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Forward Operations

Matrix Multiplication Operation

Mo arxX b a; by ai*x¢ + b1*xz

b, a; by ( )= ax"xs + bz
| ) X * *

" as bs asz*xq + b3*xs
b > az*X1 + b2*x2

a3 a; by X1y a1*Xq + by*Xy
b‘ — a3*X1 + b3*X2 a; b (x?_ }’2) = [ @2xx1 * baxx;
as bs az*Xq + ba*Xz

\

batch of two inputs
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Forward Operations
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* Linear regressiony=w * x+ b (l.e., a NN of a single neuron,
and identity, f(x) = x, as activation function)

Back | |
. o(w*x+b)=0(z) ifwedefinezasw *x+b
Propagation W/=°
and Gradient b

Descent * Loss function definedas C=(a—y )2

—  a (activation)

* How does C change with w and b variations?
e compute the ratio at with C changes with changes in w
and b
* use this ratio to modify then w and b in order to move
C towards a minimum

ing and GPU Programming Workshop @ CSC 10.5-13.5.2022



Computing the Gradient

Gradient with a single input, that generates prediction a 9C _ 0z 0adC _ 2x(a —y)
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Computing the Gradient

. . . _ . ac 1
Gradient with two inputs that generates predictions: o=t 2x(a —yq1) + 2x(b — y,))
aandb ‘\
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Gradient Vector
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Back Propagation and Gradient Descent
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Back Propagation and Gradient Descent

Starting Point
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Back Propagation and Gradient Descent
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Back Propagation and Gradient Descent

Starting Point
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Back Propagation and
Gradient Descent

* Batch size implications
* Smaller batches imply more steps per epoch:

* More updates to weights --> More updates to the
net

* Smaller batches do not imply larger/smaller gradients

PD. Dr. Juan J. Durillo - Deep Learning and GPU Programming Workshop @ CSC 10.5-13.5.2022



Parallel/Distributed M

Pipeline Model

Complete layer per device
* Weights stay within device

Worker 1
Activations are communicated
Worker 2
between GPUs Worker 3
. . . . orker
Non efficient implementations . ..........ccccovervrrneessninans .

may lead to inefficient usage of Worker 4
resources

Time
* Research area

L Training

1. Model Parallelism: Memory usage and
computation of a model distributed across devices
Two main variants:

a) Pipeline parallelism

b) Tensor parallelism

—— [ ForwardPass [ | Backward Pass
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Parallel/Distributed ML Training

1. Model Parallelism: Memory usage and
computation of a model distributed across devices
Two main variants:

a) Pipeline parallelism

V/A o b) Tensor parallelism

| 'r‘

) )
Tensor Parallelism

* Tensor operations (e.g., computing a layer output) distributed across device
e Allows larger, more computationally expensive models

e Activations are communicated between GPUs

* Further points for inefficiencies

* Adevice miﬁht depend on the activations computed by more than one device
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Parallel/Distributed ML Training

2. Data Parallelism: Training mini-batch is split
across devices

* Model must fit into the memory of a single device

* Weights are the same in each device
e Gradients are communicated across all devices
(all-to-all)
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