc loop gang(4) worker(4)
for(int x = 0; x < 16; x++){
#pragma acc loop vector(16)
for(int y = 0; y < 16; y++){
array2[x][y]++;

}
}

}

 When using the kernels directive, the
process is somewhat simplified

 You may define the location and
number by using gang(N),
worker(M), vector(Q)

 You may also define gang, worker,
and vector using the same method
as with the parallel directive

 If you do not specify a number, the
compiler will decide one

 Each loop nest can have different
values for gang, worker, and vector

WARPS
 So far we have been using a very small number of gangs/worker/vectors, simply

because they’re easier to understand

 When actually programming, the number of gangs/worker/vectors will be much larger

 When specifically programming for an NVIDIA GPU, you will always want your
vectors large enough to fully utilize warps

 A warp, simply put, is an optimized group of 32 threads

 To utilize warps in OpenACC, always make sure that your vector length is a multiple
of 32

CUDA PROGRAMMING MODEL REVIEW

 A grid is composed of blocks which are completely
independent

 A block is composed of threads which can
communicate within their own block

 32 threads form a warp

 Instructions are issued per warp

 If an operand is not ready the warp will stall

 Context switch between warps when stalled

GANG WORKER VECTOR

 Gang is a general term that can mean a few different things. In short, it depends on
your architecture.

 On a multicore CPU, generally gang=thread.
 On a GPU, generally gang=thread block.

 The way I like to think of it is that gang represents my outer-most level of parallelism
for any architecture I am running on.

LOOP OPTIMIZATION RULES OF THUMB

 It is rarely a good idea to set the number of gangs in your code, let the compiler
decide.

 Most of the time you can effectively tune a loop nest by adjusting only the vector
length.

 It is rare to use a worker loop. When the vector length is very short, a worker loop
can increase the parallelism in your gang.

 When possible, the vector loop should step through your arrays

 Use the device_type clause to ensure that tuning for one architecture doesn’t
negatively affect other architectures.

MODULE REVIEW

KEY CONCEPTS
In this module we discussed…

 The loop directive enables the programmer to give more information to
the compiler about specific loops

 This information may be used for correctness or to improve
performance.

 The device_type clause allows the programmer to optimize for one
device type without hurting others.

LAB ASSIGNMENT
In this module’s lab you will…

 Update the code from the previous module in attempt to improve the
performance

 Use PGProf to analyze the performance difference when changing
your loops

 Experiment with the device_type clause to ensure GPU optimizations
don’t slow down the multicore speed-up, or vice versa

	Module six:�Loop optimizations
	Gang worker vector
	Gang worker vector
	Gang worker vector
	Gang worker vector
	Gang worker vector
	Gang worker vector
	Gang worker vector
	Gang worker vector
	Parallel directive syntax
	Parallel directive syntax
	Kernels directive syntax
	Kernels directive syntax
	warps
	CUDA Programming Model Review
	Gang Worker vector
	Loop Optimization Rules of Thumb
	Module Review
	KEY concepts
	Lab Assignment

